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Abstract 

This article develops a framework for efficient IV estimators of random effects models 
with information in levels which can accommodate predetermined variables. Our formu- 
lation clarifies the relationship between the existing estimators and the role of trans- 
formations in panel data models. We characterize the valid transformations for relevant 
models and show that optimal estimators are invariant to the transformation used to 
remove individual effects. We present an alternative transformation for models with 
predetermined instruments which preserves the orthogonality among the errors. Finally, 
we consider models with predetermined variables that have constant correlation with the 
effects and illustrate their importance with simulations. 
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1. Introduction 

The static error components model with both time-invariant and time- 
varying explanatory variables allowing for the correlation of some of these 
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variables with the unobservable individual effects was first considered by 

Hausman and Taylor (1981) ~ hereafter HT. Bhargava and Sargan (1983) 
_ hereafter BS - studied the estimation of dynamic error components models, 

and also considered a model which contained a lagged dependent variable and 

allowed for correlation between some of the regressors and the effects. Sub- 
sequently, Amemiya and MaCurdy (1986) - hereafter AM - and Breusch, 

Mizon, and Schmidt (1989) ~ hereafter BMS - developed alternative instrumen- 
tal variable (IV) estimators of the HT model that are more efficient than the 

original HT estimator. On the other hand, Anderson and Hsiao (1982), Holtz- 
Eakin, Newey, and Rosen (1988) and Arellano and Bond (1991) amongst 
others, considered the estimation of models with predetermined but no strictly 

exogenous variables by IV methods using lagged values of the predetermined 
variables as instruments for the equations in first differences. In these models it is 

usually maintained that all the explanatory variables are potentially correlated 
with the individual effects and therefore only estimators based on deviations of 

the original observations can be consistent. However, if there are instruments 
available that are not correlated with the effects, the levels of the variables 
contain information concerning the parameters of interest which if exploited 
could improve, sometimes crucially, the efficiency of the resulting estimates. In 
addition, this information in the levels may be sufficient to identify the coeffi- 

cients of time-invariant explanatory variables that are correlated with the effects. 
The purpose of this paper is to develop a framework for efficient IV estimators 

with information in levels which is capable of accommodating models with 
lagged dependent variables and other predetermined variables. In Section 2 we 

present a generalised method of moments formulation of HT, AM, and BMS- 
like estimators. Each particular model gives rise to a set of orthogonality 
restrictions on which estimation is to be based. We follow Amemiya and 

MaCurdy in exploiting transformations of the original equations in order to 
obtain convenient expressions of these restrictions. However, we formulate the 
matrices of instruments as block-diagonal matrices with as many blocks as the 

total number of time periods. In this way we can show that the optimal 
estimators are invariant to the choice of transformation. Another advantage of 
proceeding in this way is that we can obtain HT, AM, and BMS estimators with 

nonstandard or unrestricted covariance matrix without having to specify the 
appropriate GLS transformation and subsequent changes to the instrument set 
to avoid inconsistencies. As noted by AM, since different instruments are only 
valid for subsets of equations, GLS transformations are sensitive in this context: 
a particular IV matrix that is valid for some GLS transformation of the model 
may be invalid under a different GLS transformation. By specifying an IV 
matrix that effectively lists all the individual moment restrictions available we 
avoid this problem. We also calculate the Fisher information bound for the 
parameters of a conditional moment specification of the model in order to assess 
the efficiency of the class of GMM estimators formulated in Section 2. 
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Section 3 shows how the previous framework can easily accommodate dy- 
namic models, and other models with predetermined variables and information 
in levels. We discuss an IV estimator which is asymptotically equivalent to the 
limited information maximum likelihood (LIML) estimator with unrestricted 
covariance matrix and correlated exogenous variables of BS. This clarifies the 
relationship between HT/AM/BMS and BS. We also extend these estimators to 
include lags of predetermined variables as additional instruments. We character- 
ise the class of valid transformations in this context and show the invariance of 
the optimal estimators to a particular choice of transformation. We argue that 
a computationally convenient transformation for these models is forward or- 
thogonal deviations. A closely related transformation has been used by Hayashi 
and Sims (1983) for time series models. This transformation leads to simple 
expressions of the estimators in terms of the vectors of instruments correspond- 
ing to individual time periods, and so it avoids the need to operate with the full 
block-diagonal IV matrix which may have an excessively large number of 
columns. Section 3 also formulates a GMM estimator for a general model with 
predetermined variables and information in levels. 

Section 4 considers a model with predetermined variables that have constant 
correlation with the individual effects. As an illustration of the potential of these 
constraints, we report Monte Carlo simulations of IV estimators of a first-order 
stationary autoregression with random effects that exploit the orthogonality 
restrictions in levels. An estimator that only uses the restrictions in first differ- 
ences is also simulated for comparisons. The section concludes with some 
remarks on the usefulness of predetermined variables that have constant cor- 
relation with the effects for the testing of unit roots in short panels. Finally, 
Section 5 contains the conclusions of the paper. 

2. A method of moments formulation of Hausman-Taylor and 
related estimators with unrestricted covariance matrix 

Let us consider the model 

J’if = PXif + y’h + Uit> t=l,..., T, i=l...., N, 

Uit = Vi + uif7 

E(Ui,Ixi,, ... TXiT,f;.+qi) = 0. 

SO that the variables Xir andfi are assumed to be strictly exogenous given the 
unobservable individual effect vi. Under standard conditions, this assumption 
identifies p but not y. The identification of y is based on the following assump- 
tion: 
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where we are using the partitions xig = (x;it, x;i,)’ andJ = (f;i,f;i)‘. Throughout, 
T is small and N is large. This model can be regarded as an intermediate case 
between the ‘fixed effects’ model in which all the explanatory variables are 
potentially correlated with the effects and therefore only estimators based on 
deviations of the observations can be consistent, and the standard uncorrelated 
‘random effects’ model in which xtil = xit and $1; =1;. 

It is convenient to re-write (1) in the form 

yi = WiS + Ui, (3) 

where yi = (yir, . . . ,yir)‘, ai = (#iI, . . . ,UiT)‘, S = (/I’, y’)‘, Wi = (Xi I Lfi’)3 
Xi = (Xi12 ...) XiT)' and I is a T x 1 vector of ones. Below, we also make use 
of the notation X,! = T -‘z’X~ = (X;i, X;i) and the vectors vi = (ail, . . . ,Dir)‘, 
Xi = (X[l, ... ,xiT)', and wi = (xi,h')'. 

In general, the matrix E(uiuf 1 Wi) will be unrestricted and depend on Wi: 

E(aiaj / Wi) = E(aiaf 1 WJ + E(rlZ 1 Wi) II’ = f2(Wi). 

However, here we emphasize two cases with cross-sectional homoskedasticity 
in the sense that E(niU! 1 Wi) = E(uiul).’ Firstly, the case of a constant unrestric- 
ted Sz, which allows for the possibility of autocorrelation and time series 
heteroskedasticity of arbitrary form in the ait. Secondly, the traditional error 
components specification given by Sz = 02ZT + afzz’, where IT is the identity 
matrix of order T. 

We then transform the system of T equations using a nonsingular T x T 
transformation matrix, 

H= 
K 

[ 1 T-1,’ ’ 

where K is any (T - 1) x T matrix of rank (T - 1) such that Kt = 0. For 
example, K could be the first difference operator or the first (T - 1) rows of the 
within-group operator. The transformed errors are given by 

u+ = Hui = 
KUi 

[ 1 iii . 

This class of transformations performs a decomposition between ‘within- 
group’ and ‘between-group’ variation which is helpful in order to implement 

’ We assume that E(q,) = E(E(qi/ w,)) = 0. Notice that, provided the model contains a constant 

term, there is no loss of generality in this assumption. Thus, although it is always true that 

E(u;u[) = var(u,) = var(uJ + var(qJn’, in general E(uiu; 1 wi) and var(uil w,) = var (yil wi) will differ 
as follows: 

E(u,& wi) = var(uiIwi) + (E(qil wi))’ 11’ 
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orthogonality restrictions implied by the model. Specifically, since the first 
(7’ - 1) errors do not contain vi, all exogenous variables (as well as nonlinear 
functions of those variables) are valid instruments for the first (T - 1) equations. 
Then, if mi denotes a vector of a subset of variables of wi (or linear combinations 
of those variables) assumed to be uncorrelated in levels and such that 
dim(mJ > dim(y), a valid IV matrix for the complete transformed system is 

W; 0 

&= . . I. 1. W; 

0 rni 

We can now write down the optimal GMM estimator of 6 with constant 
s2 based on the moment equations, 

E(Z1Hui) = 0, 

which is given by 
--- --- 

8 = [N”A’Z(Z’HQH’Z)- ‘Z’HW] - ’ W’R’Z(Z’HSZH’Z)-‘Z’Ry, (3 

where W = (W; . . . Wa)‘, y = (y; ,.. yk)‘, Z = (Z; ___ Zh)‘, R = IN Q H, and 
Q = IN @ ft. In practice, the covariance matrix of the transformed system 
Q+ = Hi2H’ will be replaced by a consistent estimator. An unrestricted es- 
timator of Q2+ takes the form 

where the L?+ are residuals based on consistent preliminary estimates. Alterna- 
tively, we consider a restricted estimate 6’ = H6H’ with d = ~7’1~ + 5:~‘. 
where cF2 and 6; denote consistent estimates of 0’ and g,” . 

The estimator of HT is 8 with 6’ and 

mi = (f;i, Xii)‘, 

whereas the estimator of AM is 8 with fi’ and 

BS and BMS also exploited the additional moment restrictions that arise if it 
is assumed that the correlation between x2it and vi is constant over time. In this 
case, the deviations from time means )72il = XZir - Xii are valid instruments for 
the last equation of the transformed system. A stronger conditional expectation 
version of this assumption along the lines of (2) is 

E(qiIxii,fii> 2zi) = 0. (6) 
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Setting 

and using fii+, 8 gives the estimator of BMS. Moreover, if all variables are 

uncorrelated with the effects, we can set mi = Wi in which case 8 with 6’ 
becomes the GLS estimator of Balestra and Nerlove (1966). On the other hand, 

if all variables are correlated with the effects, the levels equation drops out, the 
coefficients 1’ are unidentified and estimation of /I is based on E(Z;iKUi) = 0 with 
Zdi = ICT_ i, @ wf. In the case of restricted Sz since KCX’ = o*KK ‘, letting 

R=I,@K,X=(X; . . . Xh)‘, and Zd = (Z;, . Z;,)‘, the resulting estimator 

is 

p = [x’K’Z,(Z;KR’Z,)) iZ$X] - l x’R’Z,(Z;KK’Z,)- lz;Ky, 

which can be shown to coincide with the within-group estimator. 
It is interesting to notice that having chosen a block-diagonal form for Zi, 8 is 

invariant to the choice of transformation K. To prove this assertion we can use 
the following simple fact in GMM estimation. The optimal estimator of 0 based 

on E[&(@] = 0 minimizes 

S = (Cisi)‘A- ’ (Cisi), 

where a is a consistent estimator of E(4ii”I). If we now consider 5: = F<i where 
F is a nonsingular transformation matrix, it turns out that the optimal estimator 

of 8 based on 57 that minimizes 

S* = (Ci5*)‘AI*-’ (Ci~*) 

is numerically the same estimator as the one based on ti provided that 

a* = F/1F’ since s = s*. In our case 

where p1 and p2 are the number of elements in wi and mi, respectively, and the 
vet operator stacks the elements of a matrix by rows. Suppose that an alterna- 
tive transformation H* = (K*’ k*z’)’ is used. Letting K* = @K and k* = ‘pT_’ 
we can write 

where 

F= 
@OIpl 0 

0 1 ‘PIP, . 

So that any valid transformation leads to the same estimator. 



M. Arellano. 0. Bover 1 Journal of Econometrics 68 (I 995) 29-51 35 

This is useful because in this way we can obtain HT, AM, and BMS-like 
estimators easily with various specifications for L? without having to specify the 
appropriate K ‘I2 transformation and subsequent changes to the instrument set 

to avoid inconsistencies. It also provides a natural framework to extend the 
HT-type of estimators to cases where there are predetermined variables as we 
shall see below. 

If L?+ is estimated as d+, straightforward manipulations reveal that (5) can be 
written as 

~ = [ciwlQwi + 82T~iwim! (Cimiml)-‘~imiwl]-’ 

X [ciw!Qyi + 8’TCiwiml (~imim!)-‘~imivi]-‘, (8) 

which produces more familiar expressions of the HT, AM, and BMS estimators 
for the corresponding choices of mi (details available in the Appendix).’ In this 

expression Q is the within-group operator: 

Q = IT - zr’/T = K’(KK’)- ‘K, 

Wi = WllJT and 8’ = e2/(6’ + Tc?;). 

As explained in the Appendix, in this case it is possible to simplify the form of Zi 
without changing the estimator. 

The obvious advantage of the formulation (5) is that if we replace the error 
components estimator a+ by an unrestricted estimator 8+, we obtain 
alternative HT, AM, or BMS-type estimators which are as efficient asymp- 
totically as the versions in (8) when E(Uirf) = a21r and strictly more efficient 

when E(UiOj) # a2ZT. Moreover, with cross-sectional heteroskedasticity further 
efficiency can be achieved using a GMM estimator of the type discussed by 

Chamberlain (1982), Hansen (1982) and White (1982) which would replace the 

term (CiZ;Q+Zi) in (5) by a term of the form (ciZia’a”Zi). 

The eJkienc_v boundfor 6 

In order to assess the efficiency of the class of GMM estimators given in (5), it 
is useful to compare the inverse of the asymptotic variance matrix of s^ with the 
Fisher information bound for 6 based on the conditional moment restrictions (1 I 
and (2). Chamberlain (1992a), using a specification that includes (1) as a special 
case, shows that the bound for /I based on (1) is identical to the bound for 
fi based on the conditional moment restriction 

E (K(Yi - X$)1 wli, w2i) = 0, (9) 

‘A derivation of the estimators of HT. AM, and BMS as GMM estimators, in the case that noise is 

iid, has been obtained independently by Ahn and Schmidt (1995). 
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where wji = (xJi,fi)‘, j = 1,2, so that (W;i, W;i), is just a permutation of Wi. In 
addition, (2) can be written as 

E(yi - Wi61Wli) = 0. (10) 

The Fisher information bound for 6 based on (9) and (10) can be obtained as an 
application of Theorem 1 of Chamberlain (1992b) for sequential conditional 
moment restrictions3 The bound will be the sum of the bounds corresponding 
to each of the conditional moments (see the Appendix for the details): 

E(Kui 1 Wi) = 0, (11) 

E[(z’&!;‘~)-i ~‘s);‘uiIwii] = 0, (12) 

where Szi = s2(wi). Direct application of Chamberlain’s theorem gives the follow- 
ing expression for the bound: 

J = E(W!K’(KS2iK’)-‘KW, + [E((1’~2;‘1)-‘IWli)]-’ 

X E(~il Wli) E(~,I I Wli)), (13) 

where $f = qliWi and q,! = (1’0; ‘I)- ’ z’sZLy ‘. With a constant unrestricted Q, 
J becomes 

J = E(W!K’(KRK’)-‘KWi + (~‘52-‘I)E(WIJwli)qq’E(WilWli)). (14) 

None of the GMM estimators of this section will attain the bound even in the 
absence of cross-sectional heteroskedasticity, since E( Wi ( Wli) could be a non- 
linear function of Wli. However, if E( Wi I Wli) is linear, we have 

E(Wlqlwii) = E(GiIwii) = E(Gilw;i) [E(wiiw;i)]-‘Wii 

and 

J=E(WjK’(K~2K’)-‘KWi+(l’a-‘Z)E(~iw;i) [E(WiiW;i)]-’ E(Wii${)). 

(15) 

Finally, if 52 = a2Zr + o,$r’, we have that q = T _ ‘1, z’Q_ ‘z = %2T/02, and 
K’(KL?K’)-‘K = (l/c’)Q, so that 

J =(l/a2) E(WiQWi + %2TE(wiW;i) [E(wliw;i)]-‘E(wliw!)), (16) 

which equals the inverse of the asymptotic covariance matrix of the AM 
estimator. 

Notice that the assumptions of linearity of E( Wi I Wli) and of a constant error 
components structure for s2 would imply further conditional moment restric- 
tions that may lower the information bound for 6. Here, we merely particularize 

3 This theorem applies to the case where the joint distribution of the data is multinomial but it could 

be extended to a general distribution by using the approximation argument of Chamberlain (1987). 
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the bound for 6 based on (11) and (12) to the case where these additional 
restrictions happen to occur in the population but are not used in the calcu- 
lation of the bound. 

We now turn to show that the inverse of the asymptotic covariance matrix of 
the GMM estimator given in (5) with unrestricted Q and the AM choice of 
instruments for the average equation mi = Wri, V/-l say, coincides with the 
information bound given in (15). Under standard regularity conditions 

V- ’ = E(W;H’Zi) [E(ZIHQH’Zi)] - ’ E(ZiHW,). 

On the other hand, since KXi equals the block Zr_ 1 @ w,f of Zi multiplied by 
a constant selection matrix, after straightforward manipulations (15) can be 
written as 

J = E(WIH*‘Zi) [E(ZIH*S2H*‘Zi)]-‘E(ZfH*Wi), 

with 

H* zz 
K 

[ 1 l’fi-’ . 

We prove that I/-’ = J by showing that 

Z;H* = F(Z;H), (17) 

where F is a nonsingular matrix of constants. Firstly, notice that H* = @H with 

@J= 
[ 

IT-1 0 

l’i-PK’(KK’)-’ l’s)_ ll 1 

Next, we consider a permutation of the columns of Zi = ZFP’ such that 

Z*= I*QW;i 
[ 

IT- 10 w;i 
1 0 . 

Hence notice 

and similarly 
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which proves (17) with 

Remark that the previous result depends crucially on the fact that the 
variables in the instrument set for the between-group equation are linear 
combinations of the instruments used for the within-group equations. This 
means, for example, that in the block Ir_ 1 @ w( of Zi we cannot replace wi with 
vec(KXJ, hence excluding fii and Xii, without altering the estimator and its 
asymptotic variance, contrary to the situation in the case that the noise is iid as 
explained in the Appendix. Nevertheless, some of the instruments used for the 
within-group equations are redundant in the sense that their omission would 
not alter the GMM estimator. Specifically, the situation is that for HT, AM, and 
BMS choices of mi with unrestricted 52, the submatrix Ir- 1 @ wi of Zi could be 
replaced by I,_ i @ ([vec(KXJ]‘,ji’i, Xii) 1 eaving the estimator unaltered. An- 
other remark is that the difference between the asymptotic covariance matrix of 
the HT estimator with unrestricted Q and I/ will be a nonnegative matrix, 
except if E*(W,lwii) coincides with E(Wilxii,fii) where E* denotes a best 
linear predictor, in which case the two estimators have the same asymptotic 
variances. 

One last remark concerns BMS-type estimators. Clearly, our analysis can be 
repeated for BS/BMS models by using the conditional moment restriction (6) in 
place of (2). The previous discussion applies provided the vectors of conditioning 
variables are suitably redefined. In this case, the vector of IV for the between- 
group equation is mi = (f;i X;i x";iz . . . Z';iT)'. However, for this choice of mi the 
rows of KXi are linear combinations of mi. This means that the same instrument 
set is valid for all the equations and we can use Zi = IT 0 mf without altering the 
estimator. The consequence is that the transformation is unnecessary and the 
estimator can be obtained by simple application of three-stage least squares 
(3SLS) to the original system of equations using mi as the vector of instruments 
for all equations: 

~ = [Ci(Wi 0 mi)‘(B 0 Cimim!)-‘Ci(Wi 0 mi)]-‘Ci(Wi 0 mi)’ 

X(doCimimi)-'~i(yiOmi). (18) 

3. Models with predetermined variables and a useful transformation 

We begin by considering a model of the type given in (1) with the addition of 
the dependent variable lagged one period: 

Yit = ccYi(t- 1) + PfXit + Y’J + uif, 41 = yli + uit, (19) 

ECui, I XCO, .. . > XiTtfis Vi) = 0. (20) 
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Assuming that t = 0 is observed and redefining the symbols in (3) as 
6 = (a, p’, y’)’ and Wi = (yi(- I), Xi, I_&‘) with yi(-i) = (yio, . . . ,yi(T- I))‘, the 
expression given in (5) remains a consistent GMM estimator of 6 for this model, 
provided there are enough valid instruments to ensure identification. The form 
of the IV matrix Zi is the same as in Section 2, adjusting for the fact that t = 0 is 
now observed, SO that Wi = (x&, . . . , xiT,fi’) (notice the exclusion Of yi(- i, despite 
its presence in Wi). The same range of choices for mi are available depending on 
the assumptions concerning the dependence between ?i and subsets of the 
explanatory variables. 

In particular, if mi = (f;i, Xii, Z;il, . . . , X”;iT), in view of the reasons explained 
for BMS-type cases above, the resulting estimator coincides with 3SLS and is 
therefore asymptotically equivalent to the LIML procedure with Sz unrestricted 
developed by Bhargava and Sargan. BS obtained their estimator as an applica- 
tion of subsystem LIML to the T equations (19X having completed the system 
with the reduced form equations, 

YiO = XLJmi + EiO, f*i = nlmi + Eil, 
X2i = n2mi + Ei2r 

and the identities 

xZit = x2it + XZi, t=O,...,T-1. 

It is well-known that subsystem LIML is asymptotically equivalent to subsys- 
tem 3SLS when 52 is unrestricted. 

As in the static model, one polar case is the uncorrelated random effects 
specification with E(l?i Ixi,fi) = 0, SO that mi = Wi, which corresponds to the 
basic model of BS. At the other end, vi would be potentially correlated with all 
explanatory variables and there would be no instruments for the levels equation, 
which would drop out. This corresponds to the model and the 3SLS estimator 
discussed by Chamberlain (1984, pp. 12661267). 

In the previous model, regardless of the existence of individual effects, unre- 
stricted serial correlation in Dit implies that yi(f- i) is an endogenous variable. 
A different model, in which yi(t- i) is a predetermined variable given vi, replaces 
(20) by the following assumption: 

E(tiit)Xi~fi~Vi~Yio~ . . ..Yi(t-~.) =O. (21) 

Notice that (21) implies lack of serial dependence in the sense that 
E(Ui, 1 Vii.. Ui(f- i)) = 0. Orthogonality restrictions implied by this model can be 
easily incorporated in an estimator of the form of (5) provided that the trans- 
formation matrix K is upper-triangular in addition to the previous require- 
ments. In effect, with lack of autocorrelation in Uir and K upper-triangular it 
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turns out that the transformed error in the equation for period t is independent 
of vi and (Vi13 . . . , oi(t- 1)) ~0 that (em, . . . , yi(, _ 1J are additional valid instruments 
for this equation. Hence giving rise to the following Zi matrix: 

W! YiO 0 

wf YiO Yil 1 
Zi =I (22) 

wl YiO .a* Yi(T-2) 

0 mf 

Estimators that rely on these types of restrictions have been discussed by 
Anderson and Hsiao (1982), Holtz-Eakin, Newey, and Rosen (1988), and Arel- 
lano and Bond (1991). These authors transformed the data using first differences 
and disregarded the levels in the absence of valid instruments for this equation 
(Arellano and Bond (p. 280) did, however, present a discussion of models with 
predetermined and strictly exogenous variables that contain information in 
levels). Further discussion of these models is contained in Ahn and Schmidt 
(1995), who exploit the additional quadratic moment restrictions implied by lack 
of serial correlation and the restrictions derived from the assumption of homo- 
skedasticity. A model may contain predetermined variables other than lags 
of the dependent variable, but their treatment would be similar to the one 
described for y(, _ 1l. Moreover, it is often the case that instruments arising from 
assumptions on predetermined variables and lack of autocorrelation are the 
only ones available in the model, so that sequential moment restrictions like 
(21) become crucial for the identification of the parameters of interest. 

As in the previous section, the GMM estimator (5) that uses (22) as the matrix 
of instruments is invariant to the choice of K provided K satisfies the required 
conditions. This is an example of a more general result: let Zis be the r, x 1 vector 
of instruments that are valid in the transformed equations for periods 
s, s + 1, . . . , (T - 1) [for example, in (22) zil = (wf yio)’ and zis = yi(,_ 1j for 
s > 11, and let K, be the (T - s - 1) x T submatrix that results when the first 
s rows of K are eliminated. Then the moment restrictions available for estima- 
tion are 

E(Si) = E 

KT-2"i 0 zi(T- 1) 

T - l l’uimi I = 0. (23) 
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Since li can be written as 

it turns out that for any other valid K * = @K the resulting <T will be of the form 
Fti with F having the following block-diagonal structure: 

where K: = QsK,. As a consequence, all the estimators of the form (5) with 
K upper-triangular, Kz = 0 and Zi given by 

I I 

zil zi2 

0 

are identical. 
However, as pointed out by Schmidt, Ahn, and Wyhowski (1992) who stress 

the point that filtering does not improve efficiency of estimation if all available 
instruments are used, this does not mean that filtering is useless, since in practice 
it may not be desirable to use all of the available instruments for computational 
reasons or if their number is excessive for the actual sample size, given the 
finite-sample properties of the estimators. 

Orthogonal deviations 

An alternative to first differencing which is very useful in the context of 
models with predetermined variables is the following Helmert’s transformation: 

*_ 
‘if - cf “’ + &T) I , t = 1, . . . , T - 1, (24) 

where c: = (T - t)/(T - t + 1). That is, to each of the first (T - 1) observations 
we subtract the mean of the remaining future observations available in the 
sample. The weighting c, is introduced to equalise the variances. The choice of 
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K that produces this transformation is the forward orthogonal deviations 
operator: 

A =diag[y. . . ..f]lliy 

-1 -(T-l)-’ -(T-l)-’ . . . -(T-l)-’ -(T-l)-’ -(T-l)-‘- 

0 1 -(T-2)-’ . . . -(T-2)-’ -(T-2)-’ -(T-2)-’ 

0 0 0 1 1 
-2 

-$ 

0 0 0 . . . 0 1 -1 

(25) 

which clearly has rows whose elements add up to zero (so that the permanent 
effects are eliminated) and is upper-triangular (so that lags of predetermined 
variables are valid instruments in the transformed equations). In addition, it 
preserves the orthogonality among the transformed errors - if the original Uit are 
not autocorrelated and have constant variance, so are the transformed errors, 
and indeed it can be verified by direct multiplication that AA’ = I,,_ 1J and 
A’A = Q. Hence, A = (KK’)-“‘K for any upper-triangular K, so that for 
example transforming by A can be regarded as doing first differences to elimi- 
nate the effects plus a GLS transformation to remove the serial correlation 
induced by differencing. 

A useful feature of this transformation when Q = 0~1 + a$~’ is that since it 
diagonalises HBH’ it is possible to calculate s^ in the following way: 

[ 

T-l 

s^ = C (CiW:Zl) (CiZi,Zl)- ’ (CiZi,Wz’) 

1=1 

1 
-1 + e’T(Citiiml) (cimiml)- ’ (Cimiwl) 

T-l 

X C (CiwiTz&) (zizitz&)pl (cizi,Yi~) 
1=1 

+ ffJ2T(ZiGiml) (~imimr)-‘(clmiyi) 
1 

, 

where wz is the tth row of WF = A Wi and yjr is the tth element of Ayi. This is of 
importance in practice because if Zi has a large number of columns it may be 
difficult to compute expression (5) directly. 



M. Arellano, 0. Bover /Journal of Econometrics 68 (1995) 29-51 43 

Finally, notice that since A’A = Q, the OLS regression of JIM on xt (that is, 
least squares applied to the first (T - 1) equations of the system) will give the 
within-group estimator, whereas OLS applied to the complete system of T equa- 
tions with H = (A’, B”T-1/2t)1 will give the GLS estimator. 

A general model with predetermined variables and information in levels 

Combining together the various ingredients that have appeared so far, the 
form of a general model with predetermined variables and information in levels 
is as follows: 

_Vi, = Wit6 + vi + Vit7 (27) 

ECVitIXil> ... ,XiT,J;:rPil, ... ,Pirv vi) = 0, (28) 

ECqiIxlilt ... ~XLiT~fii~Plil~ ... ,PIiT) = O. (2% 

The vector of right-hand-side variables Wit may include lags of yit, time- 
invariant variables fi, plus other strictly exogenous, predetermined, or endo- 
genous variables. The variablesfi, Xit, and pit refer to time-invariant, strictly 
exogenous, and predetermined variables, respectively. For each category we 
introduce the partitionsfi = (f;i,f;i)‘, xit = (x;iz, x;it)‘, and pit = (pii,, pii,)‘, with 
the first subsets denoting the variables that are uncorrelated to vi according 
to (29). 

Notice that (28) and (29) imply that 

E(yi, - witalx,i,, ... ,xlir,fii, prir, ... TPrir) = 0, (30) 

so that in the presence of plit variables there are different instruments available 
for different equations in levels, what precludes the use of the average equation 
in constructing GMM estimators4 Following Arellano and Bond (1991) we can 
define a (2T - 1) x T transformation H = (K’, IT)’ and 

zi = z*i O 

[ 1 0 Zli ’ (31) 

where Zdi is block-diagonal and has the tth block given by (X;i, ._. ,x&, 
A’, pfI, . . . , pit,- I,), which are the instruments available for the tth equation 
transformed by K. The matrix Z,i is also block-diagonal and will contain the 
instruments available for the equations in levels. In principle. in the equation 

4Chamberlain (1992b) obtained the Fisher information bound for 6 in a model similar to (27) and 

(28), with the exclusion of (29). However, the addition of (29) breaks the sequential moment structure 

of the problem with the implication that Chamberlain’s results are not directly applicable to this 

case. 
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for period t, the vector of valid instruments is (xiii, . . . , X;iTy f[iy p;ily . . . ,p;u). 
However, given Zdiy some of these moment restrictions will be redundant. To 
see this, taking K to be the first difference operator without loss of generality, 
notice that 

s-l 
E(uitpi(t-sJ = 1 E(dUi(t-jjpicr-sJ + E(ui(t-sJpi(t-s)). (32) 

j=O 

Therefore, we specify Zli as 

Zli = 

0 PiiT 

(33) 

We can construct optimal GMM estimators of 6 based on the moment equa- 
tions 

Z;iKUi 
E(ZiHui) = E Z,.u. = 0. 

[ 1 11 1 
(34) 

So we are replacing the ‘between-group’ errors in (4) by the complete set of 
errors in levels in addition to those transformed by K. Individual equations in 
levels rather than an average equation are now required since we have different 
instruments valid for different equations in levels. The next section presents 
a model of special interest which contains predetermined variables that are valid 
instruments in the equations in levels. 

Note that the estimators of HT, AM, and BMS can also be written in this way, 
for example selecting Zdi = Zr- 1 0 wl and Zli = IT 0 rn,! and using expression 
(5). The only modification that (5) requires is the replacement of the inverse of 
CiZln’ Zi by a Moore-Penrose generalised inverse, since this matrix will be 
singular due to repetitions of the same moments. 

4. Additional moment restrictions using predetermined variables 

The models of BS and BMS included strictly exogenous variables that had 
constant correlation with the individual effects. That is, variables such that 

E(+UJ = E(xi,tli), (35) 

E(xi,uiJ = 0, (36) 

for all t and s. Here we consider a model with predetermined variables that have 
constant correlation with the effects. These variables will therefore satisfy (35) 
for all t and s, but (36) will only be true for t d s.~ This type of restrictions could 
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be justified on the grounds of stationarity, and in many instances its validity or 
otherwise can be regarded as an empirical issue. Moreover, in models without 
strictly exogenous variables, like vector autoregressions and some rational 
expectations models, these additional restrictions may play a crucial role in 
substantially improving the precision of the estimates, especially when T is very 
small. 

Estimation can proceed as a special case of the general model with predeter- 
mined variables and information in levels discussed in the previous section. 
Suppose for simplicity of presentation that in (1) all the xit are predetermined 
variables that satisfy (35) and that all theJ; are correlated with ?i. Therefore in 
the equation in first differences for period t (Xii, Xi2, . . . , Xi(t_ 1J are valid instru- 
ments while in the equation in levels (dxiz, . . , Axit) are valid. Some of these 
moment restrictions are redundant. To see this note that 

E(tWtxi(,- 1)) - E(uic,-i+txi(,- 1)) = E(dui,xi(,- 1)) - E(dU:,xi(,-2)), 

so that given three restrictions that equate three of these four terms to zero the 
equality of the fourth term to zero is redundant. Thus, given the instruments for 
the first difference equations, (35) contributes the additional constraints 

E(uitdXi,) = 0, t= l,...,T. 

Redefining Z-Z as the 2(T - 1) x T transformation H = (K’,Zb)’ with 
I0 = (OlZ,_,) and choosing Zdi = diag[xf,, . . . ,(x;, . . . XI{=_ I,)] and 
ZIi = diag(dx,$, . . , dxlT), we can construct optimal GMM estimators of /I and 
y based on the moment equations E(Z’Hui) = 0. 

Monte Carlo results 

Finally, we have carried out simulations concerning a well-known simple 
model: a first-order autoregression with random effects observed three time 
periods. The purpose of the experiments is to illustrate the potential of exploit- 
ing moment restrictions in levels equations using predetermined variables in 
first differences. For each experiment we generated 1000 samples of N indepen- 
dent observations of (yio, yii, yiz) from the process 

yi, = (1 - tl)-lyli + (1 - a2)-1’20i~, 

Yil = aYi0 + ‘li + uil7 

Yi2 = @Yil + ?i + ui27 i=l N, ? ... 7 

with Ui = (uio Vi1 Viz)’ N N(0, I) and V]i - N(0, 0,‘) independent of Vi. 

5A stronger conditional mean version of this situation would assume that x,, can be written as 

x,~ = g(qi) + xi: and E(qi 1 xi: x$) = 0. If xi, is strictly exogenous, E(vi,I xi1 xIT) = 0, whereas if 

it is predetermined, E(vi, 1 xi1 xi,) = 0. 



46 M. Arellano, 0. Bover / Journal of Econometrics 68 (1995) 29-51 

The Anderson-Hsiao estimator of a is based on the restriction 

and is given by 

. CiYi,AJ1i2 
UAH = ZiYioAYil’ 

Moreover we are also interested in exploiting the levels restriction 

so that we consider the system of two equations 

with the matrix of instruments 

Zi = ‘~ [ 1 
A~, . 

11 

Let yl = (Ayi, yi,)‘. We simulate two estimators of the form 

(37) 

(38) 

(39) 

(40) 

The one-step estimator gL1 sets AN = (CiZfZi)) ‘, while the two-step estimator 
BL2 uses AN = (CiZlu^+u^+‘Zi)- ’ where I&+ = y; - &LryA. 

Table 1 reports Monte Carlo means and standard deviations of the three 
estimators for 0: = 0.2,0.5,0.&o,” = 0,0.2, 1, and N = 100, 500. rr2 is kept equal 
to unity for all the experiments (with 0,’ = 0 all three estimators are invariant to 
the value of a’). With rr,’ = 0.2, the variation due to the permanent effect 
represents 23,37.5, and 57 percent of the total variance Of yi, for a = 0.2,0.5,0.8, 
respectively. While for CI~ = 1 the corresponding percentages of variation are 60, 

75, and 90. 
As can be seen in the table, LI and L2 always outperform AH both in terms of 

having a smaller standard deviation and a smaller bias. The gap in precision 
between AH and the estimators that also use the restrictions in levels widens for 
larger values of 0,” and CI. With N = 100 and M = 0.8, AH is a useless estimator 
whereas LI and L2 behave reasonably well. Even with N = 500, for u = 0.8, the 
standard deviation of AH is twice that of Ll and L2 with 0,’ = 0, three times 
bigger with 0,’ = 0.2, and one hundred times bigger with D: = l! The same 
pattern still applies to CI = 0.5, with large efficiency gains and reductions in 
biases obtained by using the restriction in levels. On the other hand, there is not 
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Table 1 
Means and standard deviations of the estimators, 1000 replications 

c( = 0.2 G( =0.5 a =0.8 

AH Li LZ AH Ll L2 AH LI L2 

N=lOO 

0; = 0 

Mean 0.2315 0.2147 0.2018 0.5571 0.5095 0.4953 0.9683 0.7841 0.7795 

S.d. 0.1852 0.1460 0.1776 0.2827 0.1729 0.1720 0.8203 0.2027 0.2109 

u; = 0.2 

Mean 0.2353 0.2128 0.2009 0.5814 0.5001 0.4884 1.3701 0.7496 0.7482 

S.d. 0.2134 0.1572 0.1556 0.4088 0.1895 0.1900 17.1953 0.2516 0.2667 

cl; = I 

Mean 0.2588 0.2065 0.2011 0.7980 0.4762 0.4748 0.0390 0.7526 0.7574 

S.d. 0.3389 0.1948 0.1898 2.9516 0.2431 0.2409 15.9819 0.3309 0.3727 

N = 500 

0,‘=0 

Mean 0.2056 0.2038 0.2011 0.5097 0.503 I 0.4999 0.8248 0.7976 0.7984 

Sd. 0.0768 0.0635 0.0622 0.1093 0.0765 0.0734 0.1949 0.0900 0.0870 

u; = 0.2 

Mean 0.2059 0.2041 0.2012 0.5 120 0.5022 0.4983 0.8596 0.7887 0.7886 

S.d. 0.0856 0.0695 0.0689 0.1356 0.0864 0.0849 0.3660 0.1105 0.1153 

uf = 1 

Mean 0.2089 0.2040 0.2019 0.5262 0.4963 0.4917 1.8560 0.7597 0.7600 

S.d. 0.1189 0.0906 0.0891 0.2262 0.1155 0.1145 21.1516 0.1775 0.1813 

Each sample consists of N independent observations of (Y,~, yi, , yJ generated from the process: 

yio = (1 - cc)-‘qi + (1 - cz~)-“%io, y,, = G(yilJ + vi + V,l, yi2 = XY,l + rl, + vi23 

with vi = (v,~, uilr viz)’ - N(0, I) and vi - N(0, u,‘) independent of vi. 

much difference between the behaviour of Ll and L2. There seems to be 
a tendency of L2 to have a smaller standard deviation than LI but the gain is 

negligible. 
A specially interesting case is when the coefficient c1 in 

Yit = aYi(t- 1) + Vi + uir 

is allowed to take the value of unity. If vi = (1 - a) q*, where qT represents the 
individual specific mean of yi, assumed to have a constant variance, with M = 1 
we have 

Yit = Yi(t- 1) + uit. 
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The alternative specification of the model with c( = 1 would be a random walk 
with an individual drift Y]i. In the former case, with a = 1, E(yiodyi,) = 0 and as 
a consequence the Anderson-Hsiao restriction (37) fails to identify a. However, 
the level restriction (39) still applies and could be exploited in order to test the 
stationary autoregressive model against the random walk model without drift. 

5. Conclusions 

Models with predetermined variables for panel data are typically estimated in 
first differences using instruments in levels. In these models, the absence of 
information about the parameters of interest in the levels of the variables results 
in the loss of what sometimes is a very substantial part of the total variation in 
the data. In this article, we are concerned with panel data models that specify 
valid instruments for the equations in levels, in addition to those available for 
the equations in first differences or deviations from individual means. Static 
models of this kind, but using exclusively strictly exogenous explanatory vari- 
ables, were first considered by Hausman and Taylor (1981) and, with the 
addition of a lagged dependent variable, by Bhargava and Sargan (1983). The 
impact of these models in applied work has been limited, partly due to the 
difficulty in finding exogenous variables that can be convincingly regarded 
a priori as being uncorrelated with the individual effects, and partly due to the 
difficulty in finding strictly exogenous variables at all. 

This paper considers models with predetermined instrumental variables that 
are uncorrelated with the effects. The particular type of variables of this kind 
that we emphasize are first differences of predetermined variables that have 
a constant correlation with the effects. A similar assumption for strictly 
exogenous variables was previously exploited by Bhargava and Sargan (1983) 
and Breusch, Mizon, and Schmidt (1989). Thus, in addition to using instruments 
in levels for equations in first differences, we propose to use instruments in first 
differences for equations in levels. The potential gains in precision from using 
these constraints are illustrated by means of simulations of alternative 
estimators of an autoregressive model. Moreover, we also explain how the 
assumption of constant correlation with the effects can be exploited to test for 
unit roots in short panels against a stationary autoregressive model. 

The paper presents a GMM formulation of Hausman-Taylor (HT) and 
related estimators with unrestricted covariance matrix, together with a deriva- 
tion of the information bound for these models. We use this framework to 
extend HT-type estimators to models with predetermined variables. In doing 
this we unify a large literature in a coherent way. We propose a GMM estimator 
for a general model that includes time-invariant, strictly exogenous, and prede- 
termined variables, a subset of which are uncorrelated with the effects. We also 
show that optimal estimators are invariant to the transformation used to 
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remove the effects. Finally, we propose a new transformation, forward orthog- 
onal deviations, which is a computationally convenient alternative for models 
with predetermined variables since it preserves the orthogonality among the 
errors. 

Appendix 

A. 1. GMM formulation of HT, AM, and BMS estimators 

Let 

W+=HWi= 
KWi 

[ 1 

zdi O 
w; 

and Zi = 
[ 1 0 m(’ 

so that 

Wi+‘Zi = ( WIK’Zdi ItCimi). 

Now using that Kz = 0 we have KWi = (KXijO) and with 52 = a2Zr + ain’, 

,Q+ =HQH’= .;I,‘) (K’ T -‘I) = o2 
KK’ 0 

0 1 (PT)-’ . 

Therefore 

ZIO+Zi = ~2 
Z;iKK’Zdi 0 

0 1 (82T)-1mimf ’ 
and 

w’R’z(z’Rfi2R’z)-‘z’Rw 

= ~iWi+‘Zi(CiZ1~+Zi)-‘CiZ! W+ 

1 Md 
[[ 0 0 =- fJ2 0 1 + e2TCiwim!(Cimim!)-‘Cimiwl 1 , (A.11 

where 

Md = CiXIK’Zdi (CiZ;iKK’Zdi)-‘CiZ~iK’Xi. 

NOW with Zdi = IT- 1 Q w(, Md equals 

(A.9 

Md = sYiXf(I, @ Wi) [K’(KK’)-‘K @ (CiWiWi)-‘] Ci(ZT 0 Wi)Xi. 

Moreover, since K’(KK’)- ‘K = Q = A’A, where A is the orthogonal deviations 
operator defined in Section 3, and the columns of AXi are linear combinations of 
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the columns of Zdi, Md becomes 

Md = CiXlA’Zdi(~iZl;iZdi)-’ CiZ;iAXi = CiXIA’AXi, 

so that (A.1) equals 

(l/a’) (ciwiQwi + 82TCiwimf (Cimimr)-’ Cimiwi’). 

The derivation of the second term of (8) follows along the same lines. 
Note that this result only requires that the columns of AXi are linear 

combinations of the columns of Zdi provided Zdi has the Kronecker structure. 
Thus, the estimators of the form given in (5) that use 6 remain unaltered if 
instead of Zdi = I @ wf we use 

Zdi = I @ [VCC(KXt)]‘. 

In addition, if we choose K = A, the block-diagonal specification of Zdi could 
be replaced by simply AXi without changing the estimator, as apparent from 
expression (A.2). 

A.2. The information bound for Hausman-Taylor models 

The model specifies the conditional moment restrictions 

E(ui( Wii) = 0 and E(Kuil Wii, wzi) = 0. 

Let us introduce the notation 

pzi = K(yi - Wi6) = Kui, 

where pji = pj(yi, Wi, 6), j = 1,2. Following Chamberlain (1992b) we consider 
a forward transformation of pii of the form 

Pli = Pli - r(wi)P2ir 

which given sequential conditioning ensures that E(p:il wii) = 0. 
We wish to choose T(wi) such that E(pfip;i 1 wi) = 0. Since 

E(pfip;ilwi) = QiK’ - I’(Wi) KQiK’, 

the condition is satisfied if 

T(Wi) = S2iK’(KS2iK’)-‘, 

where 521 = s2(Wi). Thus 

p:i = Ui - SZiK’(KS2iK’)-‘Kui = ~(l’a;‘1)-l 1’52,~‘~i. 
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Therefore, the bound for 6 will be the sum of the bounds corresponding to each 
of the conditional moments 

E(Kui 1 Wi) = 0, 

E[(Z’S);‘1)-‘Z’a;‘UiI Wli] ~0. 
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