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This article surveys J. D. Sargan’s work on instrumental variables (IV) estimation and its connections
with the generalized method of moments (GMM). First the modeling context in which Sargan moti-
vated IV estimation is presented. Then the theory of IV estimation as developed by Sargan is discussed.
His approach to efficiency, his minimax estimator, tests of overidentification and underidentification,
and his later work on the finite-sample properties of IV estimators are reviewed. Next, his approach
to modeling IV equations with serial correlation is discussed and compared with the GMM approach.
Finally, Sargan’s results for nonlinear-in-parameters IV models are described.
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I pretty early realized that the Geary method was very close to LIML except
he was using arbitrary functions of time as the instrumental variables, � � � .
One could easily generalize the idea to the case, for example, of using lagged
endogenous variables to generate the instrumental variables. That is really
where my instrumental variable estimation started from. I was actually using
it to estimate macroeconomic models fairly early, but the models didn’t turn
out very interesting to my way of thinking. I developed various ideas on time
lags at that stage, and I actually had an early version of the Phillips curve in
my model. I spent a lot of those years when I had spare time using an electric
Marchand calculating machine in a Leeds University basement and getting
out estimates which I didn’t get published myself.

— J. D. Sargan, interviewed by Phillips (1985).

1. INTRODUCTION

This article surveys Denis Sargan’s work on instrumental
variables (IV) estimation and its connections with the general-
ized method of moments (GMM). Sargan pursued his interests
in IV estimation all through his career. He focused in par-
ticular on asymptotic expansions of the distributions of esti-
mators and test statistics. However, his two articles of 1958
and 1959 provided a fully developed theory of IV estimation
that directly connects with the generalized method of moments
(GMM) perspective of the 1980s. Thus it seems natural to
concentrate on those articles for the purpose of this survey.
(See Maasoumi 1988 for an account of Sargan’s contributions
to econometrics.)

There is a modeling connection between GMM and
Sargan’s focus on moment conditions that do not necessar-
ily provide a complete description of the probability distri-
bution under consideration. There is also a statistical connec-
tion, because Hansen’s (1982) treatment of GMM estimation
built on Sargan’s results. Specifically, Hansen’s GMM class of
estimators generalized Sargan’s class of linear and nonlinear
IV estimators, and Hansen’s analysis of efficiency followed
Sargan’s approach based on an optimal selection matrix for
the moment conditions.

There is, however, an important aspect of Hansen’s GMM
approach other than greater generality that was not present
in Sargan’s work. Hansen proposed using GMM estimators
based on moment conditions that exhibited dependence over
time, constructed to be robust to the unmodeled components.
To that end, he suggested using a weighting matrix that took
into account temporal dependence. This suggestion had both
modeling and statistical implications. I examine the modeling

implications in connection with Sargan’s work on IV mod-
els with serial correlation. A statistical implication was that
consistent estimators of the covariance matrix of the sample
moment conditions were required. Consistent estimators under
various forms of time series dependence were suggested by
Hansen (1982) and other authors.

In the early 1950s, errors-in-variables problems and simul-
taneous equations were pursued in two different literatures.
The IV technique was associated with an ad hoc cure for
measurement error. The limited-information maximum likeli-
hood (LIML) method was developed for estimation of a single
structural equation of a simultaneous system by Anderson and
Rubin (1949, 1950). The mathematical analogy between the
IV and LIML methods was first noted by Durbin (1954), and
two-stage least squares (2SLS) was introduced by Basmann
(1957) and Theil (1961). In fact, it was also introduced by
Sargan (1958) as an IV estimator in a more general context.
Sargan was not only providing a definitive analysis of the IV
method, he was also using it to put together simultaneity and
errors in variables, providing an IV analog of LIML as a min-
imax estimator, and (in his 1959 article) developing nonlinear-
in-parameters IV estimation and its properties.

Sargan was thinking in terms of moment conditions, overi-
dentifying restrictions, and partially specified models. He
was also considering issues of choice of instruments, finite-
sample biases, and underidentification. Many of the themes
that appeared with renewed impetus in the econometrics lit-
erature of the 1980s and 1990s were present in a surpris-
ingly mature way in Sargan’s 1958 and 1959 articles. Yet
relatively little attention was paid to this way of thinking
about econometric estimation for the next 20 years. Most of
the textbooks of the 1960s routinely surveyed simultaneous-
equations estimators [2SLS, three-stage least squares (3SLS),
LIML, full-information maximum likelihood (FIML)] as dis-
tinct from IV methods, which were alluded to in only a
casual way in the context of discussions of measurement error,
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although Hausman (1975) and Hendry (1976), building on
Durbin (1963), both linked IV to FIML in each direction.
Moreover, when in the mid-1970s the literature on nonlin-
ear structural models began to develop, the connection with
Sargan’s 1959 article was often overlooked.

The article is organized as follows. Section 2 presents the
modeling context in which Sargan motivated IV estimation.
Section 3 reviews the theory of IV estimation and inference
as developed by Sargan (1958). His approach to efficiency, his
minimax estimator, tests of overidentification and underiden-
tification, and his later work on the finite-sample properties
of IV estimators are discussed. Section 4 discusses Sargan’s
approach to modeling IV equations with serial correlation and
compares it with the GMM approach. Section 5 describes
Sargan’s (1959) results for nonlinear-in-parameters IV mod-
els. Finally, Section 6 contains some concluding remarks.

2. MODELS AND INSTRUMENTS

2.1 The Model

Sargan (1958) considered a structural equation of the form

�′
0w

∗
t = �t� (1)

where the vector w∗
t (of order q+ 1) contained both endoge-

nous and predetermined variables and �t was a structural
random shock assumed to be independent of all of the prede-
termined variables in the complete system.

The variables were observed with error

wt = w∗
t +vt� (2)

where vt is a vector of measurement errors. In the case of
variables measured without error, the corresponding elements
of vt are 0. Sargan interpreted the variables w∗

t as the “actual
variables to which the economic agents react.” Thus he argued
that it was not necessarily true that “the determined variable is
also an ideal economic variable in the sense that it is exactly
equal to the variable to which some other economic agent
later reacts, or that if an economic variable appears as a cause
in two different equations the appropriate values of the ideal
economic variable are the same” (1958, p. 395).

Combining the foregoing two equations, a relationship
among the observed time series was obtained,

�′
0wt = ut� (3)

in which the equation’s error ut contains both a structural
shock and measurement errors,

ut = �t+�′
0vt
 (4)

2.2 The Instruments

Sargan assumed the availability of some predetermined
variables (a vector of instrumental variables of order r ,
denoted zt here) whose measurement errors were indepen-
dent of vt and �t . This requirement excluded the predeter-
mined variables in the relationship (unless measured without
error), lags of variables in the equation (unless—according to

Sargan—“one makes the unrealistic assumption that measure-
ment errors are not autocorrelated”), and any predetermined
variable constructed from the same data as one of the vari-
ables in the equation. Sargan concluded that it was necessary
that the sources of data used for constructing the instrumental
variables should be largely independent of those used to con-
struct the variables in the equation. Thus the only variables in
the equation that could be used as instrumental variables were
predetermined variables with zero measurement errors, such
as the constant term, trends, and seasonal components.

Sargan suggested following Reiersøl (1945) and base esti-
mation on the sample orthogonality conditions,

1
T

T∑
t=1

ztut ≡
(

1
T

T∑
t=1

ztw
′
t

)
�= 0�

which provide r equations for the q ratios of the coefficients.
Thus if r = q, then these conditions give a unique set of esti-
mates of the coefficients �0.

Sargan expressed concern about the real possibilities of this
set of assumptions for identifying parameters of interest. He
wrote: “It is not easy to justify the basic assumption con-
cerning these errors, namely, that they are independent of the
instrumental variables. It seems likely that they will vary with
a trend and with a trade cycle. In so far as this is true, the
method discussed here will lead to biased estimates of the
coefficients. Nothing can be done about this since presumably,
if anything were known about this type of error, better esti-
mates of the variables could be produced” (1958, p. 396).

From the macrodata at his disposal and following Stone
(1947), Sargan argued that effectively no more than three
factors could be used as instrumental variables: a linear
trend, the 10-year business cycle, and the rate of change
of the 10-year business cycle. If there were large random
events (of the same order of magnitude as the cyclical move-
ments), such as strikes and wars, and if the structural errors
could be regarded as independent of these events, then this
might allow the identification of further coefficients. How-
ever, he felt that this possibility was “very rarely realistic.”
He concluded: “In practice, when data covering less than
twenty years are used, it seems appropriate to use three
instrumental variables: a linear trend, a lagged variable that
leads in the trade cycle, and a lagged variable that lags
with reference to the trade cycle. Analyses of single eco-
nomic time series indicate that if longer periods of time
were studied, a factor analysis might disclose more general
factors” (1958, p. 415).

At the time, Sargan was particularly interested in wage-
price inflation models. He was skeptical about the existence
of a stable trade-off between inflation and unemployment (see
Desai, Hendry, and Mizon 1997). In modeling wages, Sargan
emphasized the role of union behavior and real wage resis-
tance in wage bargaining: “I couldn’t quite believe in the
Phillips curve and some of the conclusions that were drawn
about the ease with which a small increase in unemployment
would cure inflation” (Phillips 1985, p. 124). Reading Sargan’s
1964 Colston article, one senses that Sargan, who devoted
much time to estimating macro models in those years, was
probably left with the feeling that the IV method delivered
less than he had initially hoped.
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2.3 Errors in the Variables Versus Errors
in the Equations

The basic motivation for the IV approach adopted by Sargan
(1958) was to deal with equations that exhibited both simul-
taneity and measurement errors in exogenous (or predeter-
mined) variables. In contrast with early econometric practice,
the Cowles commission approach to econometrics stressed
errors in the equations and simultaneity biases, as opposed to
errors in variables and measurement error biases. This switch
of emphasis took place even though the relative importance
of simultaneity and measurement error had not been clearly
established in many empirical areas (see Goldberger 1972,
p. 993; Heckman 2000, pp. 71–72). In this respect, by giving
symmetric consideration to the two types of errors, Sargan’s
1958 article was an exception.

A particularly attractive feature of Sargan’s IV framework
that has become commonplace in modern econometric prac-
tice is to make operational the notion that measurement error
in predetermined variables need not result in lack of identi-
fication, provided that the structural model contains sufficient
overidentifying restrictions (Goldberger 1972, p. 996). Lin-
earity in variables is an essential ingredient to the possibil-
ity of adding up errors in variables and errors in equations.
Extending his 1958 results, Sargan (1959) considered IV mod-
els that were nonlinear in parameters but linear in variables.
Beginning with the work of Amemiya (1974) and Jorgenson
and Laffont (1974), Hansen (1982) and a sizable part of the
GMM literature emphasized fully nonlinear relationships, but
the measurement-error perspective was lost in this process.

3. THE INSTRUMENTAL VARIABLES
ESTIMATION METHOD

Early contributions to the IV method were made by Wald
(1940), Reiersøl (1945), and Geary (1948, 1949). Before these
authors, the IV method can also be associated with the work
of Working (1927), P. G. Wright (1928), and S. Wright (1934).
(See Goldberger 1972 for a survey of the work of S. Wright.)
The articles by Chernoff and Rubin (1953) and Durbin (1954)
made contributions more closely related to subsequent work
by Sargan. These articles were concerned with the connec-
tion between simultaneous equations and measurement error.
Durbin (1954) discussed alternative processes generating mea-
surement errors and pointed out the analogy between the
overidentified IV case and Anderson and Rubin’s method for
a single structural equation. Chernoff and Rubin’s chapter in
Cowles Monograph 14 suggested a modification of LIML in
which predetermined variables with measurement error are
treated as endogenous variables.

The contributions of Sargan’s 1958 article were to provide
a definitive treatment of the IV method and to establish its
asymptotic properties. A review of these contributions is given
in this section. Sargan, like Hansen (1982), considered the
asymptotic properties of a class of econometric estimators that
are defined in terms of orthogonality conditions. This was a
bold partial-information approach that focused estimation on
objects of economic interest, abstracting from other features
of the probability distribution of the variables under consider-
ation. This approach also made it possible to define optimality

in a well-defined sense, even if the resulting optimal estima-
tors were not necessarily asymptotically efficient by compari-
son with full-information methods.

3.1 Asymptotic Properties

Sargan (1958) assumed that the r × 1 vector of sample
orthogonality conditions

gT =
1√
T

T∑
t=1

ztut

had an asymptotic joint normal distribution of the form

gT
d−→� �0��2 
Mzz�� (5)

where �2 = E�u2
t � and 
Mzz denotes the stationary limit of

E�ztz
′
t� given by


Mzz = lim
T→�

E

(
1
T

T∑
t=1

ztz
′
t

)
= p lim

T→�
1
T

T∑
t=1

ztz
′
t 


This was based on the assumption that the variables were
stationary and that ut was independent of zs for t ≥ s and of
us for t = s , for in this case

E�gT g
′
T �=

1
T

T∑
t=1

T∑
s=1

E�utusztz
′
s�= �2E

(
1
T

T∑
t=1

ztz
′
t

)

 (6)

Some normalization is introduced so that ut = w′
t�0 = yt−

x′t�0, where �0 is a q×1 vector of parameters and the usual
matrix notation Z′X = ∑T

t=1 ztx
′
t , and so on. Moreover, 
Mzx

and 
Mzw denote the probability limits of Z′X/T and Z′W/T .
In the just-identified case (i.e., when r = q and 
Mzx has full
rank), Sargan (1958) showed that the simple IV estimator

�̂= �Z′X�−1Z′y (7)

has limiting distribution

√
T��̂−�0�

d−→� �0��2 
M−1
zx


Mzz

M−1
xz �
 (8)

When there are more instruments than unknown parameters
(i.e., when r > q), Sargan considered q linear combinations of
the instruments

z∗t =�zt�
where � is a q× r matrix of coefficients. Now, from the pre-
ceding discussion, the asymptotic variance of the IV estimator
based on z∗t is

�2�� 
Mzx�
−1�� 
Mzz�

′��
Mxz�
′�−1


Sargan showed that the optimal choice for � that minimizes
the asymptotic variance can be taken as

� = 
Mxz

M−1
zz � (9)

in which case

�2�
Mxz

M−1
zz


Mzx�
−1
 (10)
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Because � is unknown, Sargan argued, the previous result
suggests consideration of �̂ = X ′Z�Z′Z�−1, giving rise to the
estimator that solves

�X ′Z�Z′Z�−1Z′X��̂= X ′Z�Z′Z�−1Z′y� (11)

which has the optimal asymptotic variance. Sargan suggested
using the estimated variance matrix

�̂2T�X ′Z�Z′Z�−1Z′X�−1� (12)

where �̂2 = û′û/T and û= y−X�̂.
Sargan also noted that a different set of estimates is obtained

for each normalization. He showed that these estimates dif-
fer asymptotically by quantities of order 1/T provided that

Mwz


M−1
zz


Mzw is of rank q. The estimator (11) is, of course,
the two-stage least squares estimator, which at the time was
being independently introduced from a different perspective
by Basmann and Theil.

3.2 Sargan’s Minimax Instrumental
Variables Estimator

The motivation for the minimax method was to obtain a
symmetrically normalized IV estimator for the overidentified
case, after noting the lack of invariance to normalization of
estimates of the form (11) obtained by deleting an arbitrary
equation from the set of optimal sample moment conditions.
Because the model posits zero correlation between errors and
instruments, the idea was to choose as an estimator of �0

the value that minimizes the maximum possible sample cor-
relation between the errors and a linear combination of the
instruments.

Consider arbitrary linear combinations of the instruments,

mt�!�= z′t!�
and of the variables appearing in the econometric model,

ut���= w′
t�


The squared sample correlation between mt�!� and ut��� is
given by

"2���!�= ��′W ′Z!�2

��′W ′W���! ′Z′Z!�

 (13)

For given �, the maximum correlation is given by

#���= max
!
"2���!�= �′W ′Z�Z′Z�−1Z′W�

�′W ′W�

 (14)

Thus the resulting estimator is given by solving the minimax
problem

min
�

[
max
!
"2���!�

]
= min

�
#���= #̂1� (15)

subject to a normalization restriction. The statistic #̂1 is the
smallest eigenvalue of the matrix W ′Z�Z′Z�−1Z′W in the met-
ric of W ′W .

The minimax estimator provided an IV analog and a gen-
eralization of Anderson and Rubin’s LIML method. Sargan
(1958, sec. 13) noted that “the LIML method is equivalent to
using the instrumental variables method with all the predeter-
mined variables in the model used as instrumental variables.
This procedure is reasonable since an essential assumption of
the LIML method is that there are no measurement errors.”

Thus Sargan’s conclusion was that in the context of a struc-
tural equation subject to measurement error, one can still
use symmetrically normalized IV estimators, but these lack
the LIML interpretation. Because the validity of instruments
depends on the measurement error properties of the model, it
is no longer true that all of the predetermined variables in the
system are necessarily valid instruments.

Sargan’s minimax estimator can also be regarded as mini-
mizing the largest standardized linear combination of the sam-
ple moments,

min
�

[
max
!

�u���′Z!�2

! ′V ���!

]
= min

�
%u���′Z&V ���−1%Z′u���&�

(16)

where V ��� = var %Z′u���& and the previous equality fol-
lows from application of the Cauchy–Schwarz inequality. For
V ��� = u���′u����Z′Z�, Sargan’s estimator is obtained, but
for choices of V ��� based on alternative assumptions about
the form of the variance matrix of the moments, other gen-
eralized minimax or “continuously updated” GMM estimators
of the type considered by Hansen, Heaton, and Yaron (1996)
may be obtained.

3.3 Inference

3.3.1. TestingOveridentifyingRestrictions. Sargan (1958)
proposed a specification test of the existence of a relationship
that satisfied all moment conditions. He showed that as long
as 
Mwz has reduced rank q,

T #̂1
d−→'2

r−q
 (17)

This provided an IV analog to one of the criteria derived by
Anderson and Rubin (1949, 1950) for testing overidentifica-
tion in a single equation from a system of simultaneous equa-
tions.

As a sketch of the argument, note that factoring
�Z′Z/T�−1 = CC ′, in view of (5) and the consistency of �̂2,

C ′gT /�̂
d→� �0� Ir �. Moreover, letting G= C ′�Z′X/T�,

h= T−1/2C ′Z′û
�̂

= %Ir −G�G′G�−1G′&
C ′gT
�̂



Because the limit of %Ir−G�G′G�−1G′& is idempotent and has
rank r−q, it follows that

h′h= T û
′Z�Z′Z�−1Z′û

û′û
d−→'2

r−q� (18)

and hence also (17), because, due to their asymptotic equiva-
lence, the same result holds if û is replaced by the minimax
residual.
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A statistic like T #̂1 or h′h has become known as a “Sargan
test” and has become a standard complement when reporting
IV estimates. Sargan argued that this “provides a significance
test for the hypothesis that there is a relationship between
the suggested variables with a residual independent of all the
instrumental variables” and added that this “is a suitable test
even when 
Mwz is of rank less than q since it can be shown
that in this case the probability of rejecting the hypothesis will
be less than in the other case” (1958, p. 404).

Sargan (1959) considered a generalization to nonlinear-in-
parameters IV models, and Hansen (1982) extended this type
of specification test to a general nonlinear GMM environment
with dependent observations (often called a “J test”).

3.3.2. Testing for Underidentification. Next, Sargan con-
sidered a test of underidentification, that is, a test of the
hypothesis of the existence of a multiplicity of relationships
that satisfy all moment conditions. This is a test of the null
that the rank of 
Mwz is less than q against the alternative that
the rank is equal to q. This type of test was also considered by
Koopmans and Hood (1953) in the context of a single equa-
tion from a simultaneous system.

Sargan and Koopmans and Hood stated that when 
Mwz has
rank q − 1, letting #̂2 be the second smallest characteristic
root,

T�#̂1 + #̂2�
d−→'2

2�r−q�+2
 (19)

Thus this result could be used as a test of the hypothesis that
the equation is underidentified and that any admissible equa-
tion has a homoscedastic and nonautocorrelated error. Sargan
(1958) pointed out that “this hypothesis is not very likely to
be true a priori since even if there is a relationship between
the suggested variables with a nonautocorrelated residual, it
is unlikely that there would be a second combination of these
variables not only independent of all instrumental variables
but nonautocorrelated as well.” However, he regarded the use
of the test as “a useful qualitative answer as to whether the
estimates are reasonably well identified” (p. 405).

If 
Mwz has rank q−1, then there is another solution �∗
0 not

proportional to �0 that satisfies the original moment equations,

E�ztw
′
t���0��

∗
0�= 0
 (20)

So a test of underidentification can be regarded as a test of
the overidentifying restrictions in (20) subject to an extended
normalization of ��0��

∗
0�. In fact, letting A= ����∗�, it turns

out that T�#̂1 + #̂2� coincides with the minimizer of

T��′W ′Z��∗′W ′Z��A′W ′WA⊗Z′Z�−1

(
Z′W�
Z′W�∗

)
(21)

subject to A′W ′WA = I2. This has been shown by Arellano,
Hansen, and Sentana (1999), who used the idea to consider
tests of underidentification from a GMM perspective in a
wider context.

3.4 Approximating the Distribution of Instrumental
Variable Estimates

Sargan (1958) stressed the distinction between the purely
theoretical asymptotic results and the accuracy of the asymp-
totic approximations for finite T . He discussed determinants

of the quality of the asymptotic approximation and offered
specific recommendations for practitioners. On the basis of
unpublished calculations, he asserted that the biases of IV esti-
mates and T #̂1 were of order r/T#2, where #2 is the popula-
tion counterpart of #̂2. The implication was that the asymptotic
approximation was poor when the relationship was almost
unidentified and when the number of instruments was large
relative to the sample size.

Sargan discussed the issue of instrument choice, pointing out
a finite-sample trade-off between bias and efficiency. He argued
that although the addition of a new instrumental variable will
not worsen the asymptotic variance matrix, “the improvements
are usually small after the first three or four instrumental vari-
ables have been added. Thus there may be no great advantage
in increasing the number of instrumental variables, and � � � it
emerges that the estimates have large biases if the number
of instrumental variables becomes too large” (Sargan 1958,
p. 400). His practical suggestion was to require that r ≤ T/20.
In a similar vein, he also suggested a crude finite-sample
adjustment to the chi-squared statistic. Finally, he compared
IV with ordinary least squares (OLS), arguing that although
theoretically IV is better than OLS because of consistency, for
finite T the advantage of IV is less certain because “the instru-
mental variable estimates may have large biases especially in
the almost unidentified case and in the event the number of
instrumental variables is large” (pp. 412–413).

3.4.1. Improved Asymptotic Approximations. The use of
asymptotic expansions to obtain improved approximations to
the distributions of econometric estimators was pioneered by
Sargan. The first work published in this area was that of
Sargan and Mikhail (1971), who developed an Edgeworth (or
Gram–Charlier) approximation to the distribution of IV esti-
mates and evaluated the accuracy of the approximation for a
model with two endogenous variables (the abstract of an ear-
lier version of this article was published in Econometrica in
1964). In subsequent work, Sargan (1975a) approximated the
distribution of t ratios of IV estimators and proved a general
theorem on the validity of Edgeworth expansions for statis-
tics that are defined as functions of a vector of more primitive
statistics. This 1975 article also contained an early discussion
of empirical Edgeworth approximations. The results of these
two articles relied on “classical assumptions” in the sense that
excluded lagged endogenous variables and nonnormal errors.
The general conclusions were that “the asymptotic approxi-
mation will be particularly poor if r/T is not small, and if
the variance of the reduced form errors is relatively large. In
addition, increased correlation between the reduced form and
equation errors worsen the asymptotic approximation” (Sargan
1975a, p. 340).

In an important article, Sargan (1976) obtained explicit for-
mulas for the second-order Edgeworth expansion of a statistic
defined as a smooth function of sample second moments of the
data. These formulas covered models containing lagged depen-
dent variables (a case also independently considered in Phillips
1977a, b). To summarize the setting of Sargan’s results, let
.�p� represent a scalar estimator or test statistic as a func-
tion of a vector p of sample second moments that have been
generated by some stationary stochastic process. If a central

limit theorem is available for p,
√
T�p−/� d→� �0�0�, using
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the delta method, a first-order approximation to the cdf of
bT =

√
T%.�p�−.�/�& is given by

Pr�bT ≤ s�=2
(
s

�.

)
+O�T−1/2��

where �2
. = d′0d, d = 4.�/�/4p, and 2�·� is the standard

normal cdf. Sargan (1976) provided formulas for the coeffi-
cients of a refined approximation of the form

Pr�bT ≤ s�=2
(
s

�.
+ h0√

T
+ h1

T

(
s

�.

)
+ h2√

T

(
s

�.

)2

+ h3

T

(
s

�.

)3)
+O�T−3/2��

where the coefficients hj were expressed as functions of the
cumulants of p and the derivatives of .�p�. In this way,
Sargan gave an explicit method for finding Edgeworth approx-
imations for a large class of statistics from linear-in-variables
time series econometric models. Successive corrections to
these formulas appeared in Sargan’s (1977) erratum, in Tse’s
(1981) Ph.D. thesis, and in appendix B of Arellano and Sargan
(1990); the first correct general formulas, however, were pub-
lished using a slightly different notation by Phillips (1977b).

3.4.2. Resampling Methods. Sargan’s 1976 article was a
remarkable work in many other respects. The abundance of
technical results were coupled with a genuine concern with the
problems of applying the theoretical refinements to improving
the accuracy of asymptotic significance tests in models of a
realistic size.

As an alternative to analytical Edgeworth expansions, Sargan
(1976) suggested a resampling method that he called a “Barnard
approximation” in implicit reference to Barnard’s (1963) Monte
Carlo testing. He argued that “an alternative approach, which
has only rarely been used in econometrics, is to estimate the
probability associated with a given significance test by simulat-
ing the model, using the estimated parameters, and observing
the resulting proportion of simulated criteria falling within the
asymptotic confidence interval” (1976, p. 428). Sargan pointed
out that at first sight the method suffered from depending on the
use of estimated parameters, but he noted that “the criteria have
the property that their asymptotic distributions are independent
of the parameters of the model. If we are considering a sym-
metric confidence interval for a t ratio, the difference between
the asymptotic probability and the finite sample probability is
usually a differentiable function of the parameters in the neigh-
borhood of the true value uniformly of order 1/T . It follows
that the error in the estimated probability induced by using esti-
mated values for these parameters is of order T−3/2” (p. 429).
He nevertheless was concerned that the asymptotic result might
overstate the finite-sample properties of the resampling method,
and suggested investigating the matter further through Monte
Carlo experimentation.

These matters were pursued by Sargan (1981) (and later
briefly summarized in Sargan 1993), who studied the asymp-
totic properties of a parametric bootstrap procedure. He also
undertook a Monte Carlo exercise using a two-equation overi-
dentified dynamic model estimated by 3SLS to study the prop-
erties of his bootstrap method with T = 20 and 50. He found

that the bootstrap procedure gave some very poor estimates of
the true size of the various confidence intervals considered.

3.4.3. Approximations When the Number of Instruments Is
Large. Sargan (1975b) argued that conventional asymptotic
theory, in which T →� and the model remains constant, was
quite irrelevant for large models where the total number of
variables was large relative to the sample size. As an alter-
native, he considered an asymptotic framework in which not
only T , but also the number of instruments and the number
of equations, were tending to infinity. He focused on estima-
tion of a fixed number of parameters occurring in a subsystem
of equations and studied the asymptotic properties of an iter-
ated IV estimator that used the overidentifying restrictions in
forming the instruments (of the type considered in Brundy and
Jorgenson 1971). Sargan’s theorem 3 established that the fea-
sible and unfeasible IV estimators were asymptotically equiva-
lent and concluded that for these type of estimators, the results
of asymptotic theory were still a good approximation even in
large models.

This article pioneered a literature that focused on the prop-
erties of IV and GMM estimates when the number of moment
conditions and the sample size tended to infinity (cf. Kunitomo
1980; Morimune 1983; Bekker 1994).

4. SERIAL CORRELATION

The theory for Sargan’s 1958 article was developed under
the assumption that the error ut was not autocorrelated. Sargan
nevertheless regarded the assumption of lack of autocorrela-
tion in measurement errors as unrealistic, and pointed out that
because his IV estimates were based on minimal assumptions,
they were still consistent even if the errors were autocorre-
lated. Because of this, he suggested that “it is probably not
wise to use lagged values of a variable appearing in the rela-
tionship as instrumental variables” (1958, p. 413). The idea
was to rely on instruments that would not lose their validity
in the event of serial correlation in measurement errors.

A contribution of Hansen’s GMM perspective has been the
following reaction to this problem: If the economic problem
suggests that E�gT �= 0, but var�gT � differs from (6) because
of serial dependence, then we obtain a consistent estimate
v̂ar�gT � to perform optimal inference relative to the original
moments gT . A similar perspective was present in the IV esti-
mators proposed independently by Chamberlain (1982) and
White (1982) for cross-sectional and panel data linear models
with heteroscedasticity and by Cumby, Huizinga, and Obst-
feld (1983) for linear rational expectations models. To do this,
one could specify a parametric process for ut or try to obtain
a robust estimate of var�gT � under more general assumptions
(as in Hansen and Hodrick 1980; Hansen 1982). If the sam-
ple size is small, then the former may be a better idea than
the latter, but even if the process for ut is misspecified, the IV
estimates will still be consistent. In any event, the suggested
estimates will minimize

g′T
[
v̂ar�gT �

]−1
gT 
 (22)

The motivation for Sargan’s 1959 article was IV estimation
of models with autocorrelated errors, but he did not follow the
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GMM route. Sargan specified a reduced-form process for the
errors and used this specification to change the orthogonality
conditions. He then considered joint estimation of the struc-
tural parameters and those in the error process. By doing so,
he gained efficiency but at the cost of a more fragile estima-
tor. (An early discussion of the pros and cons of these two
approaches was given in Griliches 1967, pp. 40–41.)

Sargan considered an equation of the form

a′0w
†
t = 8t (23)

with autoregressive errors

8t =
J∑
j=1

9j8t−j+ut� (24)

leading to the transformed equation

a′0w
†
t −

J∑
j=1

9ja
′
0w

†
t−j ≡ ��:0�

′wt = ut� (25)

where ��:0�
′ = �a′0�−91a

′
0� � � � �−9Ja′0� and

wt =



w†t
w†t−1





w†t−J


 


He then suggested joint estimation of the structural param-
eters a0 and the autoregressive parameters 9j from a set of
nonlinear moment conditions of the form

E�ztut�= 0
 (26)

(Specification tests of the common-factor bilinear restrictions
in ��:0� have been studied in Sargan 1964, 1980.)

To examine the nature of these moments in more detail,
suppose that a vector z†t provides valid instruments for the
errors of the original equation, such that

E
(
z†t 8t

)= 0
 (27)

Sargan’s 1958 estimator based on these moments would still
be consistent even if the errors were serially correlated. If (27)
holds and 8t is serially correlated, in general also E�z†t 8t−j�=
0 for j = 1� � � � � J (e.g., if z†t were strictly exogenous instru-
ments). If this is so, then it will also be true that

E
(
z†t ut

)≡ E(z†t 8t)− J∑
j=1

9jE
(
z†t 8t−j

)= 0
 (28)

However, the autoregressive parameters are not identified from
the latter set of moments, because they will hold not only for
the true value of the 9j , but also for any other value. Under the
assumption of independence at all lags and leads between all
latent variables, ut will also be orthogonal to w†t−1� � � � �w

†
t−J ,

which can then be used as additional instruments to secure
identification of the 9j . The problem is that if the error pro-
cess is misspecified, then the IV estimates of the structural
parameters jointly estimated with the 9j will be inconsistent.

On the other hand, if the error process is well specified, then
the joint estimates will be more asymptotically efficient than
those based on E�z†t 8t�= 0 alone.

Sargan was aware that assuming a low-order autoregressive
process for 8t was conceptually problematic, given that he was
regarding the errors as a combination of structural shocks and
measurement errors. He argued that “it would appear logical
to assume that each measurement error, and the random com-
ponent, are being determined by a different mechanism, for
example, by an autoregressive equation. However the problem
of estimation which this assumption involves is very compli-
cated, and indeed the only treatment which appears promising
is that which assumes that the whole residual is determined
by an autoregressive equation” (1959, p. 101).

In later work, Sargan and coauthors considered struc-
tural dynamic models with serial correlation in various set-
tings. Sargan (1961) studied the properties of ML estimates
of dynamic simultaneous systems with vector autoregressive
errors; Espasa and Sargan (1977) considered the spectral esti-
mation of simultaneous systems with stationary errors, and
Bhargava and Sargan (1983) analyzed models for short pan-
els with unrestricted autocovariance matrix. In the latter two
articles, completely exogenous instrumental variables were
required to distinguish structural dynamics from the generic
patterns of serial correlation used.

5. NONLINEAR INSTRUMENTAL
VARIABLES ESTIMATION

A remarkable contribution of Sargan’s 1959 article was to
develop in a general and rigorous way the IV estimation of
nonlinear-in-parameters models. Sargan realized that estima-
tion of the transformed model (25) was a special case of a
nonlinear-in-parameters model. Thus he set about to develop
the theory for estimation of a general model in which parame-
ter restrictions were expressed as functions of a smaller set of
free parameters. In this way, the contribution of Sargan (1959)
goes well beyond the resolution of the problem of estimating
models with serially correlated errors that originally motivated
the analysis.

The setting was

��:0�
′wt = ut (29)

and

E�ztut�= 0� (30)

where ��·� is a vector of q+1 functions of a k×1 parameter
vector : and zt is an r×1 vector of instrumental variables.

Begin by considering the simple case where r = k. Sargan
first considered the nature of the solutions of the set of r
equations


Mzw��:0�≡
(
p lim
T→�

1
T

T∑
t=1

ztw
′
t

)
��:0�= 0
 (31)

He did so because the behavior of the solutions of the sample
moment equations (

1
T

T∑
t=1

ztw
′
t

)
��:�= 0 (32)
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depends on the nature of the solutions to the limiting equa-
tions (31).

He distinguished three cases: (a) (31) has a unique solution,
(b) (31) has multiple solutions, and (c) (31) has a continu-
ous infinity of solutions so that they just determine a curve in
: space (the “a priori unidentified case”). Moreover, in cases
(a) and (b) he also distinguished between singular and non-
singular solutions. The value : = :∗ is a singular solution if

Mzw��:

∗�= 0 and the r×k Jacobian matrix


Mzw

4��:∗�
4:′

does not have full rank.
Next, Sargan considered IV estimators that solve

min
:
��:�′MwzM

−1
zz Mzw��:� (33)

and argued that the probability that there is a solution of (32)
near each solution of (33) tends to unity as T → �, pro-
vided that the solution is nonsingular. Then he used a gen-
eral consistency theorem for extremum estimators to establish
consistency of the nonlinear IV estimator. (This type of theo-
rem, given without proof, predated a large literature in nonlin-
ear econometrics; its ideas were further elaborated in Sargan
1975c.)

The final step was to establish asymptotic normality. The
result was

√
T�:̂−:0�

d−→ �

(
0��2

[(
4��:0�

4:′

)′

× 
Mwz

M−1
zz


Mzw

(
4��:0�

4:′

)]−1)
� (34)

where :̂ is the minimum of ��:�′MwzM
−1
zz Mzw��:� within or

on the boundary of a small region in : space surrounding a
nonsingular solution :0 of the limiting equation (31).

Sargan then moved to the overidentified case where the
number of instrumental variables is greater than the number
of parameters r > k. As in his previous article, he considered
linear combinations of the zt ,

z∗t =2zt
where 2 is a k× r transformation matrix, showing that the
optimal choice for 2 that minimizes the asymptotic variance
is given by

2 =
(
4��:0�

4:′

)′

Mwz


M−1
zz � (35)

so that the corresponding (unfeasible) estimates solve(
4��:0�

4:′

)′

Mwz


M−1
zz Mzw��:�= 0�

and the asymptotic variance matrix is as in (34). Sargan (1959)
argued that this suggests that one consider the equations

(
4��:�

4:′

)′
MwzM

−1
zz Mzw��:�

≡ 4

4:

[
��:�′MwzM

−1
zz Mzw��:�

]= 0
 (36)

Thus he considered estimators that minimize the nonlinear
IV criterion ��:�′MwzM

−1
zz Mzw��:�, establishing consistency

and asymptotic normality with variance matrix equal to that
in (34).

Next, Sargan briefly considered the singular case, which
was further developed in his 1980 World Congress Presidential
Address, (Sargan 1983), where

rank

(

Mzw

4��:∗�
4:′

)
≤ k−1
 (37)

He argued that in the case where the rank is k− 1, “there
is asymptotically a probability of 1/2 that there is a single
minimum with error of order T−1/2 and a probability of 1/2
of two minima with errors of order T−1/4. However, this case
has a mainly academic interest since it is a priori unlikely
that 
Mzw will take just those values which makes the solution
singular, and if the solution is only almost singular the errors
will be large but as in the previous sections” (1959, p. 97).

The Minimax Approach. Sargan (1959) generalized the
minimax approach of his 1958 article to the nonlinear case.
The idea is the same as before—namely, to minimize the
largest squared correlation between the errors and a linear
combination of the instruments,

min
:

[
max
!

���:�′Mwz!�
2

���:�′Mww��:���!
′Mzz!�

]
= min

:
#�:�� (38)

where

#�:�= ��:�′MwzM
−1
zz Mzw��:�

��:�′Mww��:�

 (39)

Sargan showed that this estimator was asymptotically equiv-
alent to the previous one, and argued that its advantage was
that “in the application to the study of autoregressive residu-
als it gives a set of estimates symmetric between the different
variables in the relationship,” and also that the minimum #̂1

provided the basis for “a significance test for the existence of
a relationship of the proposed type” (1959, p. 99). Next, he
derived the asymptotic distribution of T #̂1 (the test statistic
of overidentifying restrictions). The general theory concluded
with discussions of testing for underidentification and of con-
fidence regions.

6. CONCLUDING REMARKS

Sargan’s 1958 and 1959 articles provided lasting founda-
tions for the theory of IV estimation of linear and nonlinear-
in-parameters models. His results and his way of thinking
about econometric estimation are very much in the agendas of
present-day econometricians and empirical economists.

Hansen (1982) extended Sargan’s framework by considering
fully nonlinear models, but also by abstracting from equations
and expressing an estimation problem as a list of moment
conditions. Moreover, Sargan’s departure from conventional
asymptotic efficiency was taken a significant step further by
Hansen. Hansen considered orthogonality conditions defined
in terms of errors before filtering to remove serial correlation
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and generalized the properties of errors, allowing for flexible
forms of serial dependence and conditional heteroscedasticity.

Sargan’s work on instrumental variables had also dispensed
with likelihood functions and blended errors in variables with
simultaneity problems by relying on a given set of moment
conditions. However, something was lost in the process of
moving toward fully nonlinear models, because in Sargan’s
original motivation measurement errors played an important
role alongside structural shocks.
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