
Time series
Class Notes

Manuel Arellano

Revised: February 12, 2018

1 Time series as stochastic outcomes

A time series is a sequence of data points {wt}Tt=1 observed over time, typically at equally spaced
intervals; for example, the quarterly GDP per capita or the daily number of tweets that mention

a specific product. We wish to discuss probabilistic models that regard the observed time series as

a realization of a probability distribution function f (w1, ..., wT ). In a random sample observations

are independent and identically distributed so that f (w1, ..., wT ) =
∏T
t=1 f (wt). In a time series,

observations near in time tend to be more similar, in which case the independence assumption is not

appropriate. Moreover, the level or other features of the series often change over time, and in that

case the assumption of identically distributed observations is not appropriate either. Thus, the joint

distribution of the data may differ from the product of marginal distributions of each data point

f (w1, ..., wT ) 6= f1 (w1)× f2 (w2)× ...× fT (wT )

and the form of those marginal distributions may change over time. Due to the natural temporal

ordering of data, a factorization that will be often useful is

f (w1, ..., wT ) = f1 (w1)
∏T

t=2
ft (wt | wt−1, ..., w1) .

If the distributions f1 (.), f2 (.), ... changed arbitrarily there would be no regularities on which

to base their statistical analysis, since we only have one observation on each distribution. Similarly,

if the joint distributions of consecutive pairs of observations changed arbitrarily, there would be no

regularities on which to base the analysis of their dependence. Thus, modeling the dependence among

observations and their evolving pattern are central to time series analysis. The basic building block

to facilitate statistical analysis of time series is some stationary form of dependence that preserves the

assumption of identically distributed observations. First we will introduce the concept of stationary

dependence and later on we will discuss ways of introducing nonstationarities.

Stochastic process A stochastic process is a collection of random variables that are indexed

with respect to the elements in a set of indices. The set may be finite or infinite and contain integer

or real numbers. Integer numbers may be equidistant or irregularly spaced. In the case of our time

series the set is {1, 2, 3, ..., T}, but usually it is convenient to consider a set of indices t covering all
integers from −∞ to +∞. In such case we are dealing with a double-infinite sequence of the form

{wt}∞t=−∞ = {..., w−1, w0, w1, w2, ..., wT , wT+1, ...} ,
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which is regarded as a single realization of the stochastic process, and the observed time series is a

portion of this realization. Hypothetical repeated realizations of the process could be indexed as:{
w
(1)
t , w

(2)
t , ..., w

(n)
t

}∞
t=−∞

.

2 Stationarity

A process {wt} is (strictly) stationary if the joint distribution of {wt1 , wt2 , ..., wtk} for a given subset of
indices t1, t2, ..., tk is equal to the joint distribution of {wt1+j , wt2+j , ..., wtk+j} for any j > 0. That is,

the distribution of a collection of time points only depends on how far apart they are, and not where

they start:

f (wt1 , wt2 , ..., wtk) = f (wt1+j , wt2+j , ..., wtk+j) .

This implies that marginal distributions are all equal, that the joint distribution of any pair of variables

only depends on the time interval between them, and so on:

fwt (.) = fws (.) for all t, s

fwt,ws (., .) = fwt+j ,ws+j (., .) for all t, s, j.

In terms of moments, the implication is that the unconditional mean and variance µt, σ
2
t of the distri-

bution fwt (.) are constant:

E (wt) ≡ µt = µ, V ar (wt) ≡ σ2t = σ2.

Moreover, the covariance γt,s between wt and ws only depends on |t− s|:

Cov (wt, ws) ≡ γt,s = γ|t−s|.

Thus, using the notation γ0 = σ2, the covariance matrix of w = (w1, ..., wT ) takes the form

V ar (w) =



γ0 γ1 . . . γT−1

γ1 γ0 γ1 . . . γT−2
... γ1 γ0

. . .
...

γT−2
. . . γ1

γT−1 γT−2 . . . γ0


.

Similarly, the correlation ρt,s between wt and ws only depends on |t− s|:

ρt,s ≡
γt,s
σtσs

= ρ|t−s|

The quantity ρj is called the autocorrelation of order j and when seen as a function of j it is called

the autocorrelation function.
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A stationary process is also called strictly stationary in contrast with weaker forms of stationarity.

For example, we talk of stationarity in mean if µt = µ or of covariance stationarity (or weak station-

arity) if the process is stationary in mean, variance and covariances. In a normal process covariance

stationarity is equivalent to strict stationarity.

Processes that are uncorrelated or independent A sequence of serially uncorrelated random

variables with zero mean and constant finite variance is called a “white noise”process; that is, white

noise is a covariance stationary process wt such that

E (wt) = 0

V ar (wt) = γ0 <∞

Cov (wt, wt−j) = 0 for all j 6= 0.

In this process observations are uncorrelated but not necessarily independent. In an independent white

noise process wt is also statistically independent of past observations:

f (wt | wt−1, wt−2, ...w1) = f (wt) .

Another possibility is a mean independent white noise process that satisfies

E (wt | wt−1, wt−2, ...w1) = 0.

In this case wt is called a martingale difference sequence. A martingale difference is a stronger form of

independence than uncorrelatedness but weaker than statistical independence. For example, a martin-

gale difference does not rule out the possibility that E
(
w2t | wt−1, ...w1

)
depends on past observations.

Prediction Consider the problem of selecting a predictor of wt given a set of past values

{wt−1, ..., wt−j}. The conditional mean E (wt | wt−1, ..., wt−j) is the best predictor when the loss func-
tion is quadratic. Similarly, the linear projection E∗ (wt | wt−1, ..., wt−j) is the best linear predictor
under quadratic loss. For example, for a stationary process wt

E∗ (wt | wt−1) = α+ βwt−1

with β = γ1/γ0 and α = (1− β)µ. We can also write

wt = α+ βwt−1 + νt

where νt is the prediction error, which by construction is orthogonal to wt−1.

For convenience, predictors based on all past history are often considered:

Et−1 (wt) = E (wt | wt−1, wt−2, ...)
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or

E∗t−1 (wt) = E∗ (wt | wt−1, wt−2, ...) ,

which are defined as the corresponding quadratic-mean limits of predictors given {wt−1, ..., wt−j} as
j →∞.

Linear predictor k-period-ahead Let wt be a stationary time series with zero mean and let

ut denote the innovation in wt so that

wt = E∗t−1 (wt) + ut.

ut is a one-step-ahead forecast error that is orthogonal to all past values of the series. Similarly,

wt+1 = E∗t (wt+1) + ut+1.

Moreover, since the spaces spanned by (wt, wt−1, wt−2, ...) and (ut, wt−1, wt−2, ...) are the same, and

ut is orthogonal to (wt−1, wt−2, ...) we have:

E∗t (wt+1) = E∗ (wt+1 | ut, wt−1, wt−2, ...) = E∗t−1 (wt+1) + E∗ (wt+1 | ut) .

Thus, E∗ (wt+1 | ut)+ut+1 is the two-step-ahead forecast error in wt+1. In a similar way we can obtain

incremental errors for E∗t−1 (wt+2) , ..., E
∗
t−1 (wt+k).

Wold decomposition Letting E∗ (wt+1 | ut) = ψ1ut, we can write

wt+1 = ut+1 + ψ1ut + E∗t−1 (wt+1)

and repeating the argument we obtain the following representation of the process:

wt = (ut + ψ1ut−1 + ψ2ut−2 + ...) + κt

where ut ≡ wt −E∗t−1 (wt), ut−1 ≡ wt−1 −E∗t−2 (wt−1), etc. and κt denotes the linear prediction of wt

at the beginning of the process. This representation is called the Wold decomposition, after the work

of Herman Wold. It exists for any covariance stationary process with zero mean. The one-step-ahead

forecast errors ut are white noise and it can be shown that
∑∞

j=0 ψ
2
j <∞ (with ψ0 = 1).1

The term κt is called the linearly deterministic part of wt because it is perfectly predictable based

on past observations of wt. The other part, consisting of
∑∞

j=0 ψjut−j , is the linearly indeterministic

part of the process. The indeterministic part is the linear projection of wt onto the current and past

linear forecast errors, and the deterministic part is the corresponding projection error. If κt = 0, wt is

a purely non-deterministic process, also called a linearly regular process.

1See T. Sargent, Macroeconomic Theory, 1979.
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Ergodicity A stochastic process is ergodic if it has the same behavior averaged over time as

averaged over the sample space. Specifically, a covariance stationary process is ergodic in mean if the

time series mean converges in probability to the same limit as a (hypothetical) cross-sectional mean

(known as the ensemble average), that is, to E (wt) = µ:

wT =
1

T

∑T
t=1wt

p→ µ.

Ergodicity requires that the autocovariances γj tend to zero suffi ciently fast as j increases. In the

next section we check that {wt} is ergodic in mean if the following absolute summability condition is
satisfied:∑∞

j=0

∣∣γj∣∣ <∞. (1)

Similarly, a covariance stationary process is ergodic in covariance if

1

T − j
∑T

t=j+1 (wt − µ) (wt−j − µ)
p→ γj .

In the special case in which {wt} is a normal stationary process, condition (1) guarantees ergodicity
for all moments.2

Example of stationary non-ergodic process Suppose that

wt = η + εt

where η ∼ iid
(
0, σ2η

)
and εt ∼ iid

(
0, σ2ε

)
independent of η. We have

µ = E (wt) = E (η) + E (εt) = 0

γ0 = V ar (wt) = V ar (η) + V ar (εt) = σ2η + σ2ε

γj = Cov (wt, wt−j) = σ2η for j 6= 0.

Note that condition (1) is not satisfied in this example.

Let the index i denote a realization of the process in the probability space. The process is stationary

and yet

w
(i)
T =

1

T

∑T
t=1w

(i)
t

p→ η(i)

instead of converging to µ = 0. Moreover,

1

T − j
∑T

t=j+1

(
w
(i)
t − η(i)

)(
w
(i)
t−j − η

(i)
)

p→ 0

(or (T − j)−1
∑T

t=j+1w
(i)
t w

(i)
t−j

p→
(
η(i)
)2
) instead of converging to γj = σ2η.

2 In general, a stationary process is ergodic in distribution if T−1
∑T

t=1 1 (wt ≤ r)
p→ Pr (wt ≤ r) for any r, where

1 (wt ≤ r) = 1 if wt ≤ r and 1 (wt ≤ r) = 0 if wt > r.
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3 Asymptotic theory with dependent observations

Here we consider a law of large numbers and a central limit theorem for covariance stationary processes.

Law of Large Numbers Let {wt} be a covariance stationary stochastic process with E (wt) = µ

and Cov (wt, wt−j) = γj such that
∑∞

j=0

∣∣γj∣∣ < ∞. Let the sample mean be wT = (1/T )
∑T

t=1wt.

Then (i) wT
p→ µ, and (ii) V ar

(√
TwT

)
→
∑∞

j=−∞ γj .

A suffi cient condition for wT
p→ µ is that E (wT ) → µ and V ar (wT ) → 0. For any T we have

E (wT ) = µ. Next,

V ar (wT ) = E
[
(wT − µ)2

]
=

1

T 2
∑T

t=1

∑T
s=1E [(wt − µ) (ws − µ)]

=
1

T 2
[
Tγ0 + 2 (T − 1) γ1 + 2 (T − 2) γ2 + ...+ 2γT−1

]
.

To show that V ar (wT )→ 0, show that TV ar (wT ) is bounded under the assumption
∑∞

j=0

∣∣γj∣∣ <∞:
TV ar (wT ) =

∣∣∣∣γ0 +

(
T − 1

T

)
2γ1 +

(
T − 2

T

)
2γ2 + ...+

1

T
2γT−1

∣∣∣∣ (2)

≤ |γ0|+
(
T − 1

T

)
2 |γ1|+

(
T − 2

T

)
2 |γ2|+ ...+

1

T
2
∣∣γT−1∣∣

≤
{
|γ0|+ 2 |γ1|+ 2 |γ2|+ ...+ 2

∣∣γT−1∣∣+ ...
}
.

To check that V ar
(√

TwT

)
→
∑∞

j=−∞ γj see J. Hamilton, Time Series Analysis, 1994, p. 187—188.

Consistent estimation of second-order moments Let us consider the sample autocovariance

γ̂j =
1

T − j
∑T

t=j+1 (wt − w0) (wt−j − w−j) =
1

T − j
∑T

t=j+1wtwt−j − w0w−j

where w0 = (T − j)−1
∑T

t=j+1wt and w−j = (T − j)−1
∑T

t=j+1wt−j . Let us define zt = wtwt−j . The

previous LLN can be applied to the process zt to state conditions under which

1

T − j
∑T

t=j+1wtwt−j
p→ E (wtwt−j) .

Note that if wt is strictly stationary so is zt.

Central Limit Theorem A central limit theorem provides conditions under which

wT − µ√
V ar (wT )

d→ N (0, 1) .

Since in our context TV ar (wT )→
∑∞

j=−∞ γj , an asymptotically equivalent statement is

√
T (wT − µ)√∑∞

j=−∞ γj

d→ N (0, 1) .
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or

√
T (wT − µ)

d→ N
(

0,
∑∞

j=−∞ γj

)
. (3)

A condition under which this result holds is:

wt = µ+
∑∞

j=0 ψjvt−j (4)

where {vt} is an i.i.d. sequence with E
(
v2t
)
<∞ and

∑∞
j=0

∣∣ψj∣∣ <∞ (T.W. Anderson, The Statistical

Analysis of Time Series, 1971, p. 429). Result (3) also holds when the innovation process {vt} in (4)
is a martingale difference sequence satisfying certain conditions.3

A multivariate version of (3) for the case in which {wt} is a vector-valued process is as follows:
√
T (wT − µ)

d→ N
(

0,
∑∞

j=−∞ Γj

)
. (5)

where

Γ0 = E
[
(wt − µ) (wt − µ)′

]
and for j 6= 0:

Γj = E
[
(wt − µ) (wt−j − µ)′

]
.

Note that the autocovariance matrix Γj is not symmetric. We have Γ−j = Γ′j .

As in the scalar case, a condition under which result (5) holds is:

wt = µ+
∑∞

j=0 Ψjvt−j

where {vt} is an i.i.d. vector sequence with E (vt) = 0, E (vtv
′
t) = Ω a symmetric positive definite

matrix, and the sequence of matrices {Ψj}∞j=0 is absolutely summable.4

Consistent estimation of the asymptotic variance To be able to use the previous central

limit theory for the construction of interval estimations and test statistics we need consistent estimators

of V =
∑∞

j=−∞ γj . One possibility is to parameterize γj ; for example, assuming that the γj satisfy the

restrictions imposed by an ARMA model of the type that are discussed in the next section. Another

possibility is to obtain a flexible estimator of V of the type considered by Hansen (1982), and Newey

and West (1987), among others.5

The Newey-West estimator is a sample counterpart of expression (2) truncated after m lags:

V̂ = γ̂0 +
m∑
j=1

(
1− j

m+ 1

)
2γ̂j .

3Theorem 3.15 in P.C.B. Phillips and V. Solo (1992) “Asymptotics for Linear Processes,”The Annals of Statistics 20.
4The matrix sequence {Ψj}∞j=0 is absolutely summable if each of its elements forms an absolutely summable sequence.
5Hansen (1982) “Large Sample Properties of GMM Estimators”, Econometrica 50. Newey and West (1987) “A Simple,

Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix”, Econometrica 55.
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This estimator can be shown to be consistent for V if the truncation parameter m goes to infinity

with T more slowly than T 1/4 or than T 1/2, depending on the type of process. Nevertheless, the

specification of an appropriate growth rate for m gives little practical guidance on the choice of m.

Similarly, in the vector case the Newey-West estimator of V =
∑∞

j=−∞ Γj is given by

V̂ = Γ̂0 +
m∑
j=1

(
1− j

m+ 1

)(
Γ̂j + Γ̂′j

)
(6)

where Γ̂j = (T − j)−1
∑T

t=j+1 (wt − w0) (wt−j − w−j)′. A nice property of the Newey-West estimator
(6) is that it is guaranteed to be a positive semi-definite matrix by construction.6

4 Autoregressive and moving average models

4.1 Autoregressive models

A first-order autoregressive process (or Markov process) assumes that wt is independent of {wt−2, wt−3, ...}
conditionally on wt−1:

ft (wt | wt−1, ..., w1) = ft (wt | wt−1)

and, therefore, also

E (wt | wt−1, ..., w1) = E (wt | wt−1) .

Moreover, the standard linear AR(1) model also assumes

E (wt | wt−1) = α+ ρwt−1

V ar (wt | wt−1) = σ2.

Moment properties These assumptions have the following implications for marginal moments:

E (wt) = E [E (wt | wt−1)] = α+ ρE (wt−1) (7)

V ar (wt) = V ar [E (wt | wt−1)] + E [V ar (wt | wt−1)] = ρ2V ar (wt−1) + σ2

Cov (wt, wt−1) = Cov (E (wt | wt−1) , wt−1) = Cov (α+ ρwt−1, wt−1) = ρV ar (wt−1) .

Moreover,

E (wt | wt−2) = α+ ρE (wt−1 | wt−2) = α (1 + ρ) + ρ2wt−2.

6The estimator Ṽ = Γ̂0+
∑m

j=1

(
Γ̂j + Γ̂′j

)
has the same large sample justification as (6) but is not necessarily positive

semi-definite.
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In general

E (wt | wt−j) = α
(
1 + ρ+ ...+ ρj−1

)
+ ρjwt−j

and

Cov (wt, wt−j) = Cov (E (wt | wt−j) , wt−1) = ρjV ar (wt−j) .

In view of the recursion (7) we have

E (wt) = α
(
1 + ρ+ ...+ ρt−1

)
+ ρtE (w0) .

Stability and stationarity For the process to be stationary is required that |ρ| < 1. In itself,

|ρ| < 1 is a condition of stability under which as t→∞ we obtain

E (wt)→ µ =
α

1− ρ

V ar (wt)→ γ0 =
σ2

1− ρ2

Cov (wt, wt−j)→ γj = ρj
σ2

1− ρ2 .

These quantities are known as the steady state mean, variance and autocovariances. Thus, regardless

of the starting point, under the stability condition the AR(1) process is asymptotically covariance

stationary.

If the AR(1) process is stationary (due to being stable and having started in the distant past or

having started at t = 1 with the steady state distribution) then E (wt) = µ = α/ (1− ρ), V ar (wt) =

γ0 = σ2/
(
1− ρ2

)
and Cov (wt, wt−j) = γj = ρjσ2/

(
1− ρ2

)
.

The autocorrelation function of a stationary AR(1) process decreases exponentially and is given

by ρj .

Letting ut = wt−α−ρwt−1, the Wold representation of a stationary AR(1) process can be obtained
by repeated substitutions and is given by:

wt = µ+ ut + ρut−1 + ρ2ut−2 + ρ3ut−3 + ...

The parameter ρ measures the persistence in the process. The closer is ρ to one the more persistent

will be the deviations of the process from its mean.

Normality assumptions The standard additional assumption to fully specify the distribution

of wt | wt−1 is conditional normality:

wt | wt−1, ..., w1 ∼ N
(
α+ ρwt−1, σ

2
)
. (8)
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In itself this assumption does not imply unconditional normality. However, if we assume that the

initial observation is normally distributed with the steady state mean and variance:

w1 ∼ N
(

α

1− ρ,
σ2

1− ρ2

)
, (9)

then the process is fully stationary and (w1, ..., wT ) is jointly normally distributed as follows:
w1

w2
...

wT

 ∼ N


α

1− ρ


1

1
...

1

 ,
σ2

1− ρ2


1 ρ . . . ρT−1

ρ 1 . . . ρT−2

...
...

. . .
...

ρT−1 ρT−2 . . . 1



 .

Normal likelihood functions Under assumption (8), the log likelihood function of the time

series {w1, ..., wT } conditioned on the first observation is given by (up to an additive constant):

L
(
α, ρ, σ2

)
= −(T − 1)

2
lnσ2 − 1

2σ2

∑T

t=2
(wt − α− ρwt−1)2 .

The corresponding maximum likelihood estimates are:

ρ̂ =

∑T
t=2 (wt − w0) (wt−1 − w−1)∑T

t=2 (wt−1 − w−1)2
(10)

α̂ = w0 − ρ̂w−1

σ̂2 =
1

(T − 1)

∑T
t=2 (wt − α̂− ρ̂wt−1)2

where w0 = (T − 1)−1
∑T

t=2wt and w−1 = (T − 1)−1
∑T

t=2wt−1.

Under the steady state assumption (9) the log likelihood of the first observation is given by:

`1
(
α, ρ, σ2

)
= −1

2
lnσ2 +

1

2
ln
(
1− ρ2

)
−
(
1− ρ2

)
2σ2

(
w1 −

α

1− ρ

)2
.

Thus, the full log likelihood function under assumptions (8) and (9) becomes:

L∗
(
α, ρ, σ2

)
= L

(
α, ρ, σ2

)
+ `1

(
α, ρ, σ2

)
.

The estimators that maximize L∗
(
α, ρ, σ2

)
lack a closed form expression.

Asymptotic properties of OLS estimates in the AR(1) model Let us focus on the OLS

estimate of the autoregressive parameter (10) when |ρ| < 1. Since ρ̂ = γ̂1/γ̂0, consistency of ρ̂ for

ρ = γ1/γ0 follows under conditions ensuring the consistency of sample autocovariances. Next, consider

the scaled estimation error and its large-sample approximation:

√
T (ρ̂− ρ) =

[
1

T

∑T
t=2 (wt−1 − w−1)2

]−1 1√
T

∑T
t=2 (wt−1 − w−1)ut

≈
(

σ2

1− ρ2

)−1
1√
T

∑T
t=2 (wt−1 − µ)ut.
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Under conditions ensuring the asymptotic normality result

T−1/2
∑T

t=2 (wt−1 − µ)ut
d→ N (0, ω)

with ω = E
[
u2t (wt−1 − µ)2

]
= σ4/

(
1− ρ2

)
, we obtain

√
T (ρ̂− ρ)

d→ N
(
0, 1− ρ2

)
.

When ρ ≥ 1 this result does not hold and the OLS properties are non-standard.

Forecasting with a stable AR(1) process A one-period-ahead forecast is

Et (wt+1) = α+ ρwt,

a two-period ahead forecast is

Et (wt+2) = α (1 + ρ) + ρ2wt,

and k-period ahead

Et (wt+k) = α
(

1 + ρ+ ...+ ρk−1
)

+ ρkwt =

(
α

1− ρ

)(
1− ρk

)
+ ρkwt.

Thus, a k-period ahead forecast is a convex combination of the steady state mean and the most

recent value of the process available. As k →∞ the optimal forecast tends to the steady state mean

α/ (1− ρ).

AR(p) process A generalization of the AR(1) process is to an AR(p) process that specifies linear

dependence on the first p lags:

wt = α+ ρ1wt−1 + ...+ ρpwt−p + ut.

Second-order or higher-order autoregressive processes can capture richer patterns of behavior in time

series, including stochastic cycles.

4.2 Moving average models

To motivate the moving average model, consider the stationary linear process with iid shocks in (4):

wt = µ+ ut + ψ1ut−1 + ψ2ut−2 + ...

The independent white noise process is the special case when ψj = 0 for all j ≥ 1 and µ = 0. A

first-order moving average process relaxes the independence assumption by allowing ψ1 to be non-zero

while setting ψj = 0 for j > 1. Thus, the form of an MA(1) process is

wt = µ+ ut − θut−1

where ut ∼ iid
(
0, σ2

)
.
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Moment properties In this case

E (wt) = µ

V ar (wt) = γ0 =
(
1 + θ2

)
σ2

Cov (wt, wt−1) = γ1 = −θσ2

Cov (wt, wt−j) = γj = 0 for j > 1.

Note that the MA(1) process is stationary for all values of θ.

The first-order autocorrelation is

ρ1 =
γ1
γ0

= − θ

1 + θ2
,

which means that −0.5 ≤ ρ1 ≤ 0.5.

Indeterminacy and invertibility The moving average parameter θ solves:

ρ1θ
2 + θ + ρ1 = 0. (11)

The product of the roots of this equation is unity,7 so that if θ is a solution, then 1/θ is also a solution.

Moreover, if one solution is less than unity in absolute value, the other one will be greater than unity.

If |θ| < 1 then it can be seen that the MA(1) model can be written as a convergent series of past

values of the process:

(wt − µ) +
∑∞

j=1 θ
j (wt−j − µ) = ut.

If on the contrary |θ| > 1, the MA(1) model can also be written as a convergent series but one involving

the future values of the process:

(wt − µ) +
∑∞

j=1

1

θj
(wt+j − µ) = υt.

where υt = −θut−1. Given a preference for associating present values of the process with past val-
ues, the indeterminacy about the value of θ is avoided by requiring that |θ| < 1, a condition called

“invertibility”by Box and Jenkins (Time Series Analysis: Forecasting and Control, 1976).8

Normal likelihood function Under joint normality w = (w1, ..., wT )′ ∼ N
[
µι, σ2Ω (θ)

]
with ι

denoting a T × 1 vector of ones and

Ω (θ) =


1 + θ2 −θ . . . 0

−θ 1 + θ2 . . . 0
...

...
. . .

...

0 0 . . . 1 + θ2

 ,

7The roots are
(
−1 +

√
1− 4ρ21

)
/ (2ρ1) and

(
−1−

√
1− 4ρ21

)
/ (2ρ1) provided ρ1 6= 0.

8 If |ρ1| = 0.5 there is a unique non-invertible solution to (11) such that |θ| = 1.
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the log likelihood function of the time series is given by

L
(
µ, θ, σ2

)
= −T

2
lnσ2 − 1

2
ln |Ω (θ)| − 1

2σ2
(w − µι)′ [Ω (θ)]−1 (w − µι) .

There is no closed form expression for the maximum likelihood estimator. The natural estimator

of µ is the sample mean wT . A simple consistent estimator θ̂ is the invertible solution to the equation:

ρ̂1θ
2 + θ + ρ̂1 = 0

where ρ̂1 = γ̂1/γ̂0. The corresponding estimator of σ
2 is

σ̂2 =
γ̂0

1 + θ̂
2 .

Forecasting with an invertible MA(1) process The autoregressive representation of the

process is

wt =

(
1− θt

1− θ

)
µ− θwt−1 − ...− θt−1w1 − θtu0 + ut

and a similar expression one period ahead

wt+1 =

(
1− θt+1

1− θ

)
µ− θwt − ...− θtw1 − θt+1u0 + ut+1.

Thus, an infeasible forecast based on all past history is:

Et (wt+1) =

(
1− θt+1

1− θ

)
µ− θwt − ...− θtw1 − θt+1Et (u0) .

An approximate feasible forecast ignores the last term that contains Et (u0). Alternatively, we may

calculate the best linear predictor of wt+1 given {w1, ..., wt} taking into account that E (w) = µι and

V ar (w) = σ2Ω (θ). For example,

E∗ (wT+1 | wT , ..., w1) = δ + w′ϕ

where ϕ = [Ω (θ)]−1 q (θ), q (θ) = (−θ, 0, ..., 0) and δ = µ (1− ι′ϕ).

MA(q) process A generalization of the MA(1) process is to an MA(q) process that specifies

linear dependence on the first q shocks:

wt = µ+ ut − θ1ut−1 − ...− θqut−q.

ARMA (p, q) process A further generalization is a process that combines an autoregressive

component and a moving average component. For example, the ARMA(1,1) process takes the form:

wt = α+ ρwt−1 + ut − θut−1.

An ARMA process may be able to approximate a linear process to a given accuracy employing fewer

parameters than a pure autoregressive or a pure moving average process.
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5 Nonstationary processes

5.1 Time trends

In a stationary process E (wt) = µ. A less restrictive assumption that allows for nonstationarity in

mean is to specify the mean as a function of time. For example, a linear trend:

E (wt) = α+ βt.

If wt represents the logarithm of some variable, β is a growth rate, which in this model is assumed to

be constant.

We could assume that

wt = α+ βt+ ut

where ut is a stationary stochastic process. In such case, E (wt) = α+ βt but V ar (wt) is constant.

In the same vein, the specification of the mean of the process could incorporate cyclical or seasonal

components.

Regression with trend In a regression with a linear trend, OLS estimation errors converge to

zero at a faster rate than the usual root-T consistency. The reason is that the second moment of a

conventional regressor is bounded whereas the second moment of a linear trend is not. To examine

this situation let us consider a simple linear trend model with an iid normal error and no intercept:

yt = βt+ ut ut ∼ iid N
(
0, σ2

)
. (12)

The OLS estimation error and the OLS mean and variance are given by

β̂ − β =

∑T
t=1 t ut∑T
t=1 t

2
.

E
(
β̂
)

= β V ar
(
β̂
)

=
σ2∑T
t=1 t

2
=

σ2

T (T + 1) (2T + 1) /6
.

This is a classical regression model with xt = t, no intercept, and normal errors, except that in the

standard model
∑T

t=1 x
2
t = O (T ) whereas here

∑T
t=1 t

2 = O
(
T 3
)
.

In this case the following exact distributional result holds:

(∑T
t=1 t

2
)1/2 (β̂ − β)

σ
∼ N (0, 1)

and therefore also as T →∞:

(∑T
t=1 t

2
)1/2 (β̂ − β)

σ

d→ N (0, 1)
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or

T 3/2
[

1

6

(
1 +

1

T

)(
2 +

1

T

)]1/2 (β̂ − β)
σ

d→ N (0, 1)

and

T 3/2
(

1

6
× 1× 2

)1/2 (β̂ − β)
σ

d→ N (0, 1) ,

and also

T 3/2
(
β̂ − β

)
d→ N

(
0, 3σ2

)
. (13)

It can be shown that result (13) still holds if ut ∼ iid
(
0, σ2

)
but non-normal.9 Thus, (13) justifies

the large-sample approximation

β̂ ≈ N
(
β,

3σ2

T 3

)
.

This situation is described as T 3/2-consistency (in contrast with T 1/2-consistency) and β̂ is said to be

“hyper-consistent”or “super-consistent”(although the last term sometimes is reserved for T -consistent

estimators).

5.2 Random walk

A random walk is a process such that

E (wt | wt−1, wt−2, ...) = wt−1,

so that the best forecast is the previous value and there is no mean reversion.

A random walk with iid shocks is an AR(1) model with ρ = 1:

wt = wt−1 + ut ut ∼ iid
(
0, σ2

)
(14)

or equivalently

wt = ut + ut−1 + ...+ u1 + w0,

and the first-difference ∆wt = (wt − wt−1) is an independent white noise process.
The random walk is a nonstationary process. Letting ω0 = V ar (w0), we have

V ar (wt) = ω0 + tσ2

Cov (wt, wt−j) = ω0 + (t− j)σ2 for j ≥ 1.

9See, for example, T.W. Anderson, The Statistical Analysis of Time Series, 1971, Theorem 2.6.1, p. 23.

15



Thus, the variance tends to infinity as t increases and the autocorrelation function decays slowly as j

increases.

More generally, we could consider processes such as (14) in which ut is a stationary process, but

not necessarily a white noise process. A time series such that its first difference is a stationary process

is called a first-order integrated process or an I (1) process:

wt ∼ I (1) .

If ut is an ARMA(p, q) process then wt is called an autoregressive integrated moving average

or ARIMA(p, 1, q) process. The argument can be generalized to second and higher-order integrated

process. For example, an I (2) process is such that it is stationary after taking differences twice.

Random walk with drift This is a process of the form

wt = wt−1 + δ + ut ut ∼ iid
(
0, σ2

)
.

In this case:

wt = δt+ (ut + ut−1 + ...+ u1 + w0) .

We have a linear trend, but contrary to (12) the stochastic component is I (1) instead of I (0).

Distinguishing between unit root and stationary processes There is a literature concerned

with large sample methods to test the null hypothesis of a unit root in wt against the alternative

hypothesis of stationarity (e.g. the Dickey-Fuller test and its variants). However, a realization from

an I (1) process may be diffi cult to distinguish from an I (0) process. Compare, for example, the

following integrated moving average process

wt − wt−1 = ut − 0.99ut−1

with the white noise process

wt = ut;

or the random walk process

wt − wt−1 = ut

with the stationary autoregressive process

wt − 0.99wt−1 = ut.

The differences between those I (1) and I (0) processes are in their long run behavior. Sometimes the

choice between an I (1) model and an I (0) model is made on the basis of the long-run properties that

are judged a priori to make sense for a time series to have.
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