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1 Classical regression model with time series

Model and assumptions The basic assumption is

E (yt | x1, ..., xT ) = E (yt | xt) = x′tβ.

The first equality is always satisfied with iid observations whereas the second imposes linearity in

the relationship. With dependent observations the first equality imposes restrictions on the stochas-

tic process of (yt, xt). In later sections we will study the nature of these restrictions and consider

generalizations that are suitable for time series.

The previous assumption can be written in the form of equation as follows

yt = x′tβ + ut E (ut | X) = 0

where X = (x1, ..., xT )′ and y = (y1, ..., yT )′. This is appropriate for a linear relationship between x

and y and unobservables that are mean independent of past and future values of x.

The second assumption in the classical regression model is V ar (y | X) = σ2IT , which amounts to

E
(
u2t | X

)
= σ2 for all t

E (utut−j | X) = 0 for all t, j.

The case where E (utut−j | X) 6= 0 is called autocorrelation. An example is a Cobb-Douglas production

function in which u represents multiplicative measurement error in the output level, independent of

inputs at all periods. The error u is autocorrelated possibly as a result of temporal aggregation in the

data.

In the context of the classical regression model with time series it is convenient to distinguish

between conditional heteroskedasticity and unconditional heteroskedasticity. If E
(
u2t | X

)
does not

depend on X there is no conditional heteroskedasticity and

E
(
u2t | X

)
= E

(
u2t
)
.

However, if ut is not stationary in variance then

E
(
u2t
)

= σ2t

where σ2t is a function of t. In this situation we speak of unconditional heteroskedasticity.
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On the other hand if ut is stationary then E
(
u2t
)

= σ2, which is compatible with the possibility of

conditional heteroskedasticity. For example,

E
(
u2t | X

)
= δ0 + δ1x

2
t

E
(
u2t
)

= δ0 + δ1E
(
x2t
)

= σ2.

In this case there will be unconditional homoskedasticity if E
(
x2t
)
is constant for all t.

The same reasoning can be applied to conditional and unconditional autocovariances. If ut is

stationary then

E (utut−j) = γj for all t.

However, it is possible that conditional autocovariances

E (utut−j | X) = γj (X)

depend on X, in which case we would have both conditional heteroskedasticity and autocorrelation.

OLS with dependent observations: robust inference Consider the usual representation for

the scaled estimation error:

√
T
(
β̂ − β

)
=

(
1

T

T∑
t=1

xtx
′
t

)−1
1√
T

T∑
t=1

xtut.

Letting wt = xtut = xt (yt − x′tβ), we have that E (wt) = 0. Moreover, if (yt, xt) is stationary, so is

wt. Under some conditions, wT
p→ 0, T−1

∑T
t=1 xtx

′
t

p→ E (xtx
′
t) > 0, and

√
TwT

d→ N (0, V ) with

V =
∑∞

j=−∞ Γj and Γj = E
(
wtw

′
t−j

)
= E

(
utut−jxtx′t−j

)
. It then follows that β̂ is consistent and

asymptotically normal:

√
T
(
β̂ − β

)
d→ N (0,W )

where

W =
[
E
(
xtx
′
t

)]−1
V
[
E
(
xtx
′
t

)]−1
.

Recall that if observations are iid V = E
(
u2txtx

′
t

)
. If in addition there is absence of conditional

heteroskedasticity V = σ2E (xtx
′
t). On the other hand if γj (X) = γj for all j:

V =
∑∞

j=−∞E (utut−j)E
(
xtx
′
t−j
)
.

The Newey-West estimate of V is

V̂ = Γ̂0 +

m∑
j=1

(
1− j

m+ 1

)(
Γ̂j + Γ̂′j

)
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where

Γ̂j =
1

T − j

T∑
t=j+1

ûtût−jxtx
′
t−j

and ût are OLS residuals. The corresponding estimate of W is

Ŵ =

(
1

T

T∑
t=1

xtx
′
t

)−1
V̂

(
1

T

T∑
t=1

xtx
′
t

)−1
,

which boils down to the heteroskedasticity-consistent White standard error formula if m = 0 so that

V̂ = Γ̂0.

If there is autocorrelation but no heteroskedasticity an alternative consistent estimator of V is

Ṽ = Γ̃0 +

m∑
j=1

(
Γ̃j + Γ̃′j

)
where

Γ̃j = γ̃j

 1

T − j

T∑
t=j+1

xtx
′
t−j


and γ̃j = (T − j)−1

∑T
t=j+1 ûtût−j .

The previous limiting results do not depend on the validity of the assumptions of the classical

linear regression model. They are valid for inference about regression coeffi cients that are regarded as

estimates of linear projections from stationary and ergodic stochastic processes (or some alternative

mixing conditions under which the results hold).

For example, the results can be used if xt is yt−1 or contains lags of y among other variables,

regardless of whether the model is autoregressive or not.

This is not to say that OLS will necessarily be a consistent estimator of a dynamic model with

autocorrelation, in fact in general it will not be. For example, take an ARMA(1, 1) model:

yt = α+ ρyt−1 + ut

ut = vt − θvt−1.

The linear projection of yt on yt−1 will not coincide with α+ ρyt−1 because in the ARMA(1, 1) model

Cov (yt−1, ut) 6= 0. The previous results for regressions would allow us to make inference about the

linear projection coeffi cients, not about (α, ρ) in the ARMA(1,1) model.

Generalized least squares Under the assumption E (ut | X) = 0, OLS is not only consistent

but also unbiased. Letting u = (u1, ..., uT )′, its variance given X in finite samples is given by

V ar
(
β̂ | X

)
=
(
X ′X

)−1
X ′E

(
uu′ | X

)
X
(
X ′X

)−1
.

3



If there is autocorrelation there is a changing dependence among data points. This suggests considering

weighted least squares estimates in which different pairs of observations receive different weights. That

is, estimators of the form

β̃ =
(
X ′H ′HX

)−1
X ′H ′Hy

or equivalently OLS in the transformed regression

Hy = HXβ +Hu

where H is a T × T matrix of weights.
We have previously dealt with the case in which H is diagonal. Here since the estimator only

depends on H ′H we can limit ourselves to consider weight matrices that are lower triangular:

H =


h11 0 . . . 0

h21 h22 . . . 0
...

. . .
...

hT1 hT2 hTT

 ,

so that

β̃ − β =

(
T∑
t=1

x∗tx
∗′
t

)−1 T∑
t=1

x∗tu
∗
t

where u∗t = ht1u1 + ht2u2 + ... + httut and similarly for x∗t . The elements of H may be constant or

functions of X: H = H (X).

Under the strict exogeneity assumption E (u | X) = 0, β̃ is unbiased (and consistent) for any H.

In general, β̃ will not be consistent for β in a best linear predictor or in a conditional expectation

model in the absence of the strict exogeneity assumption. We can obtain an asymptotic normality

result for β̃ similar to the one for OLS simply replacing (yt, xt) with (y∗t , x
∗
t ).

Under some regularity conditions, as long as V ar (u | X) = Ω (X) = (H ′H)−1 = H−1H ′−1, we get

the optimal GLS estimator, which satisfies:

√
T
(
β̃ − β

)
d→ N

(
0,

[
plim
T→∞

1

T
X ′Ω (X)−1X

]−1)
.

Thus, a triangular factorization of the inverse covariance matrix of y given X is an effi cient choice of

weight matrix. Intuitively, this transformation produces errors such that their autocovariance matrix is

an identity. Once again we obtain a generalized least squares statistic similar to the one we encountered

before:

β̃ =
(
X ′Ω−1X

)−1
X ′Ω−1y.

4



Feasible GLS with AR(1) errors A popular GLS parametric transformation is when ut is a

first-order autoregressive process. The details are as follows. Assuming that

ut = ρut−1 + εt εt ∼ iid
(
0, σ2

)
,

we have Ω = σ2V with

V =
1

1− ρ2


1 ρ ρ2 . . . ρT−1

ρ 1 ρ . . . ρT−2

...
. . .

...

ρT−1 ρT−2 ρT−3 . . . 1

 .

It can be shown by direct multiplication that V −1 = H ′H with

H =



√
1− ρ2 0 0 . . . 0 0

−ρ 1 0 . . . 0 0

0 −ρ 1 . . . 0 0
...

...
...
. . .

...

0 0 0 . . . −ρ 1


.

Thus, in this case

u∗ = Hu =


√

1− ρ2u1
u2 − ρu1

...

uT − ρuT−1

 =


√

1− ρ2u1
ε2
...

εT

 .

If the first observation is omitted, GLS is equivalent to OLS in the transformed equation:

yt − ρyt−1 = (xt − ρxt−1)′ β + εt,

which is equivalent to MLE given the first observation.

Letting ρ̂ be the autoregressive coeffi cient estimated from OLS residuals,1 the Cochrane-Orcutt

procedure consists in constructing the pseudo differences yt− ρ̂yt−1 and xt− ρ̂xt−1 and estimating the
transformed model by OLS.

Alternatively, the full log-likelihood can be maximized with respect to all parameters:

L
(
β, σ2, ρ

)
= −T

2
ln (2π)− 1

2
ln |Ω| − 1

2
(y −Xβ)′Ω−1 (y −Xβ) .

1Specifically, ρ̂ =
∑T

t=2 ûtût−1/
∑T

t=2 û
2
t−1 where ût = yt − x′tβ̂ and β̂ = (X ′X)−1X ′y.
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2 Distributed lags and partial adjustment

2.1 Distributed lags

A generalization of the classical regression model that maintains the strict exogeneity assumption but

allows for dynamic responses of y to changes in x is:

E (yt | x1, ..., xT ) = E (yt | xt, xt−1, ..., xt−p) = δ + β0xt + β1xt−1 + ...+ βpxt−p.

This is called a distributed lag model. We use a scalar regressor for simplicity. Formally, it is the same

as a model with p+ 2 exogenous regressors (1, xt, ..., xt−p).

The coeffi cient β0 is the short run multiplier whereas the long run multiplier is given by

γ = β0 + β1 + ...+ βp.

Letting x1 = 1 and xj = 0 for j 6= 1, the distribution of lag responses is obtained from:

Ex (y0) = δ

Ex (y1) = δ + β0

Ex (y2) = δ + β1
...

Ex (yp+1) = δ + βp

Ex (yp+2) = δ.

The mean lag is given by
(∑p

j=0 jβj

)
/
∑p

j=0 βj whereas the median lag is the lag at which 50 percent

of the total effect has taken place.

If one is interested in long run effects it may be convenient to reformulate the equation. For

example, if p = 2 we can go from

yt = δ + β0xt + β1xt−1 + β2xt−2 + ut

to the following reparameterization:

yt = δ + γxt + β1 (xt−1 − xt) + β2 (xt−2 − xt) + ut

where γ = β0 + β1 + β2 or also

yt = δ + γzt + (β1 − β0) (xt−1 − zt) + (β2 − β0) (xt−2 − zt) + ut

where zt = (xt + xt−1 + xt−2) /3.

Sometimes p is estimated as part of a model selection procedure. It is also common to model the

lag structure, that is, to specify
(
β0, β1, ..., βp

)
as functions of a smaller set of parameters (e.g. the

polynomial model introduced by Shirley Almon in 1965), especially when the xt−j are highly colinear

and the information about individual βj is small.
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Koyck distributed lags A long-standing popular model specifies a geometric lag structure:

βj = β0α
j (j = 1, ..., p) .

If we let p→∞ we have

E
(
yt | {xs}Ts=−∞

)
= δ + β0xt + αβ0xt−1 + α2β0xt−2 + ... (1)

or in equation form

yt = δ + β0
∑∞

j=0 α
jxt−j + ut E (ut | ... x−1, x0, x1, ..., xT ) = 0.

The long run effect in this case is γ = β0/ (1− α) if |α| < 1.

Subtracting (1) from the lagged equation multiplied by α:

E
(
yt − αyt−1 | {xs}Ts=−∞

)
= δ∗ + β0xt

where δ∗ = (1− α) δ. Similarly,

yt = δ∗ + αyt−1 + β0xt + εt (2)

where εt = ut − αut−1 so that E (εt | ... x−1, x0, x1, ..., xT ) = 0.

In general, (δ∗, α, β0) are not the coeffi cients of a population linear regression of yt on (1, yt−1, xt)

because in equation (2) yt−1 is correlated with εt through ut−1. A similar situation arose in the case

of ARMA(1, 1) models.

For a given value of p, nonlinear least squares estimates of (δ, α, β0) solve:

min

T∑
t=p+1

(
yt − δ − β0

∑p
j=0 α

jxt−j
)2
.

2.2 Partial adjustment

An equation that includes lags of yt together with other explanatory variables and an error term (with

properties to be discussed below) is often called a partial adjustment model. A simple version is:

yt = δ + αyt−1 + β0xt + ut. (3)

The name comes from a hypothesis of gradual adjustment to an optimal target value y∗t when adjust-

ment is costly:

yt − yt−1 = γ (y∗t − yt−1)

or

yt = (1− γ) yt−1 + γy∗t . (4)
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Equation (4) gives rise to (3) if

y∗t = δ∗ + β∗xt + u∗t

with δ = γδ∗, β0 = γβ∗, ut = γu∗t , and α = (1− γ). The last coeffi cient captures the speed of

adjustment, which is typically a quantity of interest (e.g. in models of investment, labor demand or

consumption with habits).

The empirical content of a relationship like (3) depends on its statistical interpretation. One

possibility is to regard (δ + αyt−1 + β0xt) as the expectation of yt given (y1, ..., yt−1, x1, ..., xT ) so that

E (ut | y1, ..., yt−1, x1, ..., xT ) = 0.

This implies that E (ut | u1, ..., ut−1) = 0 and therefore lack of serial correlation in ut: E (utut−j) = 0

for j > 0. This interpretation is incompatible with the geometric distributed lag model and more

generally with any model in which it is intended to allow for both dynamics and serial correlation.

Partial adjustment vs serial correlation In a static model with serial correlation:

yt = δ + βxt + ut

the response of yt to a change in xt is static. There is just persistence in the error term ut (in the same

way that there may be persistence in xt). Examples include production functions and wage equations.

In a partial adjustment model

yt = δ + αyt−1 + β0xt + ut

the effect of x on y is dynamic (as seen in the discussion of geometric distributed lags).

In a static model with strictly exogenous x, serial correlation in u does not alter the fact that

β =
Cov (xt, yt)

V ar (xt)
.

In contrast, under the assumptions of the static model with autocorrelation, the linear projection of

yt on zt = (yt−1, xt)
′ does not provide consistent estimates of the static model parameters:(

ψ1

ψ2

)
= [V ar (zt)]

−1Cov (zt, yt) =

(
V ar (yt−1) Cov (yt−1, xt)

Cov (yt−1, xt) V ar (xt)

)−1(
Cov (yt−1, yt)

Cov (xt, yt)

)

=

(
β2V ar (xt) + σ2u βCov (xt−1, xt)

βCov (xt−1, xt) V ar (xt)

)−1(
β2Cov (xt, xt−1) + Cov (ut, ut−1)

βV ar (xt)

)
.

In the special case in which Cov (xt−1, xt) = 0 we have(
ψ1

ψ2

)
=

 Cov(ut,ut−1)
β2V ar(xt)+σ2u

β

 .

Thus, ψ2 = β but ψ1 6= 0 unless Cov (ut, ut−1) = 0.
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Common factor restrictions Is it possible to distinguish empirically between partial adjust-

ment and serial correlation? A static model with AR(1) errors:

yt = δ + βxt + ut

ut = ρut−1 + εt

upon substitution can be written in the form

(yt − δ − βxt) = ρ (yt−1 − δ − βxt−1) + εt

or

yt = (1− ρ) δ + βxt − ρβxt−1 + ρyt−1 + εt.

This equation can be regarded as a special case of a partial adjustment model without serial correlation:

yt = π0 + ψ0xt + ψ1xt−1 + αyt−1 + εt

subject to the restriction

ψ1 = −αψ0. (5)

This type of constraint and its generalizations are Sargan’s Comfac or common factor restrictions.2

They can be easily tested using a Wald statistic because the estimation under the alternative hypothesis

can be done by OLS.

In fact, a Comfac restriction is always satisfied under the following null hypothesis:

H0 : yt = δ + βxt + ut E (ut | x1, ..., xT ) = 0.

To see this, let the linear projection of yt on (1, xt, xt−1, yt−1) be

yt = π0 + ψ0xt + ψ1xt−1 + αyt−1 + εt (6)

where E∗ (εt | xt, xt−1, yt−1) = 0. Due to the law of iterated projections

E∗ (yt | xt, xt−1) = π0 + ψ0xt + ψ1xt−1 + αE∗ (yt−1 | xt, xt−1)

or

(δ + βxt) = π0 + ψ0xt + ψ1xt−1 + α (δ + βxt−1) .

Matching coeffi cients:

π0 + αδ = δ =⇒ π0 = (1− α) δ

ψ0 = β

ψ1 + αβ = 0 =⇒ Comfac restriction
2Sargan, J. D. (1980): “Some Tests of Dynamic Specification for a Single Equation,”Econometrica, 48, 879—897.
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Thus, a test of the hypothesis H0: ψ1 + αβ = 0 in the linear projection (6) has power against a

static model with serial correlation and exogenous regressors even if the form of the autocorrelation

is not AR(1).

Partial adjustment with autocorrelation A Comfac test has power to reject a static model

with autocorrelation. However, identification of a dynamic model may be problematic if the model

combines both partial adjustment and serial correlation. For example, OLS is not consistent in the

partial adjustment model

yt = δ + αyt−1 + β0xt + ut

if ut is serially correlated. Nevertheless, if ut ∼AR(1): ut = ρut−1 + εt then

(yt − δ − αyt−1 − β0xt) = ρ (yt−1 − δ − αyt−2 − β0xt−1) + εt

or

yt = (1− ρ) δ + (α+ ρ) yt−1 − αρyt−2 + β0xt − ρβ0xt−1 + εt

giving rise to a new level of Comfac restrictions, which can be tested and enforced in estimation.

This type of model is an example of a stochastic relationship between variables in which the

regressors are not independent of the errors. The estimation problem for models of this type will be

considered in greater generality in the context of instrumental variable estimation.

3 Predetermined variables

In the classical regression model

yt = x′tβ + ut

the variable xt is strictly exogenous in the sense that

E (xtus) = 0 for all t, s.

We say that a variable is predetermined if

E (xtut) = 0, E (xtut+1) = 0, E (xtut+2) = 0, ...

but we do not exclude the possibility that

E (xtut−1) 6= 0, E (xtut−2) 6= 0, ...

An example of predetermined variable is yt−1 in the AR(1) model. However, yt−1 is not predeter-

mined in the geometric distributed lag model. Another example of predetermined variable arises in a
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relation between female labor force participation and children. Yet another example is in testing for

market effi ciency in foreign exchange markets (Hansen and Hodrick, 1980).3

An alternative weaker condition for predetermined variables is to simply require E (ut | xt) = 0 or

E (xtut) = 0,

which is the assumption that implies consistency of OLS under standard regularity conditions.

Dynamic regression with sequential conditioning Here we consider partial adjustment

models for conditional means of the form

E (yt | y1, ..., yt−1, x1, ..., xt) .

In a linear specification with first order lags we have

yt = δ + αyt−1 + β0xt + β1xt−1 + ut

E (ut | y1, ..., yt−1, x1, ..., xt) = 0.

In this type of model ut is serially uncorrelated by construction. The regressor xt is predetermined in

the sense of being correlated with past values of u or y (feedback).

If x is strictly exogenous then

E (ut | y1, ..., yt−1, x1, ..., xt) = E (ut | y1, ..., yt−1, x1, ..., xT ) ,

so that a test of strict exogeneity in this context is a test of significance of future values of x in the

regression (a Sims’type test).4

Conditional means of the form E (yt | y1, ..., yt−1, x1, ..., xt) are natural predictors in the time series
context, but they may or may not correspond to quantities of economic interest in an application.

Estimation In regression models with sequential conditioning OLS is consistent but not unbi-

ased. In small samples the bias can be a problem. In an AR(1) model with a positive autoregressive

parameter the bias is negative.5

When x is a predetermined variable, regressions in linear transformations of the data such as GLS

are not justified in general and may lead to inconsistent estimates even if OLS is consistent.

3Hansen, L. P. and R. J. Hodrick (1980): “Forward Exchange Rates as Optimal Predictors of Future Spot Rates: An

Econometric Analysis,”Journal of Political Economy, 88, 829—853.
4Sims, C. A. (1972): “Money, Income, and Causality,”American Economic Review, 62, 540—552.
5Hurwicz, L. (1950): “Least Squares Bias in Time Series,”in Koopmans, T. C. (ed.), Statistical Inference in Dynamic

Economic Models, Cowles Commission Monograph No. 10, John Wiley, New York.
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4 Granger causality

Let the observed time series be yT = (y1, ..., yT ) and xT = (x1, ..., xT ). The joint distribution of the

data admits the following factorizations:6

f
(
yT , xT

)
= f

(
yT | xT

)
f
(
xT
)

=
∏T
t=1 f

(
yt | yt−1, xT

)∏T
t=1 f

(
xt | xt−1

)
(7)

Also,7

f
(
yT , xT

)
=
∏T
t=1 f

(
yt, xt | yt−1, xt−1

)
=
∏T
t=1 f

(
yt | yt−1, xt

)∏T
t=1 f

(
xt | yt−1, xt−1

)
(8)

• In an autoregressive univariate time series analysis one models the mean or other characteristics
of the distribution of f

(
xt | xt−1

)
.

• In a VAR multivariate time series analysis one models the means of the joint distribution

f
(
yt, xt | yt−1, xt−1

)
.

• In a dynamic regression with sequential conditioning one models the mean of f
(
yt | yt−1, xt

)
.

• In a classical regression model one models the means of f
(
yT | xT

)
(in a static model assuming

that E
(
yt | xT

)
= E (yt | xt)).

All these are different aspects of the joint distribution of the data we may be interested to study.

Granger non-causality We say that y does not Granger cause x if8

E∗
(
xt | xt−1, yt−1

)
= E∗

(
xt | xt−1

)
, (9)

or using a definition based on distributions if

f
(
xt | xt−1, yt−1

)
= f

(
xt | xt−1

)
. (10)

It can be shown that (9) is equivalent to the Sims’strict exogeneity condition:

E∗
(
yt | xT

)
= E∗

(
yt | xt

)
(11)

and also that (10) is equivalent to the Chamberlain-Sims distributional strict exogeneity condition:9

f
(
yt | yt−1, xT

)
= f

(
yt | yt−1, xt

)
. (12)

6Arellano, M. (1992): “On Exogeneity and Identifiability,” Investigaciones Económicas, 16, 401—409.
7With some abuse of notation f

(
x1 | x0

)
denotes f (x1) and f

(
y1 | y0, xT

)
denotes f

(
y1 | xT

)
. Similarly,

f
(
y1, x1 | y0, x0

)
denotes f (y1, x1), f

(
y1 | y0, x1

)
denotes f (y1 | x1) and f

(
x1 | y0, x0

)
denotes f (x1).

8Granger, C. W. J. (1969): “Investigating Causal Relations by Econometric Models and Cross-Spectral Methods,”

Econometrica, 37, 424—438.
9Chamberlain, G. (1982): “The General Equivalence of Granger and Sims Causality,”Econometrica, 50, 569—581.
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Note that if (10) holds, the second components in the factorizations (7) and (8) of the distribution

of the data will coincide, so that the first components must also coincide.

These are notions of causality based on the idea of temporal ordering of predictors: the effect

cannot happen before the cause.

Finding Granger causality is not in itself evidence of causality. Due to the operation of unobserv-

ables and omitted variables, Granger causality does not imply nor is it implied by causality.

5 Cointegration

Error correction mechanism representation (ECM) Consider a dynamic regression model

yt = δ + αyt−1 + β0xt + β1xt−1 + ut.

If we subtract yt−1 from both sides of the equation and add −β0xt−1 + β0xt−1 to the l.h.s. we get:

yt − yt−1 = δ − (1− α) yt−1 + β0 (xt − xt−1) + (β0 + β1)xt−1 + ut

and also

∆yt = δ + β0∆xt − (1− α) (yt−1 − γxt−1) + ut (13)

where γ is the long run effect

γ =
β0 + β1
1− α .

Thus, (yt−1 − γxt−1) can be seen as the error in the long run relationship between y and x. According
to (13) a large deviation in the long run error will have a negative impact on the change ∆y given ∆x,

hence the term “error correction mechanism”representation applied to (13).

Equation (13) is convenient for enforcing long-run restrictions in the estimation of partial adjust-

ment models. For example, Davidson et al. (1978) imposed a long-run income elasticity of unity in

the estimation of a consumption function using an equation like (13) subject to γ = 1.10

Cointegration The ECM representation is specially useful in the case in which yt ∼ I (1) and

xt ∼ I (1) but yt − γxt ∼ I (0). In this situation one says that (yt, xt) are cointegrated.11

More generally, we say that the variables in an m× 1 time series vector wt are cointegrated if all

the variables are I (1) but there is a linear combination that is I (0):

a′wt ∼ I (0)

10Davidson, J. E. H., D. F Hendry, F. Srba, and S. Yeo (1978): “Econometric modelling of the aggregate time-series

relationship between consumers’expenditure and income in the United Kingdom,”The Economic Journal, 88, 661—692.
11Engle, R. F. and C. W. Granger (1987): “Co-integration and error correction: Representation, estimation and

testing,”Econometrica, 55, 251—276.
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for some vector a different from zero, which is called the cointegrating vector.

As an example let us consider the following model for wt = (yt, xt)
′:

yt = βxt + ut

xt = xt−1 + εt

where (ut, εt) are white noise.

In this example xt is a random walk and therefore I (1). The variable yt is also I (1) but yt−βxt is
I (0). The cointegration vector is (1,−β). The idea is that while there may be permanent changes over

time in the individual time series, there is a long run relationship that keeps together the individual

components, which is represented by a′wt.

An early example of error-correction model is Sargan’s 1964 study of wages and prices in the UK.12

In Sargan’s model ∆yt and ∆xt are wage and price inflation respectively, whereas the error correction

term is a deviation of real wages from a productivity trend. This equilibrium term captures the role of

real-wage resistance in wage bargains as a mechanism for regaining losses from unanticipated inflation.

Literature development Some important developments in the cointegration literature are:

• Representations for VAR process of cointegrated multivariate time series. In general, it can be
shown that if wt ∼ I (1) is a cointegrated vector of time series then an ECM representation exits

(Granger representation theorem).13

• Estimation of the cointegrating vector. Given that the time series are I (1), estimators of the

cointegrating vector are “superconsistent”.

• Cointegration tests (with and without knowledge of the cointegrating vector).

12Sargan, J. D. (1964): “Wages and prices in the United Kingdom: A Study in Econometric Methodology.” In P.E.

Hart, G. Mills and J. Whitaker (eds), Econometric Analysis for National Economic Planning, Colston Papers 16, London.
13Granger, C. W. J. (1981): “Some Properties of Time Series Data and Their Use in Econometric Model Specification,”

Journal of Econometrics, 16, 121—130.
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