
SUPPLEMENT TO \ROBUST PRIORS IN NONLINEAR PANEL DATA

MODELS": SUPPLEMENTARY APPENDIX

By Manuel Arellano and St�ephane Bonhomme

This supplementary appendix contains proofs of some results contained in the paper. Specif-

ically, section S1 provides proofs of Theorem 4 and its corollary, concerning the asymptotic dis-

tribution of exible random e�ects estimators. Section S1 also proves Theorem 5, its corollary,

and Theorem 6 concerning the bias and the asymptotic distribution of estimated marginal e�ects.

Section S2 proves results stated in the paper for the autoregressive and logit models that we use

as illustrations. It also contains results for a Poisson counts model as a further example. We keep

the same notation as in the paper.

S1. PROOFS ON FLEXIBLE RANDOM EFFECTS AND POLICY PARAMETERS

An intermediate lemma to show Theorem 4. The following lemma gives the �rst terms

of the asymptotic expansion of the score of the concentrated random e�ects likelihood when N and

T go to in�nity.
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i) and ii) are limit conditions that are satis�ed if the tails of �0 are thin enough. Condition

iii) requires the existence of some moments. As a particular case, the conditions are satis�ed if �0
has compact support. Lemma S1 will allow us to derive the asymptotic properties of the REML

estimator of � when N and T tend to in�nity at the same rate.

Proof of Lemma S1: We have:
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Now the proof of Lemma 2 shows that
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We also have
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The �rst term is zero as �i(�0; �)�0(�) (ln e�0(�)� ln�0(�)) !
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The lemma follows. Q.E.D.

Proof of Theorem 4: An expansion of the score around the truth yields:
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Next, remark that using a Laplace approximation argument we immediately obtain, when N and

T tend to in�nity:
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Using this result together with Lemma S1 yields:
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The theorem then follows, as N=T ! Cst. Q.E.D.

Proof of Corollary 3: Theorem 4.2. in Ghosal and Van der Vaart (2001) shows that if K �
C logN for C large enough, then the convergence rate of the discrete sieve MLE is (logN)�N�1=2

for some � > 0, where convergence is de�ned in terms of the Hellinger distance:

H(f; g) =

�Z �
f1=2(�)� g1=2(�)

�2
d�

�1=2

:

The result then comes from Theorem 5 in Wong and Shen (1995), that bounds the L2 Kullback-

Leibler loss K (�0; e�0) by the Hellinger distance H (�0; e�0), under condition (25). Q.E.D.
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where

LI(�) =
NY
i=1

exp
�
T`Ii (�)

�
is the integrated likelihood function.

In preparation for the proof of Theorem 5, we need the following lemma, that gives the �rst-

order expansion of cMi(�0) when N and T go to in�nity.

Lemma S2 When T tends to in�nity:cMi(�0) = mi(�0; �i0) +m�i
i (�0; �i0) [E�0;�i0 (�v�ii (�0; �i0))]

�1 vi(�0; �i0)

+
1
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�
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�
:

Proof of Lemma S2: Using a second-order Laplace expansion (e.g., Tierney et al., 1989, eq.

2.6.) we obtain

cMi(�0) = mi(�0; b�i(�0)) + H�1

T

@ ln�i(�i0j�0)
@�i0

m�i
i (�0; �i0)
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where H(�) = E�0;�i0 (�v�ii (�0; �)), H = H(�i0), and H2 = E�0;�i0 (�v�i�ii (�0; �i0)).

Now, expanding mi(�0; b�i(�0)) and the score identity vi (�0; b�i(�0)) = 0 around �i0 yields
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i (�0; �i0) [b�i(�0)� �i0]
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Next, information equality at the truth yields:
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Q.E.D.

Proof of Theorem 5:

Given Lemma S2, using a large-NT approximation we obtain:
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where b� is the mode of the integrated likelihood: b� = argmax� L
I(�). Note that the approximation
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Lastly, Lemma S2 implies,using that E�0;�i0 (vi(�0; �i0)) = 0:
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Proof of Corollary 4: Let �i (:; �) be a random e�ects speci�cation. We assume

i) lim
�!�1

fE�0;�i0 [�v�ii (�0; �)]g�1m�i
i (�0; �)�0(�) = 0;
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These conditions are very similar to the ones of Lemma S1, and impose restrictions on the

tails of �0 and e�0. As before, they are clearly satis�ed if �0 is compactly supported. Note that

in condition iii) we have left the dependence on true parameter values implicit, to simplify the

notation.

It follows from Theorem 4 that B = O (K (�0; e�0)). Moreover:
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Conditions i) and ii) of the corollary imply, as in the proof of Theorem 4, that
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Lastly, the Cauchy-Schwarz inequality implies
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provided that condition iii) above holds. Q.E.D.

Proof of Theorem 6: We have:
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we obtain
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Q.E.D.

S2. EXAMPLES

This section proves results stated in the paper for the autoregressive and logit models that

we use as examples. As an additional example, the section also contains results for a Poisson

counts model. For notational simplicity we drop the indices of the expectation terms when they

are evaluated at true parameter values.

S2.1. Dynamic AR( p)

Let y0i = (yi;1�p; :::; yi0)
0 be the vector of initial conditions, that we assume observed. In matrix

form, we have:
yi = Xi�0 + �i0�+ "i;

where the tth row of Xi is x
0
it = (yi;t�p; :::; yi;t�1), �0 =

�
�10:::�p0

�0
, and � is a T � 1 vector of ones.

The scaled individual log-likelihood is given by:

`i(�; �
2; �i) =

1

T
ln f(yijy0i ; �i;�; �2) = �1

2
ln(2�)� 1

2
ln(�2)� 1

2T

TX
t=1

(yit � x0it�� �i)
2

�2
:

We thus have:

vi(�; �
2; �i) =

1

T

TX
t=1

(yit � x0it�� �i)

�2
;

and hence:

E
��v�ii (�; �2; �i)

�
=

1

�2
:

Moreover:

E
�
v2i (�; �

2; �i)
�

=
1

T 2�4
�0E
�
(yi �Xi�� �i�) (yi �Xi�� �i�)

0
�
�;

=
1

T 2�4
�0E
�
(Xi(�0 � �) + (�i0 � �i)�+ "i) (Xi(�0 � �) + (�i0 � �i)�+ "i)

0
�
�:

Note that this expectation depends on the true values of the parameters. Note also that the

expectation is taken for i �xed. The same will be true of the variances and covariances that we will

consider in this section of the appendix.

8



Computation of E
�
v2i (�; �

2; �i)
�
. One has:

Var ("i +Xi(�0 � �)) = Var
�
"i +

�
(�0 � �)0 
 IT

�
vecXi

�
:

Let B(�0; �) = (�0 � �)0 
 IT . Then:

Var ("i +Xi(�0 � �)) = �2IT + E
�
"i (vecXi)

0
�
B(�0; �)

0 +B(�0; �)E
�
"i (vecXi)

0
�0

+B(�0; �)Var (vecXi)B(�0; �)
0:

To compute these expressions, we shall write the model as (see Alvarez and Arellano, 2004,
appendix A.3): �

Ip 0
BTp BT

��
y0i
yi

�
=

�
y0i

�i�+ "i

�
;

where

�
BTp BT

�
=

0BB@
��p0 ��(p�1)0 ::: ��10 1 0 0 ::: 0 0

0 ��p0 ::: ��20 ��10 1 0 ::: 0 0

::: ::: ::: ::: ::: ::: ::: ::: ::: :::
0 0 ::: 0 0 0 0 ::: ��10 1

1CCA :

Inverting the system yields:

yi = CTpy
0
i + �iCT �+ CT "i;

where CT = B�1T and CTp = �B�1T BTp.
At this stage, it is convenient to introduce the (T + p)� (Tp) selection matrix such that

vec(Xi) = P 0
�
y0i
yi

�
:

Moreover, the matrix B(�0; �)P
0 reads:0BBBBBB@

�10 � �1 �20 � �2 ::: �p0 � �p 0 0 ::: 0 0

0 �10 � �1 �20 � �2 ::: �p0 � �p 0 ::: 0 0

0 0 �10 � �1 �20 � �2 ::: �p0 � �p ::: 0 0

::: ::: ::: ::: ::: ::: ::: ::: 0
0 0 0 0 ::: 0 ::: 0 0
0 0 0 0 ::: 0 ::: �p0 � �p 0

1CCCCCCA :

We shall write:
B(�0; �)P

0 =
�
A(�0; �) B(�0; �)

�
;

where A(�0; �) is T � p and B(�0; �) is T � T . Now:

vec(Xi) = P 0
�
y0i
yi

�
= P 0

�
Ip
CTp

�
y0i + �iP

0

�
0

CT �

�
+ P 0

�
0

CT "i

�
: (S1)

It thus follows that

E
�
"i (vecXi)

0
�
B(�0; �)

0 = �20

�
0p C

0

T

�
PB(�0; �)

0

= �20C
0

TB(�0; �)
0:

9



Then:

B(�0; �)Var (vecXi)B(�0; �)
0 = �20B(�0; �)P

0

�
0 0

0 CTC
0

T

�
PB(�0; �)

0

= �20B(�0; �)CTC
0

TB(�0; �)
0:

Hence:

Var ("i +Xi(�0 � �)) = �20IT + �20C
0

TB(�0; �)
0 + �20B(�0; �)CT

+�20B(�0; �)CTC
0

TB(�0; �)
0:

Now:

E
�
(Xi(�0 � �) + (�i0 � �i)�+ "i) (Xi(�0 � �) + (�i0 � �i)�+ "i)

0
�

= Var ("i +Xi(�0 � �)) + E (Xi(�0 � �) + (�i0 � �i)�+ "i)E (Xi(�0 � �) + (�i0 � �i)�+ "i)
0 :

Since:

vec(Xi) = P 0
�

Ip
CTp

�
y0i + �i0P

0

�
0

CT �

�
+ P 0

�
0

CT "i

�
;

it follows that

E [Xi(�0 � �)] = B(�0; �)E [vec(Xi)]

=
�
A(�0; �) +B(�0; �)CTp

�
y0i + �i0B(�0; �)CT �:

The previous results yield:

E
�
v2i (�; �

2; �i)
�

=
1

T 2�4
�0
n
�20IT + �20C

0

TB(�0; �)
0 + �20B(�0; �)CT

+�20B(�0; �)CTC
0

TB(�0; �)
0

+
��
A(�0; �) +B(�0; �)CTp

�
y0i + �i0B(�0; �)CT �+ (�i0 � �i)�

����
A(�0; �) +B(�0; �)CTp

�
y0i + �i0B(�0; �)CT �+ (�i0 � �i)�

�0 o
�:

The infeasible robust prior is thus given by:

�IRi
�
�ij�; �2

� /
�
�0
n
�20IT + �20C

0

TB(�0; �)
0 + �20B(�0; �)CT

+�20B(�0; �)CTC
0

TB(�0; �)
0

+
��
A(�0; �) +B(�0; �)CTp

�
y0i + �i0B(�0; �)CT �+ (�i0 � �i)�

����
A(�0; �) +B(�0; �)CTp

�
y0i + �i0B(�0; �)CT �+ (�i0 � �i)�

�0 o
�
��1=2

;

/
�
1 + a(�� �0) + b(�� �0; �i � �i0)

��1=2
;

where

a(�� �0) =
1

T
�0
n
C
0

TB(�0; �)
0 +B(�0; �)CT

o
� (S2)

is a linear function of �� �0, and

b(�� �0; �i � �i0) =
1

T�20
�0
n
�20B(�0; �)CTC

0

TB(�0; �)
0

+
��
A(�0; �) +B(�0; �)CTp

�
y0i + �i0B(�0; �)CT �+ (�i0 � �i)�

����
A(�0; �) +B(�0; �)CTp

�
y0i + �i0B(�0; �)CT �+ (�i0 � �i)�

�0 o
� (S3)

is a quadratic function of �� �0 and �i � �i0.
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The AR(1) case. Let us assume that p = 1. Then:

CT =

0BB@
1 0 ::: 0
�10 1 ::: 0
::: ::: ::: :::

�T�110 �T�210 ::: 1

1CCA ;

so that:

CT � =
1

1� �10

0BB@
1� �10
1� �210
:::

1� �T10

1CCA :

Moreover:

CTp =

0BB@
�10
�210
:::
�T10

1CCA ;

and

A(�0; �) =

0BB@
�10 � �1

0
:::
0

1CCA ; B(�0; �) =

0BB@
0 0 ::: 0 0

�10 � �1 0 ::: 0 0
0 �10 � �1 ::: 0 0
0 0 ::: �10 � �1 0

1CCA :

Hence �IRi
�
�ij�; �2

�
is proportional to

n
�20T + 2�20

�10 � �1
1� �10

�
T�1X
t=1

�
1� �t10

�
+ �20

�
�10 � �1
1� �10

�2

�
T�1X
t=1

�
1� �t10

�2
+"�

(�10 � �1)
1� �T10
1� �10

�
y0i + �i0

�10 � �1
1� �10

�
T�1X
t=1

�
1� �t10

�
+ (�i0 � �i)T

#
�

"�
(�10 � �1)

1� �T10
1� �10

�
y0i + �i0

�10 � �1
1� �10

�
T�1X
t=1

�
1� �t10

�
+ (�i0 � �i)T

#0 o�1=2
:

We thus obtain:

�IRi
�
�i(�; �

2)j�; �2� /
n
T + 2

�10 � �1
1� �10

�
T�1X
t=1

�
1� �t10

�
+

�
�10 � �1
1� �10

�2

�
T�1X
t=1

�
1� �t10

�2 o�1=2
:

Hence, for � to reduce bias we need that:

@ ln�
�
�i(�; �

2)j�; �2�
@�

���
�
10
;�2

0
;�i0

=
1

T (1� �10)
�
T�1X
t=1

�
1� �t10

�
=

1

T

T�1X
t=1

(T � t)�t�110 :
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Gaussian REML. We have:

vi(�; �
2; �i) =

1

T

TX
t=1

(yit � x0it�� �i)

�2
;

and hence:

E
��v�ii (�; �2; �i)

�
=

1

�2
; E

��v�i (�; �2; �i)� = � 1

T�2

TX
t=1

xit; E

�
�v�2i (�; �2; �i)

�
= 0:

Dropping for simplicity the derivative with respect to �2 we obtain:

�i(�; �i) = � 1

T

TX
t=1

E(xit):

Let us de�ne the following p� (T + p) matrix:

Q =
�
Ip ::: Ip

�
P 0:

Then as
TX
t=1

xit =
�
Ip ::: Ip

�
vec(Xi);

we obtain, using (S1):

�i(�; �i) = � 1

T

�
Q

�
Ip
CTp

�
y0i + �iQ

�
0

CT �

��
;

where CTp and CT are functions of �. Moreover, for a stationary process, the coe�cient of �i
is O(1) while the coe�cient of yi0 is O(1=T ). For example, for a stationary AR(1) process the

coe�cient of yi0 is: �(1 + �10 + �210 + :::+ �T�110 )=T = O(1=T ).

S2.2. Linear model with one endogenous regressor

The individual log-likelihood is given by (see, e.g., Hahn, 2000):

`i(�; �i) = �1

2
ln j
j� 1

2T
!11

TX
t=1

(yit � ��i)
2� 1

T
!12

TX
t=1

(yit � ��i) (xit � �i)� 1

2T
!22

TX
t=1

(xit � �i)
2 :

We thus have:

vi(�; �i) =
1

T
!11�

TX
t=1

(yit � ��i) +
1

T
!12

TX
t=1

(yit � 2��i + �xit) +
1

T
!22

TX
t=1

(xit � �i) :

Then:
E (�v�ii (�; �i)) = !11�

2 + 2!12� + !22;

and:

v�i (�; �i) =
1

T
!11

TX
t=1

(yit � 2��i) +
1

T
!12

TX
t=1

(�2�i + xit) :

Hence, at true values:

E�0;�i0

�
v�i (�0; �i0)

�
= �!11�0�i0 � !12�i0:
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We obtain that:

�i(�; �i) = �i
�!11� � !12

!11�
2 + 2!12� + !22

:

S.2.3. Poisson counts

Let the data consist of T Poisson counts yit with individual means:

E�0;�i0(yit) = �i0 exp(x
0
it�0); i = 1:::N; t = 1:::T;

where xit are known covariates. The individual log-likelihood is given by:

`i(�; �i) / ��i 1
T

TX
t=1

exp(x0it�) +
1

T

TX
t=1

yit ln(�i) +
1

T

TX
t=1

yitx
0
it�:

So:

vi(�; �i) =
1

T�i

TX
t=1

�
yit � �i exp(x

0
it�)
�
:

Note that it follows that:

�i(�) = �i0

PT
t=1 exp(x

0
it�0)PT

t=1 exp(x
0
it�)

: (S4)

Moreover:

E (�v�ii (�; �i)) =
1

T�2i

TX
t=1

�i0 exp(x
0
it�0);

and:

E
�
v2i (�; �i)

�
=

1

T 2�2i

TX
t=1

E
�
(yit � �i exp(x

0
it�))

2
�
;

=
1

T 2�2i

TX
t=1

�
E
�
(yit � E(yit))2

�
+
�
E(yit)� �i exp(x

0
it�)
�2�

;

=
1

T 2�2i

TX
t=1

�i0 exp(x
0
it�0) +

�
�i0 exp(x

0
it�0)� �i exp(x

0
it�)
�2
;

where we have used that Var(yit) = E(yit) = �i0 exp(x
0
it�0). Hence a consistent estimate of the

following quantity is robust:

�IRi (�ij�) / 1

�i

 
TX
t=1

�i0 exp(x
0
it�0) +

�
�i0 exp(x

0
it�0)� �i exp(x

0
it�)
�2!�1=2

: (S5)

Then, by Proposition 1 one can add a quadratic adjustment in (� � �0) and (�i � �i0) to the
logarithm of �IRi without altering its bias properties. It follows that:

e�(�ij�) / 1

�i
(S6)

is also bias reducing. Note that �IRi is proper, while e� is not.
As in Lancaster (2002), let us consider the reparameterization:  i = �i

PT
t=1 exp(x

0
it�). Then

it is straightforward to show that: @2`i(�; i)
@�@ i

= 0. In this reparameterized model, parameters are
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fully orthogonal, not just information orthogonal. In particular, the uniform prior is bias reducing.
Therefore, in terms of the original reparameterization, the following prior reduces bias:

�i (�ij�) /
����@ i(�i; �)@�i

���� = TX
t=1

exp(x0it�):

Interestingly, the robust prior and Lancaster's prior are directly related, as:28

�i
IR(�i(�)j�) / e�(�i(�)j�) = TX

t=1

exp(x0it�) = �i(�ij�):

REML. For the Poisson counts model, we have:

�i(�; �i) = ��ih(xi; �);

where:

h(xi; �) =

PT
t=1 exp(x

0
it�)xitPT

t=1 exp(x
0
it�)

:

It follows that uncorrelated Gaussian REML is not bias reducing in this model in general, unless
�i0 is independent of xi. Note that if we let �i0 and xi be dependent, then correlated REML (as
introduced in Corollary 2) is not robust either.

In addition, remark that the local approximation to the robust prior:

e�(�ij�) = 1

�i

is a bias reducing prior that is independent of �. However, e� is an improper prior which does not
correspond to a random e�ects speci�cation.

Assume now that � belongs to the �(p; r) family, for some p > 0, r > 0. We have:

�(�i; p; r) =
pr�r�1i exp(�p�i)

�(r)
:

It is straightforward to check that the left-hand side in equation (21) is equal to:

plim
N!1

� 1

N

NX
i=1

E�0 [(r(�0)� p(�0)�i0)h(xi; �0)] : (S7)

So Gamma REML is not bias reducing in general in the Poisson model. Here also, it is bias
reducing only under the assumption that �i0 and xi are independent.

S.2.4. Static logit

We have:

vi(�; �i) =
1

T

TX
t=1

�
yit � �(x0it� + �i)

�
:

28This result follows directly from the expression of �i(�).
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It follows that:

E [�v�ii (�; �i)] =
1

T

TX
t=1

�(x0it� + �i)(1� �(x0it� + �i)); (S8)

and:

E
�
v2i (�; �i)

�
= E

 
1

T

TX
t=1

�
yit � �(x0it� + �i)

�!2

=
1

T 2

TX
t=1

E

��
yit � �(x0it� + �i)

�2�
; (S9)

where we have used the fact that observations are i.i.d. across T .
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