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Stéphane Bonhomme
University of Chicago

September 2016

Abstract

Nonrandom sample selection is a pervasive issue in applied work. In additive mod-
els, a number of techniques are available for consistent selection correction. However,
progress in the development of non-additive selection corrections has been slower. In
this survey we review recent proposals dealing with sample selection in quantile models.

JEL code: C13, J31.
Keywords: Quantile regression, sample selection, copula, wage regressions.

∗Chapter prepared for the Handbook of Quantile Regression. We thank Roger Koenker, Blaise Melly, and
participants at the December 2015 conference in Cambridge for comments. Arellano acknowledges research
funding from the Ministerio de Economı́a y Competitividad, Grant ECO2016-79848-P.



1 Introduction

Nonrandom sample selection is a pervasive issue in applied work. Selection may arise because

of data collection by the analyst. It may also be due to the fact that agents self-select into

particular options, the latter form of selection being very common in economics.

A prototypical example of sample selection, due to Gronau (1974) and Heckman (1974),

concerns selection into labor market participation. When interest centers on estimating

determinants of wage offer functions, standard regression approaches will result in biased

estimates if selection into work is not random. In this example, selection may arise due to

individuals with low wage potential choosing not to participate to the labor market.

Selection biases show up in a variety of ways in the literature. A situation related to the

previous example is the estimation of sector-specific wage offer functions, or more generally

alternative-specific payoff functions, when alternatives are chosen in part based on some fore-

casts of payoffs. Other related settings are missing data problems, and nonrandom attrition

in longitudinal data sets. Although references are too many to be mentioned here, recent

influential studies where sample selection plays a central role are Mulligan and Rubinstein

(2008), Helpman, Melitz and Rubinstein (2008), and Jimenez, Ongena, Peydro and Saurina

(2014).

In linear models, Heckman (1976, 1979) proposed a method which has become very

popular in empirical work. The assumptions of the Heckman model rely on Gaussianity,

while allowing the errors in the outcome and participation equations to be correlated. The

Heckman two-step estimator, which we briefly review below, provides a practical alternative

to full maximum likelihood.

Building on the control function approach implicit in the Heckman method, a large

econometric literature has since then extended the model by relaxing parametric assumptions

and proposing semi-parametric estimators. Influential examples include Heckman (1990),

Ahn and Powell (1993), Donald (1995), Andrews and Schafgans (1998), Chen and Khan

(2003), and Das, Newey and Vella (2003). See also the references in Vella (1998). Additivity

of the outcome in observed covariates and unobservables is key in all these approaches.

Much less is known regarding sample selection in nonlinear models. Manski (1994, 2003)

derived worst-case bounds on quantiles of potential outcomes; see also Kitagawa (2010).

Blundell, Gosling, Ichimura and Meghir (2007) applied the bounds approach to document

gender differences in wage inequality in the UK. However, the literature on parametric or
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semi-parametric selection corrections in nonlinear models is scarce.

In this chapter we focus on the question of correcting quantile regression estimates for

nonrandom sample selection. Quantile regression (Koenker and Bassett, 1978) is a versatile

estimation approach which has been extensively studied. However, little work has been

done at the intersection of quantile methods and sample selection methods. We review the

approach of Arellano and Bonhomme (2016). A central observation is that, in quantile

models, even linear ones, quantile curves on the selected sample are generally not linear.

However, a correction is available which consists in “rotating” the check function of quantile

regression by an amount that is observation-specific and depends on the strength of selection.

Implementing this method requires estimating the degree of sample selection. Formally,

the latter is defined as the dependence between the rank error in the equation of interest

and the rank error in the selection equation. Working with a parametric copula, Arellano

and Bonhomme (2016) derive moment restrictions on the copula parameter. As in linear

models, “excluded” covariates affecting participation without entering the potential outcome

equation are required for credible identification. The method then consists of three steps:

estimation of the propensity score, estimation of the degree of selection (that is, the copula

parameter), and computation of quantile estimates through rotated quantile regression.

The sample selection problem we focus on here differs from censoring. Censored quantile

regression is a well-studied problem (e.g., Powell, 1986, Chamberlain, 1993, Buchinsky, 1994,

Buchinsky and Hahn, 1998, Chernozhukov and Hong, 2002, Portnoy, 2003, Chernozhukov et

al., 2015), see also the chapter in this Handbook on censoring in survival analysis. It turns

out that the Buchinsky and Hahn censoring correction may be interpreted as a selection

correction based on a degenerate (Fréchet) copula.

We also review two other approaches to sample selection. Buchinsky (1998, 2001) pro-

posed a control function approach to correct quantile regression estimates for sample selec-

tion. This method has been used by Albrecht, van Vuuren and Vroman (2009) and Bollinger,

Ziliak and Troske (2011), among others. However, control function methods impose condi-

tions on the data generating process which may be inconsistent with quantile models unless

the model is additive and quantile curves are parallel to each other, or selection is random

(Huber and Melly, 2015). Lastly, the method in Arellano and Bonhomme (2016) is only

one possibility to estimate selection-corrected quantile coefficients, and we briefly review an

alternative approach based on maximum likelihood.
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A non-quantile regression based approach to selection correction is to parametrically

specify both outcome and selection equations, thus providing non-Gaussian extensions to

the Heckman model. See Lee (1983), Smith (2003), or the recent application in Van Kerm

(2013) for example. Relative to fully parametric approaches, quantile regression provides

added flexibility in the modeling of outcome variables.

In the final part of this chapter we revisit the empirical illustration in Huber and Melly

(2015), and estimate uncorrected and selection-corrected wage returns to experience and ed-

ucation based on data on female wages and employment status from the 1991 Current Popu-

lation Survey. Huber and Melly provided evidence of wages being non-additive in covariates

and unobservables in this setting. We complement their analysis by providing selection-

corrected quantile regression estimates, which remain consistent under non-additivity.

The outline of the chapter is as follows. In Sections 2 and 3 we review the approaches of

Heckman (1979) and Arellano and Bonhomme (2016). In Sections 4 and 5 we discuss iden-

tification in the absence of parametric assumptions, and review several extensions. Lastly,

we present the empirical illustration in Section 6, and conclude in Section 7.

2 Heckman’s parametric selection model

Consider an additive latent response model of the form

Y ∗ = X ′β + ε, (1)

where ε has mean zero and is identically distributed given X. If a random sample from

(Y ∗, X) were available, β could be consistently estimated under standard conditions using

ordinary least squares (OLS). Sample selection arises as Y ∗ is only observed when the binary

selection indicator D is equal to one (hence the star superscript, which refers to Y ∗ being a

latent variable). In turn, D is given by

D = 1{η ≤ Z ′γ}, (2)

where X is a subset of Z, and 1{·} is an indicator function. The scalar unobservable η is

independent of Z, and possibly correlated with ε. Let Y = DY ∗. A random sample from

(Z,D, Y ) is available, but Y ∗ is not observed when D = 0.

A textbook example is the following (Heckman, 1974): Y ∗ are wage offers, X are determi-

nants of wages (such as education and experience), and D denotes labor force participation.

3



Wage offers are not observed unless they have been accepted. In applications, in addition

to X, Z typically contains excluded determinants of participation that do not appear in

the wage offer equation, such as the number of children, marital status, or potential income

when out of work, among others, all of which aim at capturing costs of working unrelated to

potential wages. In this example, one expects dependence between η and ε if participation

decisions are influenced by unobserved determinants of potential wage offers.

As latent outcomes Y ∗ are not observed for non-participants, it is not possible to directly

estimate an empirical counterpart to E(Y ∗ |X). Instead, the conditional mean for partici-

pants, E(Y ∗ |D = 1, Z), which is identified from data on participants only, is instrumental

in developing a selection correction method. Following Heckman (1979), we have

E (Y ∗ |D = 1, Z) = X ′β + E (ε |D = 1, Z)

= X ′β + Λ(Z), (3)

where Λ(Z) = E (ε | η ≤ Z ′γ, Z) is a selection correction factor.

From (3) it follows that an OLS regression of Y on X on participants D = 1 will generally

be inconsistent for β when ε and η are statistically dependent. This case precisely corresponds

to nonrandom sample selection. Note that (3) suggests a strategy to consistently estimate

β, by regressing Y on a linear function of X and an additive nonlinear function of Z. In the

case where distributions are multivariate Gaussian, such a strategy simplifies to the Heckman

(1979) method.

Two-step estimation in Gaussian models. Let us now assume that (ε, η) is bivariate

Gaussian, independent of Z, with variances σ2 and 1, respectively, and correlation ρ. In this

case

Λ(Z) = −ρσλ(Z ′γ), with λ(u) =
φ(u)

Φ(u)
,

where φ and Φ denote the standard Gaussian pdf and cdf, respectively. Note that the propen-

sity score is p(Z) = Pr(D = 1 |Z) = Φ(Z ′γ), so we also have Λ(Z) = −ρσλ [Φ−1 (p(Z))].

Heckman (1976, 1979) proposes a two-step estimator. In the first step, γ is estimated by

a probit regression of D on Z. Letting γ̂ denote the parameter estimate, the selection factor

is estimated (up to scale) as λ̂ = λ (Z ′γ̂). In the second step, β and ρσ are estimated by an

OLS regression of Y on X and λ̂ in the subsample of participants D = 1.

Formulas are available to correct the standard errors of the second-step estimator β̂ for

estimation error in the first step. In the Gaussian model, this two-step “control function”
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method provides an alternative to maximum likelihood, albeit at some efficiency cost (e.g.,

Nelson, 1984). An attractive feature of the method is that it can be extended to allow for

semi- or nonparametric specifications, as reviewed in the introduction, provided additivity of

(1) in X and ε is maintained. However, non-additive models such as quantile models cannot

be studied using those techniques.

3 A quantile generalization

In this section we describe the approach introduced in Arellano and Bonhomme (2016).

3.1 A quantile selection model

Consider now the following linear quantile specification of outcomes

Y ∗ = X ′β(U), (4)

where β(u) is increasing in u, and U is uniformly distributed on the unit interval, independent

of X. Model (4) is a linear quantile model (Koenker and Bassett, 1978). In particular,

Q(τ ,X) = X ′β(τ) is the τ -th conditional quantile of Y ∗ given X. If a random sample from

(Y ∗, X) were available, one could thus consistently estimate β(τ) for all τ ∈ (0, 1) by quantile

regression, under standard assumptions.

Maintaining the other assumptions of the Heckman Gaussian model, we assume that (2)

holds with a Gaussian η independent of Z so that, equivalently,

D = 1{V ≤ p(Z)}, (5)

where p(Z) = Φ (Z ′γ), and V = Φ(η) is the rank of η, which is uniformly distributed on

(0, 1) and independent of Z.

Lastly, we assume that (U, V ) follows a bivariate Gaussian copula with dependence pa-

rameter ρ, independent of Z. We denote as G(τ , p; ρ) = C(τ , p; ρ)/p the conditional copula

of U given V , defined on (0, 1) × (0, 1), where C(τ , p; ρ) denotes the unconditional cop-

ula of (U, V ).1 Note that model (4)-(5) simplifies to the Heckman Gaussian model when

X ′β(U) = X ′β+σΦ−1(U) is a location-shift Gaussian model. Although we consider a Gaus-

sian copula to fix ideas, any other parametric specification could be used such as the Gumbel,

Frank, or Bernstein copulas for example.

1Letting Φ2(·, ·; ρ) denote the bivariate Gaussian cdf with parameter ρ, C(τ , p; ρ) = Φ2

(
Φ−1(τ),Φ−1(p); ρ

)
and G(τ , p; ρ) = Φ2

(
Φ−1(τ),Φ−1(p); ρ

)
/p.
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In the non-additive model (4)-(5), quantile curves are generally non-additive in the

propensity score p(Z) and covariates X. To see this, denote Z = (X,W ) (where W are

the “excluded” covariates), and note that the conditional cdf of Y ∗ given Z = z = (x,w) for

participants D = 1 is, evaluated at x′β(τ) for some τ in the unit interval,

Pr (Y ∗ ≤ x′β(τ) |D = 1, Z = z) = Pr (U ≤ τ |V ≤ Φ (z′γ) , Z = z) ,

= G (τ ,Φ (z′γ) ; ρ) , (6)

where G(·, ·; ρ) is the conditional Gaussian copula with parameter ρ. It follows that the τ -th

conditional quantile of Y ∗ given D = 1 and Z is

Qs(τ , Z) = X ′β (τ ∗(Z)) , (7)

where τ ∗(Z) = G−1 (τ ,Φ (Z ′γ) ; ρ), and G−1(τ , p; ρ) denotes the inverse of G(τ , p; ρ) with

respect to its first argument (that is, the conditional quantile function of U given V ≤ p).2

The “s” superscript refers to the fact that Qs(τ , Z) is conditional on selection.

Non-additivity of quantile curves implies that existing control function strategies cannot

be used in the quantile selection model. We next review a method recently proposed by

Arellano and Bonhomme (2016) to achieve consistent estimation in this model.

3.2 Estimation

Let us start with the case where γ and ρ are known. Later we will show how these parameters

may be consistently estimated. From (6), for every τ ∈ (0, 1) the parameter vector β(τ) is

then characterized as the solution to the population moment restriction

E [1 {Y ≤ X ′β(τ)} −G (τ ,Φ (Z ′γ) ; ρ) |D = 1, Z] = 0. (8)

Hence, using DX as instruments and taking expectations,

E [DX (1 {Y ≤ X ′β(τ)} −G (τ ,Φ (Z ′γ) ; ρ))] = 0. (9)

Arellano and Bonhomme (2016) noticed that (9) is the system of first-order conditions

in the following optimization

β(τ) = argmin
b(τ)

E
[
D
(
GτZ (Y −X ′b(τ))

+
+ (1−GτZ) (Y −X ′b(τ))

−
)]
, (10)

2The assumption that G is strictly monotone in its first argument is not without loss of generality. For
example, it is not satisfied by Fréchet copulas; see Section 5.
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where a+ = max(a, 0), a− = max(−a, 0), and Gτz = G (τ ,Φ (z′γ) ; ρ) denotes the rank of

x′β(τ) in the selected sample D = 1, conditional on Z = z. The function G plays a key

role here, as it maps ranks in the latent distribution (that is, τ ’s) into ranks in the selected

distribution (that is, Gτz’s).

It is instructive to compare (10) with the optimization problem which would characterize

β(τ) were a sample from (Y ∗, X) available, that is

min
b(τ)

E
[
τ (Y ∗ −X ′b(τ))

+
+ (1− τ) (Y ∗ −X ′b(τ))

−
]
. (11)

The function inside the expectation in (11) is the check function. In (10) we see that, in

order to account for nonrandom sample selection, one needs to rotate the check function.

The rotation angle depends on the amount of selection, and it is Z-specific. Such a rotation

is needed unless U and V were independent, hence GτZ = τ , in which case standard quantile

regression in the selected sample would be consistent for β(τ).

Interestingly, like (11), (10) is a linear program, hence in particular convex, and so is its

sample counterpart. This implies that, given γ and ρ, one can estimate β(τ) for all τ in a

τ -by-τ fashion by solving linear programs.

In practice γ and ρ need to be estimated. In the Gaussian specification for η, γ may be

consistently estimated by a probit regression, as in the first step in the Heckman method.

In turn, the copula parameter ρ may be consistently estimated by taking advantage of the

fact that (8) implies a number of moment restrictions (in fact, a continuum of such restrictions

when covariates are continuously distributed), by using functions of Z as instruments. To

describe the method to recover ρ, let us change the notation slightly and explicitly indicate

the dependence on ρ and γ in Gργ
τZ = G (τ ,Φ (Z ′γ) ; ρ). For a given vector of instruments

ϕ(τ , Z), ρ satisfies the following moment restrictions

E
[
Dϕ(τ , Z)

(
1
{
Y ≤ X ′β(τ ; ρ, γ)

}
−Gργ

τZ

)]
= 0, (12)

where

β(τ ; ρ, γ) = argmin
b(τ)

E
[
D
(
Gργ
τZ (Y −X ′b(τ))

+
+ (1−Gργ

τZ) (Y −X ′b(τ))
−
)]
. (13)

The copula parameter ρ can thus be estimated in (12) for a finite set of τ values, based on

the generalized method-of-moments (GMM, Hansen, 1982), by profiling out the β(τ ; ρ, γ)

using (13).
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In sum, given an i.i.d. sample (Yi, Zi, Di), i = 1, ..., N (where Zi = (Xi,Wi)), Arellano

and Bonhomme (2016)’s three-step estimation algorithm is as follows. A code written in

Matlab is provided in the appendix.

Algorithm 1

1. Estimate γ by a probit regression,

γ̂ = argmax
a

N∑
i=1

Di ln Φ(Z ′ia) + (1−Di) ln Φ(−Z ′ia).

2. Estimate ρ by profiled GMM,

ρ̂ = argmin
c

∥∥∥∥∥
N∑
i=1

L∑
`=1

Diϕ (τ `, Zi)
[
1
{
Yi ≤ X ′iβ̂ (τ `, c)

}
−G (τ `,Φ(Z ′iγ̂); c)

]∥∥∥∥∥ , (14)

where ‖ · ‖ is the Euclidean norm, τ 1 < τ 2 < ... < τL is a finite grid on (0, 1), ϕ (τ , Zi)

are instrument functions with dimϕ ≥ dim ρ, and

β̂ (τ , c) = argmin
b(τ)

N∑
i=1

Di

[
G (τ ,Φ(Z ′iγ̂); c) (Yi −X ′ib(τ))

+

+ (1−G (τ ,Φ(Z ′iγ̂); c)) (Yi −X ′ib(τ))
−
]
. (15)

3. For any desired τ ∈ (0, 1), compute Ĝτi = G (τ ,Φ(Z ′iγ̂); ρ̂) for all i, and estimate β(τ)

by rotated quantile regression,

β̂(τ) = argmin
b(τ)

N∑
i=1

Di

[
Ĝτi (Yi −X ′ib(τ))

+
+
(

1− Ĝτi

)
(Yi −X ′ib(τ))

−
]
.

(16)

Note that Step 3 is not needed when the researcher is only interested in β(τ 1), ..., β(τL),

in which case Steps 1 and 2 suffice.

The main computational cost of this algorithm is in Step 2. The objective function in (14)

is neither continuous nor convex, because it features indicator functions. When modeling

selection through a Gaussian copula, one can rely on grid-search for computation. Evaluating

the objective function is usually fast and straightforward, because (15) is a linear program.

In addition, using many percentile values τ ` in (14) may smooth the objective function,

hence aid computation.
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The grid of τ values on the unit interval, and the instrument function ϕ(τ , Z), are to be

chosen by the researcher. Although large grids slow down computation, it seems desirable

to exploit a large number of restrictions to increase precision. Regarding the instruments,

with a scalar ρ a possibility is to take ϕ to be the propensity score, or the propensity score

multiplied by a function of τ . Optimal instruments may be constructed given a finite grid of

τ ’s. However, characterizing efficiency properties in quantile selection models would require

working under a continuum of moment restrictions.

Steps 1 and 2 in the above algorithm amount to profiled GMM estimation of a finite

number of parameters: γ, ρ, and β(τ 1), ..., β(τL). This is a well-understood estimation prob-

lem based on non-smooth moment functions. For example, the methods described in Newey

and McFadden (1994) can be used to show root-N consistency and asymptotic normality,

and characterize and estimate asymptotic variances. The asymptotic distribution of β̂(τ)

in (16) may be derived using the same techniques. See Arellano and Bonhomme (2016)

for a derivation of asymptotic variances. In fact, inference on the β(τ) process would also

follow from standard arguments (Koenker and Xiao, 2002). Non-analytical methods, such

as subsampling (Chernozhukov and Fernandez-Val, 2005), may also be used for inference.

An important condition for estimator consistency is identification, which we discuss in the

next section in a nonparametric setting.

Lastly, given estimates of conditional quantile functions, unconditional quantiles of la-

tent outcomes and counterfactual distributions may be constructed using standard methods

(Machado and Mata, 2005, Chernozhukov, Fernández-Val and Melly, 2013).

4 Identification

The methods described in the previous section rely on parametric assumptions on the propen-

sity score and the copula, in addition to the assumed linear quantile specification for out-

comes. It is possible to formulate and analyze a nonparametric quantile selection model

where these assumptions are relaxed.

To proceed, let us replace (4) by a general quantile representation Y ∗ = Q(τ ,X), where

Q is increasing in its first argument, and let us allow for a nonparametric propensity score

p(Z) in (5). Lastly, let us assume that (U, V ) is conditionally independent of Z given X,

and denote the conditional copula of U given V and X = x as Gx(τ , p). Here this function

is also nonparametric.
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Using similar arguments as in Section 3, one may derive the following set of restrictions

Pr (Y ≤ Q (τ , x) |D = 1, Z = z) = Gx (τ , p(z)) . (17)

The aim is to recover Q and G from (17). The propensity score p(Z) is clearly identified

based on data on participation and covariates. However, the quantile function Q and the

conditional copula G consistent with (17) are not unique in general. This reflects the fact

that the nonparametric quantile selection model is generally set-identified.

Arellano and Bonhomme (2016) emphasize two situations where the model is nonpara-

metrically identified. A first case where Q(·, x) and Gx are identified is when p(Z) = 1 with

positive probability conditional on X = x.3 This case corresponds to “identification at in-

finity” (Chamberlain, 1986, Heckman, 1990). A second situation where identification holds

is when the conditional copula Gx is real analytic. This case could be called “identification

by extrapolation”.

Given identification of a nonparametric Q for a parametric or analytic G, nonparametric

rotated quantile regression methods based on kernel or series versions of (16) may then be

used for estimation. Such methods may be combined with a flexible specification for G,

based on Bernstein copulas, for example.

In other situations, the quantile function and conditional copula are generally partially

identified. That is, a set of such functions is consistent with the population distribution.

In a quantile model, failure of point-identification affects the entire quantile curve. This

contrasts with semi-parametric linear models, where arguments such as “identification at

infinity” are only needed to point-identify intercept parameters (Andrews and Schafgans,

1998, Das, Newey and Vella, 2003). Bounds on these functions may be constructed following

Manski (1994, 2003). In practice, estimating such bounds may help assess the impact of

parametric forms on the results, as described in Arellano and Bonhomme (2016).

5 Other approaches

In this section we review several related approaches. We start with an alternative approach

to Arellano and Bonhomme (2016) based on maximum likelihood. We then review control

3To see why this is the case, take a z = (x,w) such that p(z) = 1. As Gx(τ , 1) = τ , evaluating (17) at
Z = z shows that Q(τ , x) is identified as the τ -th conditional quantile of Y given D = 1 and Z = z. This is
intuitive, as conditioning on the propensity score being 1 removes the sample selection problem.
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function approaches to selection-correction in quantile models. Lastly, we clarify the link

between selection correction and censoring correction in quantile regression.

A likelihood approach. The approach outlined in Section 3 is only one of several esti-

mation possibilities in quantile selection models. As an example, a principled alternative

would be to estimate the parameters of interest using a maximum likelihood approach. To

see how this would work, note that evaluating (6) at τ = F (y |x) yields

Pr (Y ∗ ≤ y |D = 1, Z = z) = G (F (y |x; β(·)),Φ (z′γ) ; ρ) ,

where we have indicated the dependence of F (y |x) on the quantile process β(τ). A joint

(semi-parametric) maximum likelihood estimator would thus maximize

N∑
i=1

Di ln Φ(Z ′ia) + (1−Di) ln Φ(−Z ′ia) +
N∑
i=1

Di ln f(Yi |Xi; b(·))

+
N∑
i=1

Di ln∇G (F (Yi |Xi; b(·)),Φ (Z ′ia) ; c)

with respect to a, c, and all b(τ) for τ ∈ (0, 1), where f is the conditional pdf of Y ∗ given

X, and ∇G denotes the derivative of G with respect to its first argument. An intermediate

approach would be to profile out the β(τ)’s using (15), and estimate ρ based on the profiled

likelihood.

In contrast with a likelihood-based approach, the estimator described in Section 3 exploits

the τ -by-τ separability of the rotated quantile regression problems, as well as the convexity

of the rotated quantile regression objective functions. On the other hand, such sequential

estimators are not asymptotically efficient in general.

Control function approaches. Buchinsky (1998, 2001) introduced a control function

method to correct for sample selection in quantile regression models. The method consists

in controlling for functions of the propensity score in the quantile regression. This approach

delivers consistent estimates in additive models with independent errors, as in this case

quantile functions of selected outcomes are indeed additive in covariates X and propensity

score p(Z). As an example, in the Gaussian Heckman model, (7) becomes

Qs(τ , Z) = X ′β + σΦ−1
[
G−1 (τ , p(Z); ρ)

]
, (18)
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where p(Z) = Φ(Z ′γ), and G−1(·, ·; ρ) is the inverse of the conditional Gaussian copula with

respect to its first argument.

However, as (7) shows, in non-additive models such as quantile selection models, quantile

curves are generally not additive in X and p(Z). As a result, as pointed out by Huber and

Melly (2015), additive control function methods will not be consistent in general. Huber

and Melly use this observation to develop tests of the additivity assumption (which they call

“conditional independence”) that make use of the Buchinsky control function estimator.

Link to censoring corrections. The selection correction problem reviewed in this chapter

is different from other censoring corrections that have been extensively studied in the quantile

regression literature. To see the link between these two problems consider an outcome

variable modeled as in (4), observed only when Y ∗ ≤ µ, where µ is a known constant. That

is, Y ∗ is censored above µ. In this case, denoting censoring as D = 1, the censoring rule

takes the form in (5), with Z = X, p(X) = F (µ |X) (where F is the conditional cdf of Y ∗

given X), and V = U . The threshold µ need not be known. Moreover, it could be a (known

or unknown) function µ(X) of covariates.

The conditional copula of (U, V ) is thus known in this case, however it is degenerate. It

coincides with the conditional upper Fréchet bound (Fréchet, 1951), whose expression is

G+(τ , p) = min

{
τ

p
, 1

}
.

Note that G+ is not strictly monotone in its first argument. Analogously as in (10) one may

base estimation of β(τ), for any given τ , on the following optimization problem, focusing on

the subpopulation with p(X) > τ where the τth conditional quantile is identified,

min
b(τ)

E
[
D1{p(X) > τ}

(
τ

p(X)
(Y −X ′b(τ))

+
+

(
1− τ

p(X)

)
(Y −X ′b(τ))

−
)]

.

(19)

Equation (19) is the basis for the censored quantile regression estimator of Buchinsky

and Hahn (1998). A slight difference with the analysis in Buchinsky and Hahn (1998) is that

they consider a case where outcomes are censored from below, so the relevant conditional

copula in their case is the lower Fréchet bound G−(τ , p) = max
{
τ+p−1
p

, 0
}

. Buchinsky and

Hahn propose to nonparametrically estimate the propensity score. Their estimator solves a

convex problem, like the sample selection estimator reviewed in Section 3. This contrasts

with the estimator of Powell (1986), which is based on a non-convex objective function.
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One difference between this model and the bivariate sample selection model is that, in the

censoring model, the propensity score p(X) = F (µ |X) depends on the unknown distribution

of latent outcomes. This explains the need for nonparametric estimation of p(X), in contrast

with the quantile selection model where the propensity score may be parametrically specified

while preserving statistical coherency.

6 Empirical illustration

In this last section we revisit the empirical illustration in Huber and Melly (2015), who

study the returns to education and experience for women in the US. We take their sample

from the 2011 Merged Outgoing Rotation Groups of the Current Population Survey (CPS).

The sample consists of 44,562 White women, 20,055 of whom are working outside of self-

employment, the military, agriculture, and the public sector. The only difference with the

sample in Huber and Melly (2015) is that we drop working women with missing wage values

(1.6% of observations). Working is defined as having worked more than 35 hours in the week

preceding the survey.

Huber and Melly test, and reject, the assumption that quantile functions are additive in

X and τ on these data. Using the methods described in Section 3, here we estimate quantile

regression specifications that account for the presence of sample selection. The dependent

variable Y is the log-hourly wage, covariates X contain general labor market experience (that

is, age minus the number of years of schooling) and its square, five education indicators (more

than 7, 8, 9, 11, and 13 years of education), interactions of experience and its square with

years of schooling, and indicators for marital status and region of residence (4 regions). As

determinants of participation assumed not to enter the wage equation, we take the number

of children in 3 age ranges and their interactions with marital status. We use CPS sample

weights in all the computations. Finally, our specification is based on a probit propensity

score and a Gaussian copula, we take ϕ(τ , Z) =
√
τ(1− τ)p̂(Z), with p̂(Z) the estimated

propensity score, and we take a grid τ ` of deciles when estimating the copula parameter ρ.

Computation of ρ̂ in (14) is based on grid search.

Figure 1 presents the estimates for a selection of covariates. Quantiles corrected for sam-

ple selection are shown in dashed, while uncorrected ones are shown in solid lines. Similarly

as in Huber and Melly (2015), excluded covariates (that is, number of children and inter-

actions with marital status) are strongly significant in the participation equation, estimates

13



Figure 1: Female wages (CPS, 1991), quantile regression curves
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regression estimates. Dashed line: corrected for selection. Solid line: uncorrected.
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being omitted here for brevity. We see that quantile regression estimates vary substantially

along the distribution. This is in line with Huber and Melly’s finding that an additive model

is not appropriate for this data. At the same time, correcting for sample selection tends to

make small differences on the results. Although the coefficients for marital status differ by

some margin, most of the uncorrected and corrected estimates are close to each other. This

is so in spite of an estimated correlation ρ̂ = −.10 (standard error .064), which reflects some

positive selection of women into participation.4 The variation along the distribution, and

the similarity between uncorrected and selection-corrected estimates, are confirmed by the

parameter estimates reported in Table 1.

We performed a number of robustness checks. We experimented with grids of τ ’s of

different sizes (equidistant grids with 2 to 50 knots), a different choice for the instrument

function (ϕ(τ , Z) = p̂(Z)), and a different choice for G (based on the Frank copula). These

choices all lead to very similar results as in Figure 1 and Table 1. Moreover, the minimum

of the objective function in ρ was easy to identify in all experiments, although the objective

function tended to be erratic for large values of |ρ|.

It is to be noted, however, that leaving the functional form of the copula fully unrestricted

in this application would most likely lead to lack of point-identification. Due to the restricted

support of the propensity score (99% of the estimated propensity score being below .73 in

the sample), nonparametric bounds based on a worst-case analysis would be wide. If desired,

the method described in Arellano and Bonhomme (2016) may be used to compute estimates

of worst-case bounds in a given application.

Overall, on this data correcting for sample selection confirms the findings from standard

quantile regression. It would be of interest to estimate similar specifications on other periods,

especially since Mulligan and Rubinstein (2008) argue that the direction and intensity of

female’s selection into employment has changed since the 1970’s in the US.

7 Conclusion

Sample selection correction methods for linear models remain very popular in applied work.

Since James Heckman’s pioneering work, the use of these methods has led to uncovering im-

portant empirical regularities. In this chapter we have reviewed recently proposed selection-

4Note that ρ is the correlation between U in (4) and V in (5). Hence, a negative ρ means that high-U
women have a higher propensity to participate to the labor market.
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correction approaches in nonlinear quantile models. The hope is that these methods could

help documenting distributional effects in a variety of empirical settings where nonrandom

sample selection arises.

Existing work on nonlinear selection models is scarce, however, and there remains a lot to

be done. A particular issue is the reliance on parametric functional forms. In general, relaxing

these assumptions results in lack of point-identification. This is an area where recently

developed methods allowing for uniform inference in the presence of partial identification

(e.g., Tamer, 2010) might prove particularly useful.
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APPENDIX: CODE

%%% Input:
%%% participation indicator D (binary)
%%% outcome variable Y (note: values of Y for D=0 are arbitrary, they may even be missing)
%%% matrix of covariates X, not including the constant
%%% matrix of excluded covariates B, not including the constant
%%% Z=(X,B) is constructed below

%%% Specification in this version:
%%% propensity score: probit
%%% copula: Gaussian
%%% instrument function: varphi(Z) = propensity score p(Z)
%%% grid of tau’s for tau=.2,...,.8
%%% estimates of beta(tau) for tau=.05,...,.95
%%% grid search for rho with 99 equidistant values

%%% The code uses the routine rq.m from Morillo, Koenker and Eilers
%%% available at: http://www.econ.uiuc.edu/∼roger/research/rq/rq.m

%%% Estimate propensity score
Z=[X B];
gamma=glmfit(Z,D,’binomial’,’link’,’probit’);
pZ=normcdf(gamma(1)+Z*gamma(2:end));

%%% Instrument function
varphi=pZ;

%%% Select participants
Y1=Y(D==1);
pZ1=pZ(D==1);
X1=X(D==1,:);
varphi1=varphi(D==1);
[N1 colx]=size(X1);

%%% Percentile values to estimate rho
vectau=(.20:.20:.80)’;
[t n]=size(vectau);

%%% Values of rho in the grid
vecrhoa=(-.98:.02:.98)’;
[s n]=size(vecrhoa);

%%% Objective function to be minimized
object=zeros(s,1);
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%%% Start grid search

for j=1:s
rhoa=vecrhoa(j);
obj=0;

for k=1:t
tau=vectau(k);

%%% Gaussian copula
G=copulacdf(’Gaussian’,[tau*ones(N1,1) pZ1],rhoa)./pZ1;

%%% Rotated quantile regression
beta=rq([ones(N1,1) X1],Y1,G);
obj=obj+(mean(varphi1.*((Y1<=beta(1)+X1*beta(2:colx+1))-G)));
end

object(j)=abs(obj);
end

%%% Minimize the objective function
[C I]=min(object);
rho=vecrhoa(I);

%%% Estimate selection-corrected quantile parameters beta(tau)
beta=zeros(colx+1,19);

for tau=.05:.05:.95

%%% Gaussian copula
G=copulacdf(’Gaussian’,[tau*ones(N1,1) pZ1],rho)./pZ1;

%%% Rotated quantile regression
beta(:,round(20*tau))=rq([ones(N1,1) X1],Y1,G);
end

%%% Output
%%% the first column in beta corresponds to the intercept
%%% different columns are tau=.05 to tau=.95
display(’copula parameter’)
rho
display(’quantile coefficients’)
beta
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