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1 Means and predictors

Given some data {y1, ..., yn} we could calculate a mean y = (1/n)
∑n

i=1 yi as a single quantity that

summarizes the n data points. y is an optimal predictor that minimizes mean squared error:

y = arg min
a

∑n

i=1
(yi − a)2 .

Now if we have data on two variables for the same units {yi, xi}ni=1, we can get a better predictor
of y using the additional information in x calculating the regression line ŷi = â+ b̂xi where(

â, b̂
)

= arg min
a,b

∑n

i=1
(yi − a− bxi)2 .

More generally, if xi is a vector xi = (1, x2i, ..., xki)
′, we calculate the linear predictor ŷi = x′iβ̂ where

β̂ = arg min
b

∑n

i=1

(
yi − x′ib

)2
. (1)

The algebra of linear predictors First order conditions of (1) are∑n

i=1
xi

(
yi − x′iβ̂

)
= 0. (2)

If
∑n

i=1 xix
′
i is full rank (which requires n ≥ k) there is a unique solution:

β̂ =
(∑n

i=1
xix
′
i

)−1∑n

i=1
xiyi. (3)

We may use the compact notation X ′X =
∑n

i=1 xix
′
i and X

′y =
∑n

i=1 xiyi where y = (y1, ..., yn)′ and

X = (x1, ..., xn)′.

Denoting residuals as ûi = yi − x′iβ̂, from the first order conditions (2) we can immediately say

that as long as a constant term is included in xi:
1

n

∑n

i=1
ûi = 0,

1

n

∑n

i=1
xjiûi = 0 for j = 2, ..., k.

Therefore, the mean of the residuals is zero and the covariance between the residuals and each of the

x variables is also zero. Moreover, since ŷi is a linear combination of xi, the covariance between ûi and

ŷi is also zero. We conclude that a linear regression decomposes yi into two orthogonal components:

yi = ŷi + ûi,

so that V̂ ar (yi) = V̂ ar (ŷi) + V̂ ar (ûi). An R2 measures the fraction of the variance of yi that is

accounted by ŷi:

R2 =
V̂ ar (ŷi)

V̂ ar (yi)
.
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2 Consistency and asymptotic normality of linear predictors

If our data {yi, xi}ni=1 are a random sample from some population we can study the properties of β̂ as

an estimator of the corresponding population quantity:

β =
[
E
(
xix
′
i

)]−1
E (xiyi) , (4)

where we require that E (xix
′
i) has full rank.

Letting the population linear predictor error be ui = (yi − x′iβ), the estimation error is

β̂ − β =

(
1

n

∑n

i=1
xix
′
i

)−1 1

n

∑n

i=1
xiui.

Clearly, E (xiui) = 0, since β solves the first-order conditions E [xi (yi − x′iβ)] = 0. By Slutsky’s

theorem and the law of large numbers:

plim
n→∞

(
β̂ − β

)
=

(
plim
n→∞

1

n

∑n

i=1
xix
′
i

)−1
plim
n→∞

1

n

∑n

i=1
xiui =

[
E
(
xix
′
i

)]−1
E (xiui) = 0. (5)

Therefore, β̂ is a consistent estimator of β.

Moreover, because of the central limit theorem

1√
n

∑n

i=1
xiui

d→ N (0, V )

where V = E
(
u2ixix

′
i

)
. In addition, using Cramér’s theorem we can assert that

√
n
(
β̂ − β

)
d→ N (0,W ) (6)

where

W =
[
E
(
xix
′
i

)]−1
E
(
u2ixix

′
i

) [
E
(
xix
′
i

)]−1
, (7)

and also for individual coeffi cients:

√
n
(
β̂j − βj

)
d→ N (0, wjj) (8)

where wjj is the j-th diagonal element of W .

Asymptotic standard errors and confidence intervals A consistent estimator of W is:

Ŵ =

(
1

n

∑n

i=1
xix
′
i

)−1( 1

n

∑n

i=1
û2ixix

′
i

)(
1

n

∑n

i=1
xix
′
i

)−1
. (9)

The quantity
√
ŵjj/n is called an asymptotic standard error of β̂j , or simply a standard error.

It is an approximate standard deviation of β̂j in a large sample, and it is used as a measure of the

precision of an estimate.
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Due to Cramér’s theorem:

β̂j − βj√
ŵjj/n

d→ N (0, 1) . (10)

The use of this statement is in calculating approximate confidence intervals. A 95% large sample

confidence interval is:(
β̂j − 1.96

√
ŵjj/n, β̂j + 1.96

√
ŵjj/n

)
. (11)

3 Classical regression model

A linear predictor is the best linear approximation to the conditional mean of y given x in the sense:

β = arg min
b
E
{[
E (yi | xi)− x′ib

]2}
. (12)

That is, x′iβ minimizes the mean squared approximation errors where the mean is taken with respect

to the distribution of x. Therefore, changing the distribution of x will change the linear predictor

unless the conditional mean is linear, in which case E (yi | xi) = x′iβ.

If E
{

[E (yi | xi)− x′iβ]2
}
is not zero or close to zero, x′iβ̂ will not be a very informative summary

of the dependence in mean between y and x. In general, the use of a linear predictor is hard to

motivate if the conditional mean is notoriously nonlinear.

The classical regression model is a linear model that makes the following two assumptions:

E (y | X) = Xβ (A1)

V ar (y | X) = σ2In. (A2)

The first assumption (A1) asserts that E (yi | x1, ..., xn) = x′iβ for all i. This assumption contains

two parts. The first one is that E (yi | x1, ..., xn) = E (yi | xi); this part of the assumption will always
hold if {yi, xi}ni=1 is a random sample and is sometimes called strict exogeneity. The second part is

the linearity assumption E (yi | xi) = x′iβ. Under A1 β̂ is an unbiased estimator:

E
(
β̂ | X

)
=
(
X ′X

)−1
X ′E (y | X) = β (13)

and therefore also E
(
β̂
)

= β by the law of iterated expectations.

The second assumption (A2) says that V ar (yi | x1, ..., xn) = σ2 and Cov (yi, yj | x1, ..., xn) = 0 for

all i and j. Under random sampling V ar (yi | x1, ..., xn) = V ar (yi | xi) and Cov (yi, yj | x1, ..., xn) = 0

always hold. Assumption A2 also requires that V ar (yi | xi) is constant for all xi and this situation is
called homoskedasticity. The alternative situation when V ar (yi | xi) may vary with xi is called het-
eroskedasticity. When the data are time series the zero covariance condition Cov (yi, yj | x1, ..., xn) = 0

is called lack of autocorrelation.
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Under A2 the variance matrix of β̂ given X is

V ar
(
β̂ | X

)
= σ2

(
X ′X

)−1
. (14)

Moreover, under A2 since E
(
u2ixix

′
i

)
= σ2E (xix

′
i) the sandwich formula (7) becomes

W = σ2
[
E
(
xix
′
i

)]−1
. (15)

To obtain an unbiased estimator of σ2 note that under A2, letting M = In −X (X ′X)−1X ′, we have

E
(
û′û
)

= E
[
E
(
u′Mu | X

)]
= E

(
tr
[
ME

(
uu′ | X

)])
= σ2tr (M) = σ2 (n− k) , (16)

so that an unbiased estimator of σ2 is given by the degrees of freedom corrected residual variance:

σ̂2 =
û′û

n− k . (17)

Sampling distributions under conditional normality Consider as a third assumption:

y | X ∼ N
(
Xβ, σ2In

)
. (A3)

Under A3:

β̂ | X ∼ N
(
β, σ2

(
X ′X

)−1)
, (18)

so that also

β̂j | X ∼ N
(
βj , σ

2ajj
)

(19)

where ajj is the j-th diagonal element of (X ′X)−1. Moreover, conditionally and unconditionally we

have

zj ≡
β̂j − βj√
σ2ajj

∼ N (0, 1) . (20)

This result, which holds exactly for the normal classical regression model, also holds under homoskedas-

ticity as a large-sample approximation for linear predictors and non-normal populations, in light of

(8), (15), and Cramér’s theorem.

Heteroskedasticity-consistent standard errors Note that the validity of the large sample

results in (9), (10) and (11) does not require homoskedasticity. This is why the asymptotic standard

errors
√
ŵjj/n calculated from (9) are usually called heteroskedasticity-consistent or White standard

errors, after the work of Halbert White.
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Other distributional results The other key exact distributional results in this context are

û′û

σ2
∼ χ2n−k independent of zj (21)

and

β̂j − βj√
σ̂2ajj

∼ tn−k. (22)

In addition, letting now β̂j denote a subset of r coeffi cients and Ajj the corresponding submatrix of

(X ′X)−1, we have(
β̂j − βj

)′
A−1jj

(
β̂j − βj

)
σ2

∼ χ2r (23)

and (
β̂j − βj

)′
A−1jj

(
β̂j − βj

)
/r

σ̂2
∼ Fr,(n−k). (24)

4 Weighted least squares

The ordinary least squares (OLS) statistic β̂ is a function of simple means of xix′i and xiyi. Under

heteroskedasticity it may make sense to consider weighted means in which observations with a smaller

variance receive a larger weight. Let us consider estimators of the form

β̃ =
(∑n

i=1
wixix

′
i

)−1∑n

i=1
wixiyi (25)

where wi are some weights. OLS is the special case in which wi = 1 for all i.

Under appropriate regularity conditions

plim
(
β̃ − β

)
=
[
E
(
wixix

′
i

)]−1
E (wixiui) . (26)

Thus, in general to ensure consistency of β̃ we need that E (wixiui) = 0. This result will hold if

E (ui | xi) = 0 and wi = w (xi) is a function of xi only:

E (wixiui) = E (wixiE (ui | xi)) = 0,

but more generally β̃ is not a consistent estimator of the population linear projection coeffi cient β

when E (yi | xi) 6= x′iβ.
1

Subject to consistency, the asymptotic normality result is

√
n
(
β̃ − β

)
d→ N

(
0,
[
E
(
wixix

′
i

)]−1
E
(
u2iw

2
i xix

′
i

) [
E
(
wixix

′
i

)]−1)
. (27)

1Actually, if xi has density f (x), β̃ is consistent for the optimal linear predictor under an alternative probability

distribution of xi given by g (x) ∝ f (x)w (x).
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Asymptotic effi ciency When weights are chosen to be proportional to the reciprocal of σ2i =

E
(
u2i | xi

)
, the asymptotic variance in (27) becomes[

E

(
xix
′
i

σ2i

)]−1
. (28)

Moreover, it can be shown that for any (conformable) vector q:

q′
[
E
(
wixix

′
i

)]−1
E
(
σ2iw

2
i xix

′
i

) [
E
(
wixix

′
i

)]−1
q ≥ q′

[
E

(
xix
′
i

σ2i

)]−1
q. (29)

Statement (29) says that the asymptotic variance of any linear combination of weighted LS estimates

q′β̃ is the smallest when the weights are wi ∝ 1/σ2i . To prove (29) note that
2

E

(
xix
′
i

σ2i

)
− E

(
wixix

′
i

) [
E
(
σ2iw

2
i xix

′
i

)]−1
E
(
wixix

′
i

)
= H ′E

(
mim

′
i

)
H (30)

where

H =

(
I

−
[
E
(
σ2iw

2
i xix

′
i

)]−1
E (wixix

′
i)

)
, mi =

(
xi
σi

σiwixi

)
.

Also note that for any q we have q′ [H ′E (mim
′
i)H] q ≥ 0.

Generalized least squares In view of (29) we can say that the estimator

β̃GLS =

(∑n

i=1

xix
′
i

σ2i

)−1∑n

i=1

xiyi
σ2i

(31)

is asymptotically effi cient in the sense of having the smallest asymptotic variance among the class of

consistent weighted least squares estimators. β̃GLS is a generalized least squares estimator (GLS).

In matrix notation:

β̃GLS =
(
X ′Ω−1X

)−1
X ′Ω−1y (32)

where Ω = diag
(
σ21, ..., σ

2
n

)
.

In a generalized classical regression model we have E (y | X) = Xβ and V ar (y | X) = Ω.

The asymptotic normality result is

√
n
(
β̃GLS − β

)
d→ N

(
0,

[
E

(
xix
′
i

σ2i

)]−1)
. (33)

Usually β̃GLS is an infeasible estimator because σ
2
i is an unknown function of xi. In a feasible GLS

estimation σ2i is replaced by a (parametric or nonparametric) estimated quantity. The large-sample

properties of the resulting estimator may or may not coincide with those of the infeasible GLS.

2We are using the fact that if A and B are positive definite matrices, then A − B is positive definite if and only if

B−1 −A−1 is positive definite.
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5 Cluster-robust standard errors

Suppose the sample {yi, xi}ni=1 consists of H groups or clusters of Mh observations each (n = M1 +

... + MH), such that observations are independent across groups but dependent within groups, H is

large and Mh is small (fixed) for all h. For convenience let us order observations by groups and use

a double-index notation (yhm, xhm) for h = 1, ...,H(group index) and m = 1, ...,Mh (within group

index).

The compact notation for linear regression was y = Xβ+u. A similar notation for the observations

in cluster h is

yh = Xhβ + uh (34)

where yh = (yh1, ..., yhMh
)′, etc. Using this notation the OLS estimator is

β̂ =
(
X ′X

)−1
X ′y =

(
H∑
h=1

X ′hXh

)−1 H∑
h=1

X ′hyh. (35)

Note that in terms of individual observations we can write X ′y =
∑H

h=1

∑Mh
m=1 xhmyhm, etc.

The scaled estimation error is

√
H
(
β̂ − β

)
=

(
X ′X

H

)−1 1√
H

H∑
h=1

X ′huh.

Applying the central limit theorem at cluster level, a consistent estimate of the variance of
√
H
(
β̂ − β

)
is given by(

X ′X

H

)−1 1

H

H∑
h=1

X ′hûhû
′
hXh

(
X ′X

H

)−1
, (36)

so that cluster-robust standard errors can be obtained as the square roots of the diagonal elements of

the covariance matrix

V̂ ar
(
β̂
)

=
(
X ′X

)−1( H∑
h=1

X ′hûhû
′
hXh

)(
X ′X

)−1
. (37)

This is the sandwich formula associated with clustering. Its rationale is as a large H approximation.

There are many applications of this tool, both with actual cluster survey designs and with other data

sets with potential group-level dependence.
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6 Fixed effects

Data with a group structure are common in economics (e.g. schools and students, firms and workers,

households and their members). Panel data is a prominent special case in which a group is the set

of observations of an individual at different points in time. In such case we often use the notation

(yit, xit) (i = 1, ..., N ; t = 1, ..., Ti) instead of (yhm, xhm) (h = 1, ...,H;m = 1, ...,Mh).

In a regression with fixed effects we regress yhm on xhm and group dummy variables. Therefore, it

is a regression with group-specific intercepts:3

yhm = x′hmβ + αh + uhm (h = 1, ...,H;m = 1, ...,Mh) , (38)

or in compact notation:

y = Xβ +Dα+ u (39)

where α = (α1, ..., αH)′ and D is an n×H matrix of group dummy variables:

D =


ι1 0 . . . 0

0 ι2 . . . 0
...

...
. . .

...

0 0 . . . ιH

 (40)

where ιh is a vector of ones of order Mh.

A fixed effects regression coeffi cient βj is the predictive effect of xjhm on yhm holding the other

xhm’s and the group-level effects constant. Any predictor that varies with h but not with m will be a

linear combination of the group dummies and therefore redundant in the fixed effects regression.

Formulas for partitioned regression OLS estimates of β and α in (39) solve the equations(
X ′X X ′D

D′X D′D

)(
β̂

α̂

)
=

(
X ′y

D′y

)
. (41)

To obtain separate expressions for β̂ and α̂, we solve for α̂ in the second block of equations:

α̂ =
(
D′D

)−1
D′
(
y −Xβ̂

)
(42)

and insert the result in the first block to get:

β̂ =
(
X ′QX

)−1
X ′Qy (43)

where Q = I −D (D′D)−1D′. According to (43), β̂ can be obtained as the OLS regression of ỹ = Qy

on X̃ = QX, where ỹ and X̃ are regression residuals of y and X on D, respectively. Once we have β̂,

α̂ can be obtained as the OLS regression of the partial residual
(
y −Xβ̂

)
on D, in view of (42).

3Thus, in this section xhm does not include an intercept term.
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Within-group estimation When D is the matrix of group dummy variables (40), ỹ and X̃ are

arrays of the original variables in deviations from group-specific means with elements ỹhm = yhm− yh
and x̃hm = xhm − xh where yh = M−1h

∑Mh
m=1 yhm, etc. Therefore, the fixed effects estimator β̂ is

simply OLS of y on X in deviations from group means:

β̂ =

[
H∑
h=1

Mh∑
m=1

(xhm − xh) (xhm − xh)′
]−1 H∑

h=1

Mh∑
m=1

(xhm − xh) (yhm − yh) . (44)

As for the estimated fixed effects they can be obtained one by one as group averages of partial residuals:

α̂h =
1

Mh

Mh∑
m=1

(
yhm − x′hmβ̂

)
= yh − x′hβ̂ (h = 1, ...,H) . (45)

Properties Under the assumptions of the classical regression model, namely E (y | X,D) =

Xβ +Dα and V ar (y | X,D) = σ2In, β̂ and α̂ are unbiased with conditional variances given by:4

V ar
(
β̂ | X,D

)
= σ2

(
X ′QX

)−1 (46)

V ar (α̂h | X,D) =
σ2

Mh
+ σ2x′h

(
X ′QX

)−1
xh. (47)

If the data are a clustered random sample, as H →∞ for Mh fixed, we have V ar
(
β̂ | X,D

)
→ 0 and

V ar (α̂h | X,D) → σ2/Mh. Therefore, β̂ is consistent when H is large and Mh is small but not α̂h.

This is not surprising because α̂h is an average of Mh observations, so its dispersion can only vanish

as Mh increases. The lesson is that in data with a group structure some parameters may be more

estimable than others.

Cluster-robust standard errors in a regression with fixed effects Including fixed effects is

in general not a substitute for clustered standard errors. For example, a panel regression may include

both individual fixed effects and errors that are correlated over time. Since a fixed effects regression is

equivalent to a within-group regression, the clustering formula of the previous section can be applied

to the data in deviations from group means:5

V̂ ar
(
β̂
)

=
(
X ′QX

)−1( H∑
h=1

X̃ ′hũhũ
′
hX̃h

)(
X ′QX

)−1 (48)

where ũh = ỹh − X̃hβ̂, and ỹh and X̃h are the h-th blocks of ỹ = Qy and X̃ = QX, respectively.

4Note that V ar

[(
β̂

α̂

)
| X,D

]
= σ2

(
X ′X X ′D

D′X D′D

)−1
and α̂h − αh = uh − x′h

(
β̂ − β

)
.

5Arellano, M. (1987): “Computing robust standard errors for within-groups estimators,”Oxford Bulletin of Economics

and Statistics, 49, 431—434.
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