
SUPPLEMENTARY APPENDIX

Identifying Distributional Characteristics in
Random Coefficients Panel Data Models

by Manuel Arellano and Stéphane Bonhomme

This appendix contains: identification and estimation results on higher-order moments (Section
A), some results on efficiency bounds calculations (Sections B and C) and the computation of
asymptotic standard errors (Section D); additional computations for the examples treated in the
text (Section E); an outline of a test of the covariance structure of errors (Section F); the calculation
of the order conditions, for restrictions in levels and within restrictions (Section G); and a short
review of some properties of characteristic functions and cumulants (Section H).

A Higher-order moments

In applications, it may be of interest to document the skewness and kurtosis of individual effects
in addition to mean and variance. The restrictions on log-characteristic functions may be used to
derive restrictions on higher-order moments of effects and errors.

A.1 Identification

Some notation will be useful. Let U be an n-dimensional random vector with zero mean and well-
defined moments to the fourth-order. We denote by κ3(U) the n3-dimensional cumulant vector

of order 3 whose elements κi,j,k3 (U), for (i, j, k) ∈ {1, ..., n}3, are arranged in lexicographic order.

Likewise, we denote by κ4(U) the vector of n4 cumulants κi,j,k,ℓ4 (U) of order 4.
Taking third and fourth derivatives at the origin in (40), we obtain the following restrictions:1

κ3 (yi|Wi) = (Xi ⊗Xi ⊗Xi)κ3 (γi|Wi) + κ3 (vi|Wi) , (A1)

κ4 (yi|Wi) = (Xi ⊗Xi ⊗Xi ⊗Xi)κ4 (γi|Wi) + κ4 (vi|Wi) . (A2)

The MA restrictions on errors (Assumption 5) implies that error cumulants satisfy restrictions
of the form:

κ3 (vi|Wi) = S3ω3i, (A3)

κ4 (vi|Wi) = S4ω4i, (A4)

where S3 and S4 are selection matrices and ω3i and ω4i are vectors that may depend on Wi.
Under these assumptions, identification of cumulants can be shown if rank conditions analogous to
(24) are satisfied. In addition, the arguments of Subsection 3.3 can be extended to compute the
semiparametric information bound for higher-order moments jointly with means, variances, and
common parameters. See Section C below.

1The validity of (A1) and (A2) relies on the assumption that third- and fourth-order conditional cumulants
are finite. Theorem 2, in contrast, only required the existence of second-order moments.
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A.2 Estimation

The above identification analysis directly suggests an estimation approach for conditional higher
order cumulants of error terms and fixed effects. Using moment restrictions in levels (A1) and (A2),
together with the independent moving-average restrictions (A3) and (A4), we see that the vectors
of third- and fourth-order conditional cumulants of errors can be estimated as:

κ̂3 (vi|Wi) = S3

[
M

(3)
i S3

]†
M

(3)
i κ̂3 (yi|Wi) ,

κ̂4 (vi|Wi) = S4

[
M

(4)
i S4

]†
M

(4)
i κ̂4 (yi|Wi) ,

where M
(3)
i and M

(4)
i are analogs of Mi for third- and fourth-order restrictions, respectively. For

example, M
(3)
i satisfies M

(3)
i (Xi ⊗Xi ⊗Xi) = 0. In addition, κ̂3 (yi|Wi) and κ̂4 (yi|Wi) denote

nonparametric estimates of the conditional cumulants of the data.
Third- and fourth-order conditional cumulants of individual effects can be estimated by:

κ̂3 (γi|Wi, S) = κ̂3 (γ̂i|Wi, S)− (Hi ⊗Hi ⊗Hi)S3

[
M

(3)
i S3

]†
M

(3)
i κ̂3 (yi|Wi, S) ,

κ̂4 (γi|Wi, S) = κ̂4 (γ̂i|Wi, S)− (Hi ⊗Hi ⊗Hi ⊗Hi)S4

[
M

(4)
i S4

]†
M

(4)
i κ̂4 (yi|Wi, S) ,

where κ̂3 (γ̂i|Wi, S) and κ̂4 (γ̂i|Wi, S) are nonparametric estimates of the conditional cumulants
of the fixed-effects estimates.

Note that estimates of unconditional cumulants can be obtained using the above. However, the
resulting estimators will depend on nonparametric estimates of conditional quantities, unlike the
situation for unconditional means and variances.

Example 2. Consider again Example 2 with L = 3, for a sequence of covariates si1 = 1, si2 = 0,
si3 = 0. Assume in addition that viℓ are i.i.d. Using the within information, only the moments of
vi3 − vi2 = yi3 − yi2 are identified. So the third-order cumulant of viℓ is not identified, unless we
assume that viℓ is symmetric (in which case κ̂3 (viℓ) = 0). The fourth-order cumulant of viℓ can be
estimated by

κ̂4 (viℓ) =
1

2
κ̂4 (yi3 − yi2) , (A5)

where the right-hand side in (A5) is simply an empirical fourth-order cumulant. Using (A5) and
the symmetry assumption, one can estimate the cumulants of αi and βi.

In this example, it is possible to compute simple estimates of the cumulants of βi that do not
require the symmetry assumption. Indeed, taking first differences we get:

yi1 − yi2 = βi + vi1 − vi2,

yi2 − yi3 = vi2 − vi3.

This motivates the estimators:

κ̂3 (βi) = κ̂3 (yi1 − yi2)− κ̂3 (yi2 − yi3) , (A6)

κ̂4 (βi) = κ̂4 (yi1 − yi2)− κ̂4 (yi2 − yi3) . (A7)

B Computing Chamberlain’s semiparametric bound

Model and notation. Consider the general panel model that is linear in fixed effects but
nonlinear in variables and common parameters:

yi = a (Wi,θ) +B (Wi,θ)γ +B (Wi,θ) εi + vi
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E (vi | Wi,γi) = 0, E (εi) = 0,

where γ = E (γi) and εi = γi − γ. For shortness, write Bi = B (Wi,θ) and ai = a (Wi,θ).
Moreover, let Var (yi | Wi) = Vi, Var (vi | Wi) = Ωi, and Var (εi | Wi) = Σi. Thus,

Vi = BiΣiB
′
i +Ωi

The interest is in the optimal estimation of θ and γ following Chamberlain (1992). For notational
simplicity we assume that S is the full population of individuals.

Optimal estimation of common parameters. Define the idempotent matrix

Qi = IT −Bi

(
B′

iBi

)−1
B′

i

and let Ai be a (T − q)× T semi-triangular matrix such that Qi = A′
iAi and AiA

′
i = IT−q.

All information about θ is contained in the (T − q) conditional moments

E (Ai (yi − ai) | Wi) = 0.

The conditional variance matrix of the transformed residuals is

E
[
Ai (yi − ai) (yi − ai)

′
A′

i | Wi

]
= AiΩiA

′
i = AiViA

′
i.

The corresponding optimal instruments are

E
[
D′

i

(
AiViA

′
i

)−1
(Aiyi −Aiai)

]
= 0,

where

Di = E

[
∂

∂θ′
Ai (yi − ai) | Wi

]
.

We show below that

Di = −Ai


∂ai
∂θ′

+

q∑

j=1

∂bji

∂θ′
E
(
γji | Wi

)

 , (B8)

where Bi = (b1i, ...,bqi) , and γi =
(
γ1i, ..., γqi

)′
. Therefore, the optimal moment for θ is

E

[
∂

∂θ
[ai +BiE (γi | Wi)]

′
A′

i

(
AiViA

′
i

)−1
(Aiyi −Aiai)

]
= 0. (B9)

Proof of (B8). We need ∂Ai/∂θk. First note that the partial derivatives of Qi are given by

∂Qi

∂θk
= −Qi

∂Bi

∂θk

(
B′

iBi

)−1
B′

i −Bi

(
B′

iBi

)−1 ∂B′
i

∂θk
Qi. (B10)

To see the connection between dQi and dAi note that

dQi = A′
i (dAi) +

(
dA′

i

)
Ai

(dAi)A
′
i +Ai

(
dA′

i

)
= 0,

so that

AidQi = (dAi) +Ai

(
dA′

i

)
Ai = (dAi)− (dAi)A

′
iAi = (dAi)Bi

(
B′

iBi

)−1
B′

i.
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Post-multiplying by Bi, the partial derivatives satisfy

Ai
∂Qi

∂θk
Bi =

∂Ai

∂θk
Bi.

Finally, inserting (B10) and noting that AiBi = 0 it turns out that

∂Ai

∂θk
Bi = −Ai

∂Bi

∂θk
. (B11)

Now, to see that (B8) holds note that

Di = E

[
∂

∂θ′
Ai (yi − ai) | Wi

]
= E

[
∂

∂θ1
Ai (yi − ai) · · · ∂

∂θK
Ai (yi − ai) , | Wi

]

and using (B11) we obtain the k-th column of Di as follows

E

[
∂

∂θk
Ai (yi − ai) | Wi

]
=

(
∂Ai

∂θk

)
E (yi − ai | Wi)−Ai

(
∂ai
∂θk

)

=

(
∂Ai

∂θk

)
E (Biγi + vi | Wi)−Ai

(
∂ai
∂θk

)

=

(
∂Ai

∂θk

)
BiE (γi | Wi)−Ai

(
∂ai
∂θk

)

= −Ai

(
∂ai
∂θk

+
∂Bi

∂θk
E (γi | Wi)

)

= −Ai


∂ai
∂θk

+

q∑

j=1

∂bji

∂θk
E
(
γji | Wi

)

 .

Optimal estimation of expected fixed effects. Using matrix inversion formulas, we obtain
the following expressions linking V−1

i and Ω−1
i , which will be used below:

Ω−1
i = V−1

i +V−1
i Bi

(
Σ−1

i −B′
iV

−1
i Bi

)−1
B′

iV
−1
i

(
B′

iV
−1
i Bi

)−1
= Σi +

(
B′

iΩ
−1
i Bi

)−1
.

Suppose for the sake of the argument that θ is known so that wi = yi−ai and Bi are observable.
The model implies the following moments:

E
[(
C′

iBi

)−1
C′

i (wi −Biγ)
]
= 0,

for some Ci. So we consider the asymptotic distribution of estimators of the form

γ̂ =
1

N

N∑

i=1

(
C′

iBi

)−1
C′

iwi.

The scaled estimation error satisfies

√
N (γ̂ − γ) = 1√

N

N∑

i=1

εi +
1√
N

N∑

i=1

(
C′

iBi

)−1
C′

ivi
d→ N (0,Υ) ,

where
Υ = E

(
εiε

′
i

)
+E

[(
C′

iBi

)−1
C′

iΩiCi

(
B′

iCi

)−1
]
.
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An optimal choice of Ci satisfies

(
C′

iBi

)−1
C′

i =
(
B′

iΩ
−1
i Bi

)−1
B′

iΩ
−1
i ,

which leads to
Υ = E

(
εiε

′
i

)
+E

[(
B′

iΩ
−1
i Bi

)−1
]
, (B12)

or
Υ = Var [E (εi | Wi)] +E

[(
B′

iV
−1
i Bi

)−1
]
. (B13)

One optimal choice is C′
i = B′

iΩ
−1
i . To characterize the range of optimal choices, let us define

Ψi for some q × q matrix Ki ≥ 0 such that:

Ψ−1
i = V−1

i +V−1
i BiKi

[
I−

(
B′

iV
−1
i Bi

)
Ki

]−1
B′

iV
−1
i

Note that setting Ki = Σi we have Ψi = Ωi. However, while Ψi depends on Ki the quantity(
B′

iΨ
−1
i Bi

)−1
B′

iΨ
−1
i does not:2

(
B′

iΨ
−1
i Bi

)−1
B′

iΨ
−1
i =

(
B′

iV
−1
i Bi

)−1
B′

iV
−1
i =

(
B′

iΩ
−1
i Bi

)−1
B′

iΩ
−1
i

The conclusion is that an optimal moment uses C′
i = B′

iΨ
−1
i , and all optimal instruments of

the form
(
B′

iΨ
−1
i Bi

)−1
B′

iΨ
−1
i are the same regardless of the value of Ki. Thus, we can set Ki = 0

without lack of generality and use C′
i = B′

iV
−1
i .

Therefore, the form of an estimator that attains the bound is

γ̂ =
1

N

N∑

i=1

(
B′

iΨ
−1
i Bi

)−1
B′

iΨ
−1
i wi,

which is numerically identical for all permissible values of Ki.
The optimal moment conditions for γ can be written as

E
[(
B′

iV
−1
i Bi

)−1
B′

iV
−1
i (wi −Biγ)

]
= 0. (B14)

Joint optimal moments: system GMM. It is easy to see that the optimal moments for θ
and γ, (B9) and (B14) respectively, are uncorrelated:

E

((
B′

iV
−1
i Bi

)−1
B′

iV
−1
i (Biεi + vi)v

′
iA

′
i

(
AiViA

′
i

)−1
Ai

∂

∂θ′
[ai +BiE (γi | Wi)]

)
= 0.

Therefore, the optimal moments for estimation of θ and γ are:

E

(
∂
∂θ [ai +BiE (γi | Wi)]

′
A′

i (AiViA
′
i)
−1 (Aiyi −Aiai)(

B′
iV

−1
i Bi

)−1
B′

iV
−1
i (yi − ai −Biγ)

)
= 0.

2Note that
B′

i
Ψ−1

i
=
[
I−

(
B′

i
V−1

i
Bi

)
Ki

]−1

B′

i
V−1

i

B′

i
Ψ−1

i
Bi =

[
I−

(
B′

i
V−1

i
Bi

)
Ki

]−1

B′

i
V−1

i
Bi.
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C Semiparametric bound for higher-order cumulants

Consider further extending the model to specify the third-order moments of errors as:

E (vi ⊗ vi ⊗ vi|Wi,γi) = µ3i (φ3) . (C15)

We can write third-order moment restrictions as:

E (yi ⊗ yi ⊗ yi|Wi,γi) = (Ziδ ⊗ Ziδ ⊗ Ziδ) +PT (ψi ⊗ Ziδ) + µ3i

+PT [(Ziδ ⊗ Ziδ +ψi)⊗Xi]γi +PT [Ziδ ⊗Xi ⊗Xi] (γi ⊗ γi)

+ (Xi ⊗Xi ⊗Xi) (γi ⊗ γi ⊗ γi) ,

where ψi = ψi (φ2), µ3i = µ3i (φ3), and PT denotes the T 3×T 3 “triplicating” permutation matrix
that satisfies, for all (a,b, c) ∈ R3T :

PT (a⊗ b⊗ c) = a⊗ b⊗ c+ b⊗ c⊗ a+ c⊗ a⊗ b.

We can then stack first, second, and third-order moment restrictions to obtain:

E
(
y3∗
i |Wi,γ

3∗
i

)
= d3 (Wi,θ3) +R3 (Wi,θ3)γ

3∗
i , (C16)

where θ3 = (δ,φ2,φ3), and:

γ3∗
i =




γi

γi ⊗ γi

γi ⊗ γi ⊗ γi


 .

Equation (C16) still falls into the framework considered in Chamberlain (1992). Note that this
approach can be extended to the m-th order, yielding:

E (ym∗
i |Wi,γ

m∗
i ) = dm (Wi,θm) +Rm (Wi,θm)γm∗

i , (C17)

where θm = (δ,φ2,φ3, ...,φm), with φ3, ...,φm a parameterization of error moments up to the m-th
order, and where:

γm∗
i =




γi

γi ⊗ γi

γi ⊗ γi ⊗ γi

...
γi ⊗ ...⊗ γi︸ ︷︷ ︸

m times




.

This framework can be used to compute semiparametric efficiency bounds under the indepen-
dence assumption between individual effects and errors (Assumption ??). We focus on computing
bounds for δ, although any moment of individual effects or errors could be analyzed in a similar
way.

Consider the increasing sequence of moment conditions (C17), for m = 2, 3, ... Let V(m) be
the efficiency bound on the asymptotic variance for δ obtained from the first m of those moment
conditions. V(m) can be computed using Chamberlain (1992)’s results. Following the discussion
in the previous section, V(m) is the efficiency bound corresponding to the conditional moment
restriction:

E [Ami (y
m∗
i − dm (Wi,θm)) |Wi] = 0,
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where Ami is a generalized orthogonal deviation operator such that:

A′
miAmi = I−Rm (Wi,θm)

(
Rm (Wi,θm)′Rm (Wi,θm)

)−1
Rm (Wi,θm)′ .

The sequence V(m) being nonincreasing in the semi-definite sense (as a larger m means that a
larger number of moment conditions is used), we can define the limit:3

V(∞) = lim
m→+∞

V(m).

Let V0 be the semiparametric bound for δ under independence. Clearly, as V0 ≤ V(m) for all m,
it follows that V0 ≤ V(∞).

Newey (2004) studies conditions under which the asymptotic variance of the optimal GMM
estimator based on an increasing sequence of conditional moment conditions tends to the semi-
parametric bound, that is, when V0 = V(∞). He finds that for this to hold, a spanning condition
is sufficient. This condition requires that the restrictions imposed by the moment conditions are
equivalent to those imposed by the semiparametric model.

Intuitively, we expect a spanning condition to hold in our case, as the increasing sequence
of moment conditions (C17) exhausts all the restrictions implied by independence. We therefore
conjecture that V0 = V(∞).

D Consistent standard errors for the linear projection

coefficients

In this section of the appendix we assume that S is the full population, in order to simplify the
notation. The regression coefficients in:

γℓi = F′
iπℓ + ξℓi, ℓ = 1, ..., q (D18)

where Fi is such that E(vi|Wi,Fi) = 0, are given by

πℓ =
[
E
(
FiF

′
i

)]−1
E (Fiγℓi) , (D19)

and a root-N -consistent estimator of πℓ is

π̂ℓ =

(
1

N

N∑

i=1

FiF
′
i

)−1
1

N

N∑

i=1

Fiγ̃ℓi, (D20)

where, if h′
iℓ denotes the ℓth row of matrix Hi:

γ̃ℓi ≡ h′
iℓ

(
yi − Ziδ̂

)
.

We have:

γ̃ℓi = h′
iℓ

(
Ziδ +Xiγi + vi − Ziδ̂

)

= F′
iπℓ + ξℓi − h′

iℓZi

(
δ̂ − δ

)
+ h′

iℓvi.

3See Lemma B.1 in Newey (2004).
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Hence, letting ΨN = N−1
∑N

i=1FiF
′
i we have

ΨN (π̂ℓ − πℓ) =

(
1

N

N∑

i=1

Fiξℓi

)
−
(

1

N

N∑

i=1

Fih
′
iℓZi

)(
δ̂ − δ

)
+

(
1

N

N∑

i=1

Fih
′
iℓvi

)
.

Also

δ̂ − δ =

(
1

N

N∑

i=1

Z′
iQiZi

)−1
1

N

N∑

i=1

Z′
iQivi. (D21)

It is easily shown (e.g., Wooldridge, 2002, p.321 for a special case) that a consistent estimator

of Avar
[√

N (π̂ℓ − πℓ)
]
is given by:

Ψ−1
N

(
1

N

N∑

i=1

aia
′
i

)
Ψ−1

N ,

where

ai = Fi

(
h′
iℓ

(
yi − Ziδ̂

)
− F′

iπ̂ℓ

)
−




N∑

j=1

Fjh
′
jℓZj






N∑

j=1

Z′
jQjZj




−1

Z′
iQi

(
yi − Ziδ̂

)
.

E Examples

In this section of the appendix we provide additional details about the two examples that we use
as illustration in the text.

Example 1. We have:

yit − ρyi,t−1︸ ︷︷ ︸
y∗
it
(ρ)

= (1− ρ)αi + βi (t− ρ(t− 1)) + uit

= (1− ρ)αi + ρβi︸ ︷︷ ︸
α∗

i
(ρ)

+ t(1− ρ)βi︸ ︷︷ ︸
tβ∗

i
(ρ)

+ uit.

When T = 4, we obtain the following covariance restrictions:4





Var (y∗i2(ρ)) = Var (α∗
i (ρ)) + 4Cov (α∗

i (ρ), β
∗
i (ρ))

+4Var (β∗
i (ρ)) + Var (ui2) ,

Var (y∗i3(ρ)− y∗i2(ρ)) = Var (β∗
i (ρ)) + Var (ui3 − ui2) ,

Var (y∗i4(ρ)− 2y∗i3(ρ) + y∗i2(ρ)) = Var (ui4 − 2ui3 + ui2) ,
Cov (y∗i2(ρ), y

∗
i3(ρ)− y∗i2(ρ)) = Cov (α∗

i (ρ), β
∗
i (ρ)) + 2Var (β∗

i (ρ))
+Cov (ui2, ui3 − ui2) ,

Cov (y∗i2(ρ), y
∗
i4(ρ)− 2y∗i3(ρ) + y∗i2(ρ)) = Cov (ui2, ui4 − 2ui3 + ui2) ,

Cov (y∗i3(ρ)− y∗i2(ρ), y
∗
i4(ρ)− 2y∗i3(ρ) + y∗i2(ρ)) = Cov (ui3 − ui2, ui4 − 2ui3 + ui2) .

Note that ρ is not identified from levels equations when T = 4. When T = 5 we obtain
additional identifying restrictions which may suffice for ρ to be identified. For example:

Var (β∗
i (ρ)) = Cov [y∗i3(ρ)− y∗i2(ρ), y

∗
i5(ρ)− y∗i4(ρ)]

= Var (y∗i3(ρ)− y∗i2(ρ)) +
1

2
Cov [y∗i3(ρ)− 2y∗i2(ρ), y

∗
i4(ρ)− 2y∗i3(ρ) + y∗i2(ρ)] .

4T = 4 means that we have 3 observations on y∗
it
(ρ) for given ρ (t = 2, 3, 4).
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Example 2. Covariance restrictions in levels are:





Var (yi1) = Var (αi) + 2Cov (αi, βi) + Var (βi) + Var (vi1) ,
Var (yi2) = Var (αi) + Var (vi2) ,
Var (yi3) = Var (αi) + Var (vi3) ,
Cov (yi1, yi2) = Var (αi) + Cov (αi, βi) + Cov (vi1, vi2) ,
Cov (yi1, yi3) = Var (αi) + Cov (αi, βi) + Cov (vi1, vi3) ,
Cov (yi2, yi3) = Var (αi) + Cov (vi2, vi3) .

F Testing the covariance structure of errors

In practice, it may be important to empirically determine the order of the MA process of the error
terms. This is of special importance in order to estimate the variance of individual effects, as
misspecifying the form of the variance matrix of errors would result in inconsistent estimates. This
can be done easily using the results of the paper, as we now explain.

Let S2 be a selection matrix with m columns, and suppose that one wants to test

H0 : vec (Ωi) = S2ωi

against an unrestricted alternative. We have, under H0:

MiE [(yi − Ziδ)⊗ (yi − Ziδ) |Wi] = MiS2 (MiS2)
†
MiE [(yi − Ziδ)⊗ (yi − Ziδ) |Wi] . (F22)

This suggests to consider a test of significance of the following quantity:

T̂ =
1

N

N∑

i=1

GiMi

(
IT 2 − S2 (MiS2)

†
Mi

)
(v̂i ⊗ v̂i) ,

where G
i
is a

(
T (T+1)

2 − q(q+1)
2

)
× T 2 matrix such that MiDT = G′

iCi, with DT the duplication

matrix (Magnus and Neudecker, 1988, p.49), and Ci a full row matrix.5

The minimum chi-square statistic then satisfies:

T̂ ′V̂−1T̂ d→ χ2
d,

where d = T (T+1)
2 − q(q+1)

2 −m, and where the matrix V̂ depends on fourth-order moments of the
data.

This strategy may be interpreted as an extension of the test of covariance structures proposed
in Abowd and Card (1989) to random coefficients models. In particular, it is immediate to extend
the approach to sequentially test various MA structures, starting with the less restrictive one (e.g.,
testing MA(q), then MA(q-1), etc...). However, a distinctive feature of our test relative to Abowd
and Card is that it also incorporates information in levels (see the discussion in Arellano, 2003,
p.67).

G Covariance restrictions: order conditions

The following result is useful to obtain the order conditions for identification of variances of effects
and errors (Section 3 of the paper).

5Note that transformation by Gi eliminates redundancies.
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Lemma G1 Let P be a symmetric idempotent n×n matrix with rank p. Let Dn be the n2×n(n+
1)/2 duplication matrix that transforms vech (A) into vec (A), for any n × n matrix A (Magnus
and Neudecker, 1988, p.49). Then:

i) rank [(In2 −P⊗P)Dn] =
n(n+1)

2 − p(p+1)
2 .

ii) rank {[(In −P)⊗ (In −P)]Dn} = (n−p)(n−p+1)
2 ,

Proof. Part i). The proof uses results from Magnus and Neudecker (1988, MN hereafter).
From MN’s Theorem 13 p.49-50 we have:

(In2 −P⊗P)Dn = DnD
†
n (In2 −P⊗P)Dn

= Dn

(
In(n+1)

2

−D†
n (P⊗P)Dn

)
,

where D
†
n = (D′

nDn)
−1

D′
n denotes the Moore-Penrose generalized inverse of Dn.

Hence, because Dn has full column rank, the rank of: (In2 −P⊗P)Dn is equal to that of:

Bn = In(n+1)
2

− D
†
n (P⊗P)Dn. But, using equations (14) and (15) in MN (Theorem 13 p.50) it

is easy to show that Bn is idempotent. So, using MN’s Theorem 21 (p.20): rank (Bn) = Tr (Bn).
Now:

Tr
(
D†

n (P⊗P)Dn

)
= Tr

(
DnD

†
n (P⊗P)

)

=
1

2
Tr (P⊗P) +

1

2
Tr (Kn (P⊗P))

=
p2

2
+

1

2
Tr (Kn (P⊗P)) ,

where Kn is the commutation matrix (MN, p.47). Let Eij be a n×n matrix with zeros everywhere,
except a one at position (i, j). Let also P = [pij ](i,j).

Tr (Kn (P⊗P)) =
n∑

i=1

n∑

j=1

vec (Eij)
′
Kn (P⊗P)vec (Eij)

=
n∑

i=1

n∑

j=1

vec (Eij)
′
vec

(
PE′

ijP
′
)

=
n∑

i=1

n∑

j=1

pijpji

=
n∑

i=1

pii = p,

where the next to last equality comes from idempotence of P. So:

Tr (Bn) =
n(n+ 1)

2
− p2

2
− p

2
.

This ends the proof.
Part ii). Because of idempotence: rank (In −P) = n − p. Let v1, ...,vn−p be a basis of the

vector space spanned by the columns of In − P. Clearly, {vi ⊗ vj , (i, j) ∈ {1, ..., n − p}2} forms
a linearly independent family. So does {vi ⊗ vj , (i, j) ∈ {1, ..., n − p}2, i ≤ j}. As this family has
(n− p)(n− p+ 1)/2 elements, the conclusion follows.
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Part i) implies that the order condition for identification of covariances using restrictions in
levels is T (T + 1)/2− q(q + 1)/2 ≥ m.

Alternatively, one may work with within-group equations alone, see equation (7) in the paper.
This implies the following covariance restrictions:

QiE
[
(yi − Ziδ) (yi − Ziδ)

′ |Wi

]
Q′

i = QiΩiQ
′
i. (G23)

Matrix Ωi is thus identified from the within-group covariance restrictions (G23) alone, provided:

rank [(Qi ⊗Qi)S2] = m. (G24)

From Part ii) in Lemma G1, the associated order condition is:

(T − q)(T − q + 1)

2
≥ m.

Hence, the order condition is more restrictive than the one using covariance restrictions in levels.
For example, consider an AR(1) model with a single heterogeneous intercept, and T = 3. The

autoregressive parameter ρ is not identified from within-group equations alone. However, ρ is
identified from covariance restrictions in levels, as the IV estimand in the regression of (yi3 − yi2)
on (yi2 − yi1) using yi1 as an instrument.

H Multivariate cumulants and characteristic functions

Here we collect some standard definitions and properties of cumulants and characteristic functions
that are used in the paper.

Cumulants. Let U = (U1, ..., Un)
′ be an n-dimensional random vector with zero mean and well-

defined moments to the fourth-order. We define its cumulant vector of order 3 as the n3-dimensional
vector κ3(U) whose elements κi,j,k3 (U), for (i, j, k) ∈ {1, ..., n}3, are arranged in lexicographic order
and are such that

κi,j,k3 (U) = E (UiUjUk) , (i, j, k) ∈ {1, ..., n}3.
Likewise, we define κ4(U) whose n4 elements are

κi,j,k,ℓ4 (U) = E (UiUjUkUℓ)−E (UiUj)E (UkUℓ)

−E (UiUk)E (UjUℓ)−E (UiUℓ)E (UjUk) , (i, j, k, ℓ) ∈ {1, ..., n}4.

For a nonzero mean random vector V, we define κ3(V) = κ3 (V −E (V)), and we similarly define
κ4(V).

The skewness of Uj (i ∈ {1, ..., n}) and its kurtosis are given by: κj,j,j3 (U)/Var(Uj)
3/2 and[

κj,j,j,j4 (U)/Var(Uj)
2
]
+3, respectively. We may similarly define conditional cumulants by replacing

the expectations in these formulas by conditional expectations.
Cumulants satisfy a multilinearity property, and can be interpreted as tensors (Kofidis and

Regalia, 2000). Namely, for any s× n matrix A we have:

κ3(AU) = (A⊗A⊗A)κ3(U),

κ4(AU) = (A⊗A⊗A⊗A)κ4(U).

Moreover, cumulants of the sums of independent random variables satisfy: κ3(U+V) = κ3(U) +
κ3(V), and: κ4(U + V) = κ4(U) + κ4(V). Because of these properties, it is sometimes more
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convenient to work with cumulants than with moments, although there exists a mapping between
the two.

Here we have only defined cumulants of order 3 and 4. We could easily generalize these results
to cumulants of order 5 or higher. The first-order cumulant is simply the mean, and the cumulants
of order 2 are the variances and covariances.

Characteristic functions. Let (Y,X) be a pair of random vectors, Y ∈ RL, and let j be a
square root of −1. The conditional characteristic function of Y given X = x, is defined as:

ΨY|X(τ |x) = E
(
exp(jτ ′Y)|X = x

)
, τ ∈ RL.

We make use of the following properties of characteristic functions in the paper (e.g., Dudley,
2002, Chapter 9). First, characteristic functions uniquely determine distribution functions. More-
over, when Y|X admits an absolutely continuous density, the mapping between the (conditional)
characteristic function and the (conditional) density is given by the inverse Fourier transform:

fY|X(y|x) = 1

(2π)L

∫
exp

(
−jτ ′y

)
ΨY|X(τ |x)dτ . (H25)

Second, if Y1 and Y2 are independent given X then:

ΨY1+Y2|X(τ |x) = ΨY1|X(τ |x)ΨY2|X(τ |x). (H26)

Lastly, cumulants (when they exist) can be obtained from the successive derivatives of the logarithm
of the characteristic function (also called cumulant generating function) evaluated at τ = 0.
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