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Abstract

We study the identification of panel models with linear individual-specific coeffi-
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reflecting a trade-off between heterogeneity and error dynamics. We show identifica-
tion of the probability distribution of individual effects when errors follow an ARMA
process under conditional independence. We discuss GMM estimation of moments of
effects and errors, and construct nonparametric estimators of their densities. As an
application we estimate the effect that a mother smokes during pregnancy on child’s
birth weight.
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1 Introduction

Fixed effects methods are a standard way of controlling for endogeneity and/or unobserved

heterogeneity in the estimation of common parameters from panel data models. However,

sometimes one is willing to treat a model parameter as a heterogeneous quantity (as a “fixed

effect”) and therefore characteristics of its distribution or the density itself become central

objects of interest in estimation.

In a static panel model that is nonlinear in common parameters but linear in random

coefficients, the expected value of the random coefficients is fixed-T identified under the

assumptions of unrestricted intertemporal distribution of the errors and unrestricted distri-

bution of the effects conditioned on the regressors (Chamberlain, 1992). However, variances

and covariances of random coefficients as well as other distributional characteristics are not

identified. The reason is that by permitting arbitrary forms of dependence among the errors

at all lags, it becomes impossible to separate out what part of the overall time variation is

due to unobserved heterogeneity, no matter how long the panel is.

The point of departure of this paper is to consider the identifying content of limited time

dependence of time-varying errors. The idea is that we may expect a stronger association

between errors that are close to each other than errors that are far apart in time. Moving

average and autoregressive processes are convenient implementations of this notion. Sub-

ject to limited time series error dependence, alternative identification arrangements become

available. In particular, variances and densities of random coefficients may be identifiable.

We explore such identification trade-offs and provide conditions under which different dis-

tributional characteristics are identified. Throughout we adopt a “fixed effects approach”

in the sense that the conditional distribution of the random coefficients given explanatory

variables is left unrestricted.

A linear random coefficients model is a useful framework of analysis in many microe-

conometric applications. These include earning dynamics models with individual-specific

age profiles and persistent shocks,1 as well as production function models with firm-specific

technological parameters.2 The estimation of heterogeneous treatment effects is another

1For examples of earnings models with individual-specific slopes or profiles, see Lillard and Weiss (1979)
or more recently Guvenen (2009).

2See for example Mairesse and Griliches (1990) and Dobbelaere and Mairesse (2008). Other examples
can be found in the literature on the education production function and teacher quality (e.g., Aaronson et
al., 2007).
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area of application. In contrast with the cross-sectional case, panel data on repeated treat-

ments offer the opportunity to estimate a time-invariant distribution of treatment effects

across units.3 For example, in our empirical application, we look at the extent of hetero-

geneity in the effect of smoking during pregnancy on children outcomes at birth, building on

Abrevaya (2006)’s results for mothers with multiple births. There is interest in document-

ing the determinants of inequality at birth, particularly in relation to policy interventions

(e.g. Rosenzweig and Wolpin, 1991) and accounting for heterogeneity in the effects of those

determinants is certainly important.

Most statistical approaches to random coefficients models have adopted a random effects

perspective, which rules out or restricts the correlation between individual-specific effects

and regressors.4 In economic applications, though, unit-specific effects often represent het-

erogeneity in preferences or technology, on which economic theory has typically little to say.

For this reason, it is often thought (as we do here) that a fixed effects approach, which does

not restrict the form of the heterogeneity is preferable.5 Thus, we regard individual specific

parameters as random draws from an unrestricted conditional distribution given regressors.

In an important paper, Chamberlain (1992) derived efficiency bounds for conditional

moment restrictions with a nonparametric component, and applied the results to a random

coefficients model for panel data. In that model the role of the nonparametric component

was played by the conditional expectation of the random coefficients given the regressors.

Chamberlain suggested an instrumental-variable estimator of the common parameters and

average effects, which attained the bound.

Chamberlain (1992) assumed that time-varying errors were mean independent of individ-

ual effects and regressors at all lags and leads (a strict exogeneity assumption). Extending the

approach, we consider a similar model with the additional assumption that the autocovari-

ance matrix of the errors conditioned on regressors satisfy moving-average (MA) exclusion

restrictions. Non-zero autocovariances are treated as nonparametric functions of regressors.

Therefore, they are consistent with an underlying moving average model with unobserved

3In a cross-sectional setting only the marginal distributions of potential outcomes may be identified under
standard assumptions, to the exclusion of the distribution of gains from treatment (Heckman et al., 1997).

4See Demidenko (2004) for a survey on random-effects (or “mixed”) models in statistics. Beran et al.
(1996) and Hoderlein et al. (2010) provide nonparametric treatments of random coefficients models for
cross-section data.

5For example, Cameron and Trivedi (2005, p.777) claim that random coefficients models, although they
“are especially popular in the statistics literature (...) are less used in the econometrics literature, because
of the reluctance to impose structure on the time-invariant individual-specific fixed effect”.

2



heterogeneity in second-order moments. In this setting, conditional and unconditional vari-

ances of effects and errors are point identified, as long as sufficiently many autocovariance

restrictions are imposed. For example, identification will require that the order of an MA

process be small enough. We also discuss how the results can be generalized to ARMA-type

restrictions.

Moreover, we show how Chamberlain’s analysis can be extended to obtain a semipara-

metric efficiency bound for all common parameters and first and second moments of the

random coefficients. The result holds for a parametric specification of the error second mo-

ments conditioned on regressors and effects, which is either linear in or independent of the

effects. We also show how fixed-T consistent and asymptotically normal estimates of these

coefficients can be obtained using a system GMM procedure that combines errors in lev-

els with errors in (generalized) deviations. The bound provides guidance on the choice of

optimal instruments.

Next, strengthening the mean independence assumption to one of conditional statisti-

cal independence between effects and errors given regressors, we study the identification of

distributions. When time-varying errors follow suitably restricted ARMA processes with

independent underlying innovations, we obtain fixed-T point identification results for the

probability distributions of individual effects and errors. To obtain these results, we exploit

the fact that statistical independence assumptions lead to functional restrictions on the sec-

ond derivatives of log characteristic functions, which are formally analogous to the covariance

restrictions. We show that these restrictions nicely extend those for second moments, and

may be used to establish the identification of distributions.

Our identification proofs are constructive. Thus, they suggest consistent estimators for

the distributional quantities of interest. We construct consistent method-of-moment estima-

tors of variances. We also construct nonparametric estimators of the densities of individual

effects and errors when covariates are discrete, emphasizing the connection with the literature

on nonparametric deconvolution (see for example Carroll and Hall, 1988).

In the last section of the paper we apply this methodology to a matched panel dataset

of mothers and births constructed in Abrevaya (2006). We find that the mean smoking

effect on birth weight is significantly negative (−160 grams). Moreover, the effect shows

substantial heterogeneity across mothers, the effect being very negative (−400 g) below the

20th percentile. In addition, we discuss the validity of the strict exogeneity assumption

3



in the context of this application. Although the mean effect is not point identified when

smoking status is predetermined,6 we show that several interesting average effects can be

identified and estimated when there are no time-varying regressors. The results suggest that

the smoking effect is strongly correlated with smoking choices, justifying the fixed-effects

perspective. Moreover, we do not find strong evidence against strict exogeneity on these

data.

Literature and outline. This paper is related to the literature on the estimation of linear

and nonlinear panel data models with fixed effects. A general solution has recently been

proposed that relies on reduction of the small-T bias of the maximum likelihood estimator

first documented in Neyman and Scott (1948), see Arellano and Hahn (2006) for a survey.

Here we show that all marginal effects, including the density of individual-specific effects, are

identified for fixed T in a model that is linear in random coefficients. Hence, our approach

leads to full elimination of the bias on the quantities of interest.

A recent paper by Graham and Powell (2008) studies essentially the same model as we

do but their focus is rather different. They are concerned with estimating the expectation of

random coefficients whereas our concern is the probability distribution of those coefficients.

Their focus is on dealing with continuous regressors that exhibit values that change little

across periods (near stayers), by trimming those values under otherwise similar assumptions

as Chamberlain (1992), including unlimited serial correlation.7 Our focus is in exploiting

the opportunities for identifying the distributions of the effects offered by limited serial

correlation. Our analysis proceeds either under Chamberlain’s or under fixed trimming

regularity conditions for simplicity, but it could be extended to the regularity conditions

discussed by Graham and Powell. Their contribution and ours are basically orthogonal and

complement each other.

In an independent but related contribution, Evdokimov (2009) focuses on situations

where T is small and uses deconvolution arguments for identifying and estimating the distri-

bution of individual effects, as we do in this paper. There are several important differences

with our approach, however. Evdokimov allows for a scalar individual effect that enters an

unspecified structural function, with additively separable idiosyncratic errors. In compar-

6Chamberlain (1993) and Arellano and Honoré (2001) discuss the lack of identification when regressors are
predetermined. Recently, Murtazashvili and Wooldridge (2008) derive conditions under which identification
holds in the endogenous case, imposing individual effects to be mean independent of detrended regressors.

7They also deal with models with as many time periods as random coefficients, which we do not consider.
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ison, our approach allows for multidimensional individual fixed effects, though it imposes

linearity. Another difference is that identification in Evdokimov relies on conditioning on

values of the covariates that are constant between periods, while we impose no restriction

on the process of exogenous covariates.

Lastly, related identification strategies for densities have been used in the literature on

nonparametric identification and estimation of linear factor models with independent factors.

See for example Horowitz and Markatou (1996), Székely and Rao (2000), and Bonhomme

and Robin (2010). We contribute to that literature by allowing for correlation patterns that

may be natural in applications, individual effects being correlated in an unrestricted way,

and errors being possibly serially correlated. We also allow for conditioning covariates.

The rest of the paper is as follows. In Section 2 we present the framework of analysis.

Section 3 derives the identifying restrictions on the variances of individual effects and errors.

In Section 4, we extend the analysis to the full distributions of effects and errors. We

discuss estimation in Section 5, and apply our methodology in Section 6 to study the effect

of smoking during pregnancy on birth outcomes. Lastly, Section 7 concludes. Additional

results may be found in a supplementary appendix to this paper.8

2 The random coefficients model

In this section we describe the model together with some extensions, and list various iden-

tification and efficiency bounds results for common parameters and averages of individual

effects.

2.1 Model

We consider a model that relates a vector of T endogenous variables yi = (yi1, ..., yiT )
′ to a

set of regressors Wi = [Zi,Xi] and a vector of zero-mean error terms vi = (vi1...viT )
′:

yi = Ziδ +Xiγi + vi (i = 1, ..., N) . (1)

We distinguish two types of regressors: Zi = (z′i1, ..., z
′
iT )

′ is a T ×K matrix associated to a

vector of common parameters δ, while Xi = (x′
i1, ...,x

′
iT )

′ is a T × q matrix associated to a

vector of q unit specific parameters γi.

8Available at: http://www.cemfi.es/∼bonhomme/Random appendix.pdf
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Assumption 1 (mean independence)

E (vi | Wi,γi) = 0. (2)

Assumption 1 requires Zi and Xi to be strictly exogenous. It is possible to treat the case

of predetermined or endogenous Zi’s within the framework of this paper, and we discuss this

extension below. However, strict exogeneity of Xi is essential. If one of the components

of xit is predetermined or endogenous, then the moments of γi are not point identified in

general.

Note that we do not specify the conditional distribution of individual effects. In our

“fixed-effects” approach, γi are random draws from a population, along with yit, zit and

xit, but their conditional distribution given regressors is left unspecified.9 Thus, regressors

are strictly exogenous with respect to time-varying errors but endogenous with respect to

fixed effects. We will discuss the validity of this assumption in the context of our empirical

application in Section 6.

Mean independence will be used to identify the vector of common parameters δ and the

means, variances and covariances of individual-specific parameters γi. When studying the

identification of distributions of the effects in Section 4, we will need a stronger assumption

of conditional statistical independence.

The identification content of the random coefficients model crucially depends on the

amount of variation in covariates Xi. Throughout the paper we focus on overidentified panel

models with T > q, thus ensuring that the parameters that are common across individuals are

identified. When regressors are discrete, the moments of individual effects will be identified

on the subpopulation of individuals for which Xi has full-column rank. In the following we

will denote as S the subpopulation of individuals for which det [X′
iXi] 6= 0. For example, in

our empirical application, S is the subpopulation of mothers who changed smoking status at

least once between births.

The fixed-effects approach delivers identification results for the subpopulation S only.

When covariates are discrete, bounds on moments of individual effects may be obtained

following the techniques introduced in Chernozhukov et al. (2009). In random coefficients

applications, however, outcomes often have large support, and the implied bounds may

be uninformative for small T . Another alternative would be to abandon the fixed-effects

9This terminology differs from an approach where one conditions on the realized values of the γi’s. In
this sense, ours may be interpreted as an “unrestricted correlated random-effects” approach.
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approach and restrict the conditional distribution of individual effects given covariates. One

possibility would be to reduce dimensionality by introducing a factor structure of fixed-

effects factors. As we mentioned in introduction, however, it is often difficult to justify those

restrictions in economic applications.

Obtaining identification results for the subpopulation S only is in the nature of the fixed-

effects approach. To illustrate, note that in the absence of common parameters and for a

binary treatment xit with coefficient γi, the expected outcome change over two periods is

E (∆yit | ∆xit) = E (γi | ∆xit)∆xit, which identifies E (γi | ∆xit) when ∆xit is 1 or −1 but

not when ∆xit = 0. This is the familiar result that a difference-in-differences assumption

only identifies the average treatment effect on the treated. Other discrete treatment contexts

(such as matching, instrumental-variables or regression discontinuity) typically only identify

average treatment effects for specific subpopulations (of common support units, compliers or

units at the discontinuity, respectively). Such subpopulations may or may not be of interest

depending on the context of application. Relative to the literature on discrete impacts, our

contribution is to provide conditions under which the distribution of impacts and the joint

distribution of potential outcomes are nonparametrically identified.

When regressors are continuous and S has measure one, Chamberlain (1992) noted that

the overall mean of individual effects E (γi) is point-identified. Our results show that, under

suitable assumptions, other features of the distribution are identified. We will estimate

moments and distributions of effects on a subpopulation Sh such that det [X′
iXi] > h, where

h > 0 is independent of the sample size. In a recent paper, Graham and Powell (2008) let

h = hN tends to zero as N tends to infinity at a suitable rate so that the estimator of E (γi)

is consistent in the limit. Extending their estimation strategy to other distributional features

of γi is beyond the scope of this paper.

2.2 Common parameters and averages of individual effects

We start by setting some notation. Firstly, let γ̂i be the least squares estimate (for δ known):

γ̂i = (X′
iXi)

−1
X′

i (yi − Ziδ) .

Next, let us introduce the two following matrices:

Qi = IT −Xi (X
′
iXi)

−1
X′

i,

Hi = (X′
iXi)

−1
X′

i,
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Qi (T × T ) is the projection matrix on the orthogonal of the span of the columns of Xi.

Qi is a familiar object in least squares algebra, and is symmetric idempotent with rank

T − q. Hi (q × T ) is simply the least squares operator associated with Xi. Note that Qi

is always well-defined irrespective of the rank of Xi,
10 while Hi does not exist outside the

subpopulation S (that is, when X′
iXi is singular).

Left-multiplying (1) by Qi and Hi, respectively, we obtain the following equations:

Qi (yi − Ziδ) = Qivi (within-group), (3)

γ̂i − γi = Hivi (between-group). (4)

While equation (4) expresses the difference between the least-squares estimate of γi (for

known δ) and its true value, equation (3) shows the link between the residuals in the

individual-specific least-squares regressions and the population errors.

The next proposition shows the identification of common parameters, and the average of

individual effects on the subpopulation S. All proofs are in Appendix A.

Proposition 1 (common parameters and mean effects)

Let Assumption 1 hold. Then:

E (Qi (yi − Ziδ) |Wi) = 0 (5)

and

E (γ̂i|Wi, S) = E (γi|Wi, S) . (6)

So E (γi|S) is identified if δ is identified. Moreover, δ is identified if E (Z′
iQiZi) has rank

dim(δ).

Applied researchers often find it useful to regress individual effects estimates γ̂i on strictly

exogenous regressors Fi, see MaCurdy (1981) for an early application. An interesting corol-

lary of Proposition 1 is that the population projection coefficients in the regression of γ̂i on

Fi are equal to the projection coefficients in the regression of γi on Fi.

Corollary 1 (projection coefficients)

Let Assumption 1 hold. Let also Fi be a random vector such that E (vit|Wi,Fi) = 0.

Then:

[Var (Fi|S)]
−1 Cov (Fi,γi|S) = [Var (Fi|S)]

−1 Cov (Fi, γ̂i|S) . (7)

10This is so as long as we consider a generalized formulation of Qi as: Qi = IT −XiX
†
i , where X

†
i is the

Moore-Penrose pseudo-inverse of Xi.

8



Extension 1: nonlinearity in variables and common parameters. Although we

discuss identification of the linear model (1), the approach of this paper can be generalized

to other settings. A more general formulation is:

yi = a(Wi;θ) +B(Wi;θ)γi + vi, (8)

where θ is a vector of common parameters that enter nonlinearly functions a (which is T×1)

and B (T × q). We assume that a(W;θ) and B(W;θ) are continuously differentiable with

respect to θ, for each W.

A simple special case of model (8) is the one-factor model:

yit = z′itδ + µtαi + vit, (9)

where µ1, ..., µT are time-varying parameters and αi is scalar (e.g., Holtz-Eakin et al., 1988).

Other interesting special cases of (8) are models where the regressors include lags (or leads)

of the dependent variable. For example, a first-order autoregressive model:

yit = δyi,t−1 + x′
itγi + vit, |δ| < 1. (10)

That (10) is a special case of (8) is seen by writing the reduced-form:

yit =
(
xit + δxi,t−1 + ...+ δt−1xi1

)′
γi + δtyi0 + vit + δvi,t−1 + ...+ δt−1vi1,

which is of the form (8) with the (q + 1)× 1 vector of individual effects: γ̃i = (γ ′
i, yi0)

′.

Following Chamberlain (1992), one can consider the generalized within- and between-

group equations:

Qi (θ) (yi − a(Wi;θ)) = Qi (θ)vi (within-group), (11)

γ̂i − γi = Hi (θ)vi (between-group), (12)

where

Qi (θ) = IT −B(Wi;θ) (B(Wi;θ)
′B(Wi;θ))

−1
B(Wi;θ)

′, (13)

Hi (θ) = (B(Wi;θ)
′B(Wi;θ))

−1
B(Wi;θ)

′. (14)

Let Sθ be the subpopulation of individuals for which det [B(Wi;θ)
′B(Wi;θ)] 6= 0. We

have the next corollary of Proposition 1.
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Corollary 2 (Chamberlain’s model)

Consider model (8), and suppose that E (vi|Wi) = 0. Then:

E [Qi (θ) (yi − a(Wi;θ)) |Wi] = 0, (15)

and

E [Hi (θ) (yi − a(Wi;θ)) |Wi, Sθ] = E (γi|Wi, Sθ) , (16)

where Qi (θ) and Hi (θ) are given by (13) and (14), respectively. So, E (γi|Sθ) is identified

if θ is identified.

Extension 2: general predetermined variables. Assumption 1 posits the strict ex-

ogeneity of Zi and Xi given γi. However, our approach can be generalized to situations

where Zi includes predetermined or endogenous variables (although the remainder of the

paper assumes strict exogeneity for simplicity). The idea is to replace Assumption 1 with

the following generalization:

E (vit | ri1, ..., rit,Xi,γi) = 0 (t = 1, ..., T ) , (17)

where rit is a predetermined instrumental variable, which may be external to the model or

not. For example, if rit = zit the explanatory variable zit itself is predetermined; if rit = zit−1

then zit is contemporaneously endogenous but its lags are predetermined, whereas if rit is

an external instrument zit is treated as endogenous at all lags.

Strict exogeneity ofXi is an essential ingredient, but as long as this is preserved, nonlinear

extensions are also possible. For example, it is possible to consider assumption (17) in

conjunction with a model of the form

a (Yi,Xi,θ) = B (Xi,θ)γi + vi,

where the columns of Yi contain endogenous and predetermined variables.

When some of the regressors are predetermined, the orthogonality between original errors

and conditioning variables in the new assumption is not transmitted to ordinary within errors.

The reason is that (17) implies a pattern of sequential orthogonality and each within error

depends on the full time series of original errors. However, there is an alternative within

transformation that preserves sequential orthogonality, which is provided by a generalization

of forward orthogonal deviations (Arellano and Bover, 1995). Let Ai be a (T − q)×T upper
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triangular decomposition ofQi such thatA′
iAi= Qi andAiA

′
i= IT−q. The orthogonal within

errors Aivi ≡
(
v∗i1, ..., v

∗
i(T−q)

)′
satisfy assumption (17):

E (v∗it | ri1, ..., rit,Xi,γi) = 0 (t = 1, ..., T − q) .

Information bound on common parameters and average effects. Chamberlain

(1992) obtained the optimal moment conditions of common parameters and average effects

for model (8). The moments are optimal in the sense that an estimator based on them

attains the semiparametric information bound.

Let us suppose to simplify the notation that Sθ is the full population of individuals.

Following Chamberlain (1992),11 the joint optimal moments for θ and γ = E (γi) can be

expressed as

E

( {
∂
∂θ′

[ai +BiE (γi | Wi)]
}′
A′

i (AiViA
′
i)
−1 Ai (yi − ai)(

B′
iV

−1
i Bi

)−1
B′

iV
−1
i (yi−ai−Biγ)

)
= 0, (18)

where ai= a (Wi,θ), Bi= B (Wi,θ), Vi= Var (yi|Wi), and Ai is a (T − q)× T orthogonal

decomposition of Qi (θ).

For the variance bound to be finite, one needs that E
[(
det
(
B′

iV
−1
i Bi

))−1
]
< ∞. When

this condition does not hold, root-N consistent estimation of average effects is not possible.

Graham and Powell (2008) refer to this situation as “irregular identification”. In models

with slope heterogeneity, this will occur when covariates are very persistent.

3 Identification of second moments

This section discusses the identification of covariance structures.

3.1 Variances of individual effects and errors

To recover the variance of individual effects, we impose restrictions on the conditional

variance-covariance matrix of errors vi, which we denote as Ωi = Var (vi|Wi). To see

why restricting Ωi is necessary for identification, note that taking second moments in (1)

and using Assumption 1 implies the following restrictions in levels:12

E
[
(yi − Ziδ) (yi − Ziδ)

′ |Wi

]
= XiE (γiγ

′
i|Wi)X

′
i +Ωi. (19)

11The argument is developed in the supplementary appendix to this paper.
12Here and throughout the paper, second-order conditional moments of yi, γi, and vi given Wi are

assumed finite.
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Clearly, when Ωi is unrestricted, second-order moments of the data are not informative

about the second moments of individual effects. This is because, in this case, E (γiγ
′
i|Wi)

is absorbed into the unrestricted Ωi. Identification of the variance of individual effects thus

requires restricting the dynamics of errors.

MA restrictions. We start by imposing uncorrelatedness restrictions on errors vit. A

particular example is a moving average (MA) process of order r, in which case the conditional

covariance between vit and vi,t′ given Wi is zero if |t′ − t| > r.

Formally, we make the following assumption.

Assumption 2 (MA with uncorrelated shocks)

There exists a vector of m parameters ωi, possibly dependent on Wi, and a known (se-

lection) matrix S2 such that:

vec (Ωi) = S2ωi. (20)

Assumption 2 contains the case where all errors are conditionally uncorrelated, in which

case m = T and S2 is a T 2×T selection matrix that has zeros everywhere except at positions

(1, 1), (T+2, 2),..., (T 2, T ). More generally, Assumption 2 contains moving-average processes

of the form

vit = uit + θ1tui,t−1 + ...+ θrtui,t−r, t = 1, ..., T, (21)

where θ11, ..., θrT are unrestricted parameters, and ui,1−r, ..., uiT are mutually uncorrelated

given regressors. In the MA(r) case, m = T + T − 1 + ...+ T − r = (r + 1) (T − r/2).

Note that since Var (vi| Wi) = E [Var (vi | Wi,γi) | Wi], Assumption 2 is consistent

with an underlying moving average model with unobserved heterogeneity of the form

Var (vi | Wi,γi) = S2φ (Wi,γi)

for an unspecified function φ such that ωi = E [φ (Wi,γi) | Wi], possibly including a larger

vector of fixed effects than those present in the conditional mean. In particular, θ11, ..., θrT

in (21) may depend on regressors Wi, and could also depend on additional individual effects

ξi as long as E (uit|Wi,γi, ξi) = 0.

To study when Assumption 2 identifies second-order moments, let us now define the

projection matrix on the orthogonal of the span of the columns of Xi ⊗Xi:

Mi = IT 2 −
[
Xi (X

′
iXi)

−1
X′

i

]
⊗
[
Xi (X

′
iXi)

−1
X′

i

]
(22)

= IT 2 − [IT −Qi]⊗ [IT −Qi] .
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Note that, as the matrix Qi, Mi is well-defined irrespective of the rank of Xi.

Left-multiplying (19) by Mi (in vector form) and using Assumption 2 we obtain:

MiE [(yi − Ziδ)⊗ (yi − Ziδ) |Wi] = Mi vec (Ωi)

= MiS2ωi. (23)

The following identification result is an immediate consequence of (23).13

Theorem 1 (second-order moments)

Let Assumptions 1 and 2 hold, and suppose that δ is identified. Suppose also that

rank [MiS2] = m. (24)

Then, Ωi and E (γiγ
′
i|Wi, S) are identified.

Remark 1. When (24) holds, one may solve analytically for Ωi in (23). For example, in

the particular case where errors are i.i.d. homoskedastic with variance σ2 we have:

σ2 =
1

T − q
E
[
(yi − Ziδ)

′ Qi (yi − Ziδ)
]
. (25)

Remark 2. Note that taking variances in (4) implies:

Var (γ̂i|S) = Var (γi|S) + E (HiΩiH
′
i|S) . (26)

The total variance of the fixed-effects estimates γ̂i is the sum of two components: the true

cross-sectional variation of individual effects, and the contribution of estimation noise for

small T . Theorem 1 shows that suitable restrictions on the covariance structure of errors

allow to separate these two components, and to recover the variance of γi.

Remark 3. It is interesting to study the order condition associated with the rank condition

(24). One can check that

rank [MiS2] ≤
T (T + 1)

2
−

q(q + 1)

2
,

13To see why the second moment of γi is conditional on S in Theorem 1, note that, given Ωi,
XiE (γiγ

′
i|Wi)X

′
i is identified by (19). As Xi has full-column rank in S, identification of E (γiγ

′
i|Wi, S)

follows.
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with equality when S2 selects all T (T + 1)/2 non-redundant elements of vec (Ωi).
14 So, the

order condition associated with (24) is:

T (T + 1)

2
−

q(q + 1)

2
≥ m. (27)

In particular, when errors are MA(r) we need that

T (T + 1)

2
−

q(q + 1)

2
≥ (r + 1)

(
T −

r

2

)
. (28)

The left-hand-side in (28) is decreasing in q, while the right-hand side is increasing in r. So,

equation (28) highlights a trade-off between heterogeneity and error persistence: the higher

the number of individual-specific effects, the smaller the order of the moving-average process

compatible with identification for given T .

Lastly, note that, instead of working with the level equations (19), one could work with

the subset of within equations obtained by taking covariances in (3). The within covariance

restrictions do not depend on errors vit being mean independent of individual effects γi. In

the supplementary appendix, we show that working with within equations alone requires

stronger conditions for identification.

AR restrictions. Autoregressive errors are very popular in applied work, and are not

covered by assumption (20) because autoregressive processes are correlated at all lags. Nev-

ertheless, a similar approach can be adopted to study identification.15 To see how, consider

the following model:

vit = ρ1tvi,t−1 + ...+ ρptvi,t−p + uit, t = p+ 1, ..., T, (29)

where ρ1,p+1, ..., ρpT are unrestricted parameters and ui,p+1, ..., uiT satisfy Assumption 2. In

the case where uit is MA(r), vit given by (29) follows an ARMA(p,r) process.

Letting ui = (vi1, ..., vip, ui,p+1, ..., uiT )
′, (29) may be written asR (ρ)vi = ui, whereR (ρ)

is a T × T matrix that depends on ρ =
(
ρ1,p+1, ..., ρpT

)′
. Assuming R (ρ) non-singular, we

have:

vec (Ωi) = [R (ρ)⊗R (ρ)]−1 vec (Var (ui|Wi)) .

14A proof of this statement may be found in the supplementary appendix.
15However, contrary to the moving average case, an autoregressive model with unobserved heterogeneity

does not generally imply an autoregressive structure for Var (vi| Wi).
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Let us denote as ξ the free parameters ofVar (ui|Wi), and denote θ = (ξ′,ρ′)
′
. Assuming

that there is no discontinuity of rank at the truth, a necessary and sufficient condition for

local identification is:

rank

(
Mi

∂ [R (ρ)⊗R (ρ)]−1 vec (Var (ui|Wi))

∂θ′

)
= dim (θ) . (30)

In particular, leaving covariances involving initial conditions unrestricted, a necessary

condition for (30) is:

(T − p)(T − p+ 1)

2
−

q(q + 1)

2
≥ m+ dim (ρ) .

So the maximal q that can be allowed for is inversely related to p. In the case where uit is

MA(r), q is inversely related to both p and r.

3.2 Examples

Example 1. The first example we consider is a random trend model:

yit = αi + βit+ vit, i = 1, ..., N, t = 1, ..., T, (31)

where vit are serially correlated. Model (31), or a restricted version of it (e.g., with βi = 0),

is often used to model the dynamics of earnings.

Suppose that errors are AR(1):

vit = ρvi,t−1 + uit,

so:

yit − ρyi,t−1 = (1− ρ)αi + βi (t− ρ(t− 1)) + uit.

It can be shown that, when ρ is assumed known, T = 4, and ui2, ui3 and ui4 are assumed

uncorrelated, their variances are identified from covariance restrictions, together with the

covariance matrix of individual effects. This is consistent with the rank condition (24) being

satisfied for the transformed model. In contrast, from (30) neither ρ nor the covariance

parameters are identified when T = 4, though they are (generally) identified when T = 5.

See the supplementary appendix for details.
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Example 2. The second example is a model with a binary regressor siℓ ∈ {0, 1}:

yiℓ = αi + βisiℓ + viℓ, i = 1, ..., N, ℓ = 1, ..., L. (32)

This is the model we use in our empirical application, where siℓ denotes the smoking status

of mother i during the pregnancy of child ℓ, and yiℓ is the birth weight of child ℓ.

Let L = 3, and consider a “treatment” sequence (si1, si2, si3) = (1, 0, 0). It can be shown

that, when errors are uncorrelated with unrestricted variances, Var (βi) and Var (vi1) are not

separately identified from covariance restrictions in levels. Although the order condition for

identification is satisfied,16 the rank condition is not. If we impose the stationarity restriction

that all three variances of vi1, vi2 and vi3 are equal, then they are identified along with the

covariance matrix of individual effects. In addition, Var (vi3 − vi2) is identified from within

restrictions alone.

3.3 Efficiency bounds

Here we show how Chamberlain (1992)’s analysis can be extended to obtain a joint infor-

mation bound for common parameters, means and variances of random coefficients, and a

parameterization of the variances of errors. Let us write down model (1) as:

E (yi|Wi,γi) = Ziδ +Xiγi (33)

together with a specification of the conditional variance of vi given Wi and γi:

E (vi ⊗ vi|Wi,γi) = ψi (φ) , (34)

where ψi is a T 2 × 1 vector of functions of a parameter φ, which may also depend on Wi.

However, we assume that the variance of vi does not depend on γi.
17

Using (34) together with Assumption 1 we obtain the following expression for the condi-

tional second-order moments of yi:

E (yi ⊗ yi|Wi,γi) = (Ziδ ⊗ Ziδ) +ψi (φ) + (Xi ⊗ Ziδ + Ziδ ⊗Xi)γi

+(Xi ⊗Xi) (γi ⊗ γi) . (35)

16As: 3(3 + 1)/2− 2(2 + 1)/2 = 3, see equation (28).

17In cases where E (vi ⊗ vi|Wi,γi, ξi) = Γ (Wi,φ)

(
γi

ξi

)
, we could extend the model and apply a

similar approach treating ξi as additional random coefficients.
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Stacking (33) and (35) together yields

E (y∗
i |Wi,γ

∗
i ) = d (Wi,θ) +R (Wi,θ)γ

∗
i , (36)

where θ = (δ,φ), and

y∗
i =

(
yi

yi ⊗ yi

)
, γ∗

i =

(
γi

γi ⊗ γi

)
, d (Wi,θ) =

(
Ziδ

(Ziδ ⊗ Ziδ) +ψi (φ)

)
,

and

R (Wi,θ) =

(
Xi 0

(Xi ⊗ Ziδ + Ziδ ⊗Xi) (Xi ⊗Xi)

)
.

Equation (36), which combines mean and covariance restrictions in levels, is a special case

of model (8).18 Therefore, the optimal moments (and associated semiparametric bound) for

δ, φ, and γ∗ = E (γ∗
i ) are of the form given in expression (18).

Lastly, here also finiteness of the variance bound relies on a moment existence condition,

namely: E
[(
det
(
R′

i [V
⋆
i ]

−1 Ri

))−1
]
< ∞, where Ri = R (Wi,θ) and V⋆

i = Var (y∗
i |Wi). If

this moment is not finite, identification of the variance of individual effects is irregular and

root-N consistent estimation is not possible.

4 Identification of distributions

In this section, we turn to the identification of the distribution functions of effects and errors.

4.1 Identification result

We will work under the following conditional independence assumption.

Assumption 3 (conditional statistical independence)

γi and vi are statistically independent given Wi. (37)

Conditional independence restrictions are commonly made in the literature on nonpara-

metric identification and estimation (e.g., Hu and Schennach, 2008, and references therein).

Moreover, restriction (37) is in the nature of a fixed-effects approach, where γi represent

18The only difference is that E (γ∗
i |Wi) is not fully unrestricted, as its components are first and second

moments of the same underlying γi. However, these extra restrictions imply moment inequalities that do
not affect the bound.
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individual-specific parameters such as preferences or technology. However, note that As-

sumption 3 is more restrictive than mean independence (Assumption 1) as, for example, it

rules out the presence of individual effects in the conditional variance of vi.

Relaxing conditional independence would require the use of very different methods for

identification and estimation. To see why, note that linearity and independence imply that

the distribution function of the data may be written as:

fyi|Wi
(y|w) =

∫
fvi|Wi

(y − z′δ − x′γ|w) fγi|Wi
(γ|w) dγ, (38)

where the integral is taken over the support of individual effects. Thus, fyi|Wi
is a convolution

of fvi|Wi
and fγi|Wi

. The analytical identification results and estimators below are based on

this property. If one were to relax Assumption 3, the convolution property would be lost,

and the problem of recovering fvi|Wi
and fγi|Wi

in (38) would become a challenging inverse

problem.

To derive the identification results, it is very convenient to work with characteristic

functions. Let (Y,X) be a pair of random vectors, Y ∈ RL, and let j be a square root of

−1.19 The conditional characteristic function of Y given X = x, is defined as:

ΨY|X(τ |x) = E (exp(jτ ′Y)|X = x) , τ ∈ RL.

Some useful properties of characteristic functions are listed in the supplementary appendix.

We will impose the following technical condition on the characteristic functions of indi-

vidual effects and errors.

Assumption 4 (nonvanishing characteristic functions)

The characteristic functions Ψγi|Wi
and Ψvi|Wi

are almost everywhere nonvanishing on

R
q and R

T , respectively.

To provide some intuition for this assumption note that, since Xiγi and vi are condi-

tionally independent, we have for all τ ∈ RT :

Ψyi−Ziδ|Wi
(τ |Wi) = Ψγi|Wi

(X′
iτ |Wi)Ψvi|Wi

(τ |Wi). (39)

Hence, when evaluated at a point where Ψvi|Wi
vanishes, equation (39) is not directly infor-

mative about Ψγi|Wi
.

19We work with the notation j2 = −1 instead of i2 = −1 to avoid confusion with the index of individual
units.
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The assumption that the characteristic function of errors has no real zeros is a common

regularity condition in the literature on nonparametric deconvolution. Most well-known

families of distributions satisfy this property, the normal being an important special case.

However, several distributions (uniform, symmetrically truncated normal) do not satisfy

Assumption 4.20

Under Assumption 4 we can take logarithms in (39) and obtain:

lnΨyi−Ziδ|Wi
(τ |Wi) = lnΨγi|Wi

(X′
iτ |Wi) + lnΨvi|Wi

(τ |Wi). (40)

Given that conditional second-order moments exist, the log-characteristic functions in this

expression are second-order differentiable (e.g., Székely and Rao, 2000). Taking second

derivatives we obtain:21

∂2 lnΨyi−Ziδ|Wi
(τ |Wi)

∂τ∂τ ′
= Xi

(
∂2 lnΨγi|Wi

(X′
iτ |Wi)

∂ξ∂ξ′

)
X′

i

+
∂2 lnΨvi|Wi

(τ |Wi)

∂τ∂τ ′
, τ ∈ RT . (41)

Equation (41) nicely extends covariance restrictions to restrictions on the entire distri-

bution of the error terms. Indeed, evaluating (41) at τ = 0 yields:

Var (yi − Ziδ|Wi) = Xi Var (γi|Wi)X
′
i +Ωi.

Now, as in the case of variances, it is not possible to solve for Ψγi|Wi
and Ψvi|Wi

in (41)

when the dependence structure of errors is left unrestricted. We study identification under

the following assumption.

Assumption 5 (MA with independent shocks)

There exists an m-dimensional vector of functions ωi(τ ) (τ ∈ RT ), possibly dependent

on Wi, and a known (selection) matrix S2 such that:

vec

(
∂2 lnΨvi|Wi

(τ |Wi)

∂τ∂τ ′

)
= S2ωi(τ ), τ ∈ RT . (42)

The spirit of Assumption 5 is similar to the moving-average restrictions of Assumption 3.

Indeed, if one imposes (42) at τ = 0 only, then the two assumptions coincide. In particular,

20Recently, Carrasco and Florens (2009) and Evdokimov and White (2010) have studied ways to relax the
assumption of nonvanishing characteristic functions in deconvolution contexts.

21While τ ∈ RT denotes a generic argument of Ψyi−Ziδ|Wi
(or Ψvi|Wi

), ξ ∈ Rq denotes a generic argument
of Ψγ

i
|Wi

. Similarly ζ ∈ RT+r in (44) will denote a generic argument of Ψui|Wi
.
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the selection matrix in the two assumptions is the same. In addition, while Assumption 3

is consistent with a moving-average process with uncorrelated latent disturbances, Assump-

tion 5 holds when vit follows a moving average process of order r of the form (21), where

ui,1−r, ..., uiT are mutually independent given regressors.

To see this last part, note that if ui = (ui,1−r, ..., uiT )
′, then (21) may be written as:

vi = Λui, (43)

where each element of the T × (T + r) matrix Λ is either 0 or one of the θ parameters that

appear in (21). Taking second derivatives of log-characteristic functions in (43) yields:

∂2 lnΨvi|Wi
(τ |Wi)

∂τ∂τ ′
= Λ

(
∂2 lnΨui|Wi

(Λ′τ |Wi)

∂ζ∂ζ ′

)
Λ′, τ ∈ RT . (44)

Because of independence, the central matrix on the right-hand side of (44) is diagonal. So,

it follows from the MA structure that
∂2 lnΨvi|Wi

(τ |Wi)

∂τ t∂τ t′
= 0 if |t′ − t| > r. Hence, Assumption

5 is satisfied for the same selection matrix as in Assumption 3.

The following theorem shows that, when Assumption 5 holds and the rank condition (24)

is satisfied, the characteristic functions of individual effects and errors are point-identified.

As distributions are uniquely determined by their characteristic functions,22 the identification

of the conditional distribution functions follows.

Theorem 2 (distribution functions)

Let Assumptions 1, 3, 4 and 5 hold, and suppose that δ is identified. In addition, suppose

that the rank condition (24) is satisfied. Then Ψvi|Wi
and Ψγi|Wi,S are identified. As a

consequence, the distribution functions fvi|Wi
and fγi|Wi,S are identified.

The identification of the second derivatives of log-characteristic functions follows very

closely that of variances in Section 3. This is due to the fact that the rank condition for

identification, equation (24), is the one that was needed for the identification of variances

under MA restrictions.23 Lastly, note that extensions to autoregressive and ARMA processes

with independent underlying innovations can be done along the lines of Section 3.

4.2 Examples

We end this section by considering two examples.

22This uniqueness result holds for discrete or continuous distributions (e.g., Dudley, 2002, p.303).
23A technical point is that lnΨvi|Wi

is uniquely determined by its second derivative and the fact that
∂ lnΨvi|Wi

(0|Wi) /∂τ = E (vi|Wi) = 0.
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Kotlarski’s model. We start by considering the following simple model with repeated

measurements:
{

yi1 = αi + vi1
yi2 = αi + vi2,

where αi, vi1 and vi2 are mutually independent.

In this case, Xi = (1, 1)′, so Mi = I4 −
1
4
J4 (independent of i), where J4 is the 4 × 4

matrix of ones. The selection matrix of Assumption 5 is S2 =

(
1 0 0 0
0 0 0 1

)′

.

It is easy to see that (41) implies the following restrictions on log-characteristic functions

of errors:

∂2

∂t21
lnΨvi1(t1) =

∂2

∂t21
lnΨyi(t1, t2)−

∂2

∂t1∂t2
lnΨyi(t1, t2)

∂2

∂t22
lnΨvi2(t2) =

∂2

∂t22
lnΨyi(t1, t2)−

∂2

∂t1∂t2
lnΨyi(t1, t2).

Those are the restrictions used in Kotlarski (1967)’s proof of the nonparametric iden-

tification of the marginal distribution functions of αi, vi1 and vi2. Li and Vuong (1998)

have used those restrictions in estimation. Horowitz and Markatou (1996) construct a dif-

ferent estimator, using a subset of those restrictions based on the within transformation

yi2 − yi1 = vi2 − vi1.

This discussion shows that the identification results in this section can be seen as exten-

sions of Kotlarski (1967)’s result. The extension is done in four directions: the multivariate

conditional distribution of some components (including the individual effects) is left unre-

stricted, errors are allowed to be correlated in an ARMA fashion, conditioning regressors are

present, and there are unknown common parameters.

Example 2. A similar insight applies to Example 2, where we assume that errors are

independent of each other, and where we take T = 3 and si = (1, 0, 0)′. Here the relevant

selection matrix is:

S2 =




1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1




′

.

Moreover, one obtains, using (41):

3
∂2

∂t22
lnΨvi2(t2)−

∂2

∂t23
lnΨvi3(t3) = 3

∂2

∂t22
lnΨyi(t1, t2, t3)− 2

∂2

∂t2∂t3
lnΨyi(t1, t2, t3)

−
∂2

∂t23
lnΨyi(t1, t2, t3),
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and:

3
∂2

∂t23
lnΨvi3(t3)−

∂2

∂t22
lnΨvi2(t2) = −

∂2

∂t22
lnΨyi(t1, t2, t3)− 2

∂2

∂t2∂t3
lnΨyi(t1, t2, t3)

+3
∂2

∂t23
lnΨyi(t1, t2, t3).

We noted in Section 3 that the rank condition (24) is not satisfied when the distributions

of vi1, vi2 and vi3 are different. It is thus not surprising that Ψvi1 does not appear in

this system. Assuming that the distributions of vi1, vi2, and vi3 are the same, however,

identification of their characteristic function easily follows. Indeed, this model can be seen

as an augmented version of Kotlarski’s with an extra equation:





yi1 = αi + βi + vi1
yi2 = αi + vi2
yi3 = αi + vi3.

5 Estimation

In this section we discuss estimation of parameters, moments, and densities using an i.i.d.

sample {yi,Zi,Xi}, i = 1, ..., N . We will estimate the moments and distributions of individ-

ual effects on a subpopulation of individuals. With discrete covariates Xi, the subpopulation

S contains individuals for which det [X′
iXi] 6= 0. When covariates are continuous, we let h > 0

and define Sh as the subpopulation for which det [X′
iXi] > h. The estimators we propose

will be consistent as N tends to infinity, for fixed h. In the rest of this section (and with

some abuse of notation) we will simply denote Sh as S.24

5.1 Common parameters and average effects

Using (18), the optimal moments for δ and γ = E (γi|S) corresponding to model (1) can be

written as:

E
[
Z′

iA
′
i (AiViA

′
i)
−1

Ai (yi − Ziδ)
]

= 0

E
[(
X′

iV
−1
i Xi

)−1
X′

iV
−1
i (yi − Ziδ −Xiγ)

∣∣∣ S
]

= 0,

24As we argued in Section 2, when covariates are continuous it should be possible to extend the results of
Graham and Powell (2008) and let h tend to zero at a suitable rate in order to obtain consistent estimates
of moments of individual effects on the whole population of individuals.
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where Ai is a (T − q)×T orthogonal decomposition of Qi = IT −Xi (X
′
iXi)

−1 X′
i, and where

Vi= Var (yi|Wi). Thus, given any conformable matrix Ψi, δ can be estimated as:

δ̂ =

(
N∑

i=1

Z′
iA

′
i (AiΨiA

′
i)
−1

AiZi

)−1 N∑

i=1

Z′
iA

′
i (AiΨiA

′
i)
−1

Aiyi. (45)

When Ψi = IT , δ̂ is the OLS estimator of δ in the within-group equations (3). When

Ψi is such that (AiΨiA
′
i)
−1 = (AiViA

′
i)
−1, δ̂ coincides with the infeasible GLS estimator of

δ. To construct a feasible version that is semiparametric efficient, the quantity AiViA
′
i =

E (Aiviv
′
iA

′
i|Wi) needs to be replaced by a consistent estimator. Note that Aivi = Aiyi −

AiZiδ. Therefore, this is a standard application of semiparametric GLS as in Robinson

(1987).25

Likewise, a consistent method-of-moments estimator of γ is the weighted mean-group

estimator:

γ̂ =

∑N

i=1 di (h)
(
X′

iΨ
−1
i Xi

)−1
X′

iΨ
−1
i

(
yi − Ziδ̂

)

∑N

i=1 di (h)
, (46)

where di (h) = 1 {det (X′
iXi) > h}. In view of the discussion in the supplementary appendix,

when Ψi is such that
(
X′

iΨ
−1
i Xi

)−1
X′

iΨ
−1
i =

(
X′

iV
−1
i Xi

)−1
X′

iV
−1
i , the variance matrix of

γ̂ attains the efficiency bound.26

A similar approach may be adopted to deal with Chamberlain’s model given by equation

(8). A method-of-moment estimator of θ based on (15) will be consistent. A particular choice

for the matrix Qi (θ) or its orthogonal decomposition yields semiparametric efficiency. Note

that, in contrast, the fixed-effects estimator of θ is inconsistent in general.27

Projection coefficients. Turning to projection coefficients, Corollary 1 shows that the

coefficients estimates obtained when regressing fixed effects estimates:

γ̂i = (X′
iXi)

−1
X′

i

(
yi − Ziδ̂

)
,

on a set of strictly exogenous regressors Fi, yields consistent estimates for the coefficients of

the projection of the population individual effects γi on the regressors Fi. However, because

25IfΩi = Ω (conditional homoskedasticity of vi with respect toWi), a feasible GLS estimator that replaces

AiViA
′
i with AiΩ̃A′

i, where Ω̃ = 1

N

∑N

i=1

(
yi − Ziδ̃

)(
yi − Ziδ̃

)′
, would be asymptotically efficient.

26Thus, feasible semiparametric efficient estimation of mean effects requires to estimate the conditional
variance Var (yi|Wi).

27The key difference with the linear model (1)– where the fixed-effects estimator is consistent– is the
dependence of B (Wi,θ) on the common parameters. In such a situation we can see from (18) that optimal
estimation requires not only estimates of Vi, but also of E (γi|Wi).
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common parameters δ̂ have been estimated beforehand, the standard errors of the estimates

of the projection coefficients need to be corrected. In particular, this point applies to the

mean-group estimator of the unconditional mean γ = E (γi|S), given by (46). We provide

corrected formulas in the supplementary appendix.

Interestingly, the regression-provided R2 in the regression of γ̂i on Fi is inconsistent for

the population R2 in the regression of γi on Fi, with a downward bias. The reason is that

the denominator of the R2 is the variance of individual effects, which is overestimated by

the variance of γ̂i. In order to compute a correct R2, we need to consistently estimate the

variance of γi, which we discuss next.

5.2 Variances

We now turn to estimation of variances under the conditions of Theorem 1, that is under

MA-type restrictions on the variance matrix of errors. The extension to autoregressive or

ARMA structures presents no difficulty and will not be detailed here. In the following, A†

denotes the Moore-Penrose inverse of A.

The following estimator of the unconditional variance matrix of errors, based on (23),

uses covariance restrictions in levels:

vec
(
V̂ar (vi)

)
=

1

N

N∑

i=1

S2 (MiS2)
† Mi (v̂i ⊗ v̂i) , (47)

where Mi is given by (22), and where we have denoted: v̂i = yi − Ziδ̂.

V̂ar (vi) given by (47) will be consistent as long as (20) is satisfied. In the particular

case where errors are i.i.d. with variance σ2, (25) motivates estimating σ2 as:

σ̂2 =
1

N (T − q)

N∑

i=1

(
yi − Ziδ̂

)′
Qi

(
yi − Ziδ̂

)

=
1

N (T − q)

N∑

i=1

v̂′
iQiv̂i. (48)

The first-order asymptotic distributions of (47) and (48) can be easily derived. Standard

arguments show that they coincide with the distribution treating common parameters δ

as known. Note that, while σ̂2 is non-negative by construction, V̂ar (vi) in (47) is not

necessarily non-negative definite.

Turning to estimation of the variance of individual effects, a consistent estimator based
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on (26) is:

vec
(
V̂ar (γi|S)

)
=

∑N

i=1 di (h) (γ̂i − γ̂)⊗ (γ̂i − γ̂)∑N

i=1 di (h)

−

∑N

i=1 di (h) (Hi ⊗Hi)S2 (MiS2)
† Mi [v̂i ⊗ v̂i]∑N

i=1 di (h)
.

(49)

Note that, as in the case of the variance of errors, the variance estimator V̂ar (γi|S) in (49)

is not necessarily non-negative definite.

In the special case where Ωi = σ2(Wi)IT , an alternative estimator is:

V̂ar (γi|S) =

∑N

i=1 di (h) (γ̂i − γ̂) (γ̂i − γ̂)
′

∑N

i=1 di (h)
−

∑N

i=1 di (h) v̂
′
iQiv̂i (X

′
iXi)

−1

(T − q)
∑N

i=1 di (h)
. (50)

Lastly, if in addition σ2(Wi) = σ2 is independent ofWi then we can estimate the variance

of γi by:

V̂ar (γi|S) =

∑N

i=1 di (h) (γ̂i − γ̂) (γ̂i − γ̂)
′

∑N

i=1 di (h)
− σ̂2

∑N

i=1 di (h) (X
′
iXi)

−1

∑N

i=1 di (h)
, (51)

where σ̂2 is given by (48). The estimator in (51) was introduced by Swamy (1970). Note

that it is inconsistent in general if vit is conditionally heteroskedastic. In addition, both

estimators given by (50) and (51) will be inconsistent if errors are not mutually uncorrelated

given regressors.

Remark 1 (testing the covariance structure of errors). In practice, one may wish

to construct a specification test of the order of the MA process of the error terms. This is of

special importance in order to estimate the variance of individual effects, as misspecifying

the form of the variance matrix of errors would result in inconsistent estimates. A test

of Assumption 2 may be based on the following overidentifying restrictions, which are an

immediate consequence of (23):

MiE [(yi − Ziδ)⊗ (yi − Ziδ) |Wi] = MiS2 (MiS2)
† MiE [(yi − Ziδ)⊗ (yi − Ziδ) |Wi] .

Remark 2 (efficient estimation of variances). We have seen in Subsection 3.3 that

model (1) with parametric covariance restrictions on errors can be put into the framework

of Chamberlain (1992), where the parameters of interest are common parameters, mean and

variances of individual effects, and variances of errors.
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Let us assume to simplify the notation that S is the full population. Guided by the form

of the optimal moments, we can consider estimators θ̂ =
(
δ̂, φ̂

)
that solve the following

estimating equations (using the notation of Subsection 3.3):

1

N

N∑

i=1

{
∂

∂θ′
[d (Wi,θ) +R (Wi,θ)hi]

}′

A′
i (AiΨiA

′
i)
−1

Ai [y
∗
i − d (Wi,θ)] = 0

for some choice of Ψi and hi. The matrix Ai depends on θ and is an orthogonal decompo-

sition of I−Ri (R
′
iRi)

−1 R′
i, where Ri is a shorthand for R (Wi,θ).

When Ψi is such that AiΨiA
′
i = AiVar (y∗

i |Wi)A
′
i and hi = E (γ∗

i | Wi), the estimator

θ̂ attains the asymptotic variance bound. A feasible version will replace population by

estimated quantities. In particular, note that the conditional mean E (γ∗
i | Wi) can be

expressed in terms of observable quantities since:

E (γ∗
i | Wi) = E

[
(R′

iRi)
−1

R′
i (y

∗
i − d (Wi,θ)) | Wi

]
.

Likewise, the optimal moments result suggests estimators of γ∗ = E (γ∗
i ) of the form

γ̂∗ =
1

N

N∑

i=1

(
R′

iΨ
−1
i Ri

)−1
R′

iΨ
−1
i [y∗

i − d (Wi,θ)] .

The estimator γ̂∗ attains the efficiency bound when Ψi satisfies:

(
R′

iΨ
−1
i Ri

)−1
R′

iΨ
−1
i =

(
R′

iVar (y∗
i |Wi)

−1 Ri

)−1
R′

iVar (y∗
i |Wi)

−1 .

5.3 Densities

When covariates are discrete, the analytical formulas based on characteristic functions that

we derived in Section 4 may be used to construct consistent estimators of distributions, as

we now explain.

When errors vit are independent over time, Assumption 5 holds for the T 2 × T selection

matrix S2 that has zeros everywhere except at positions (1, 1), (T + 2, 2),..., (T 2, T ). We

thus estimate the second derivatives of log-characteristic functions of errors as:

d2 ln Ψ̂vit|Wi
(τ t|w)

dτ 2
= m′

it vec

(
∂2 ln Ψ̂v̂i|Wi

(τ |w)

∂τ∂τ ′

)
, τ = (τ 1, ..., τT )

′ ∈ RT , (52)

where m′
it is the tth row of the T × T 2 matrix (MiS2)

† Mi, and where

Ψ̂v̂i|Wi
(τ |w) =

∑N

i=1 1 {Wi = w} exp (jτ ′v̂i)∑N

i=1 1 {Wi = w}
(53)
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is the empirical characteristic function of v̂i = yi − Ziδ̂, in a cell w.28

The characteristic function of vit is then estimated by successive integration, as:

Ψ̂vit|Wi
(τ |w) = exp

(∫ τ

0

∫ ν

0

d2 ln Ψ̂vit|Wi
(v|w)

dτ 2
dvdν

)
, τ ∈ R, (54)

where d2 ln Ψ̂vit|Wi
/dτ 2 is given by (52). Note that, by construction, Ψ̂vit|Wi

(0|w) = 1 and

d ln Ψ̂vit|Wi
(0|w)/dτ = 0.

Next, we estimate the characteristic function of γi as:

Ψ̂γi|Wi
(ξ|w) =

Ψ̂γ̂i|Wi
(ξ|w)

Ψ̂vi|Wi
(H′

iξ|w)
. (55)

When errors are independent, Ψ̂vi|Wi
(τ |w) =

∏T

t=1 Ψ̂vit|Wi
(τ t|w), where Ψ̂vit|Wi

is given by

(54). Equation (55), which relies on statistical independence (Assumption 3), relates the

characteristic function of individual effects γi to that of least squares estimates γ̂i.

More generally, when vit follows an MA process with latent disturbances uis, where

s = 1 − r, ..., T , a formula similar to (52) may be used to compute estimates of second

derivatives d2 ln Ψ̂uis|Wi
/dζ2, and thus characteristic function estimates Ψ̂uis|Wi

by successive

integration. In this case, Ψ̂vi|Wi
(τ |w) = Ψ̂ui|Wi

(Λ̂′τ |w), where Λ̂ is a consistent estimate of

the T × (T + r) matrix Λ that defines the MA structure, see (43).29

Given estimates of the characteristic functions, densities of absolutely continuous individ-

ual effects and errors may be estimated by inverse Fourier transformation (with trimming).30

A nonparametric kernel deconvolution estimator of the conditional density of γi is:

f̂γi|Wi
(γ|w) =

1

(2π)q

∫

Rq

KN(ξ) exp(−jξ′γ)Ψ̂γi|Wi
(ξ|w)dξ, (56)

where Ψ̂γi|Wi
is given by (55), and where KN(ξ) is a truncation factor depending on the

sample size N whose values go to zero when |ξ| tends to infinity. An example is KN(ξ) =

1 {ξ ∈ [−TN , TN ]
q}, where TN diverges to infinity with N .

The asymptotic properties of nonparametric kernel deconvolution estimators are well

studied (Carroll and Hall, 1988, Fan, 1991). Although we do not derive the asymptotic

28Note that (52) provides overidentifying restrictions that may be used to improve precision, as it holds
for any vector τ ∈ RT with tth element equal to τ t. A possible choice is τ = (0, ..., 0, τ t, 0, ..., 0)

′.
29A consistent estimate Λ̂ may be obtained using a minimum-distance approach that exploits the covari-

ance restrictions derived in Section 3.
30Note that, while the identification result of Theorem 2 holds for discrete or continuous random variables,

the application of the inverse Fourier transformation requires continuity.
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properties of the density estimator (56) in this paper, consistency and rates of convergence

may be obtained using results from the existing literature (in particular, Bonhomme and

Robin, 2010). As can be seen from (55), the rates will depend on the speed at which

Ψvi|Wi
(H′

iξ|w) tends to zero as |ξ| tends to infinity.

A special case. Consider the the special case of Example 2, which is the setting of our

empirical application in the next section:

yiℓ = αi + βisiℓ + viℓ, ℓ = 1, ..., L, (57)

where we assume that errors viℓ are i.i.d. given (si1, ..., siL). Including strictly exogenous

regressors poses no difficulty, as common parameters can be estimated beforehand.31

Consider a covariates sequence s = (s1, ..., sL)
′. We focus on sequences where siℓ changes

over time. We have:

∆yiℓ = ∆viℓ, if ∆siℓ = 0, (58)

∆siℓ∆yiℓ = βi +∆siℓ∆viℓ, if ∆siℓ 6= 0. (59)

As errors are i.i.d. given si = s, it follows that all ±∆viℓ, ℓ = 2, ..., L, have the same dis-

tribution. So one can interpret (59) as a simple deconvolution equation, where the right-hand

side is the sum of the unobserved βi, and the independent error ±∆viℓ. In addition, because

of equation (58), we also observe a random sample from ∆viℓ. In particular, the characteris-

tic function of ∆viℓ may be simply estimated as the empirical characteristic function of ∆yiℓ,

on the subsample of observations such that ∆siℓ = 0.32

Continuous covariates. The restrictions that motivate the above estimators are condi-

tional on covariates. When covariates are continuously distributed, the conditioning must

be dealt with. A natural approach would be to rely on nonparametric kernel regression

estimators in the construction of the empirical characteristic functions, see (53). However,

the asymptotic properties of these conditional deconvolution estimators are not a direct

application of existing results in the literature, and are beyond the scope of this article.33

31In particular, common regressors Zi in (1) may be continuously distributed. The important requirement
here is that Xi (si in the application) be discrete.

32The previous simplification facilitates the estimation of the marginal density of βi. If the joint density
of (αi, βi) is sought, the general discussion applies.

33Evdokimov (2009) recently derived the rate of convergence of a conditional nonparametric deconvolution
estimator in a model with a scalar individual effect.
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6 The effect of smoking on birth weight

In this section we study the effect of smoking during pregnancy on birth outcomes, building

on Abrevaya (2006). Stata codes are available online.34

6.1 Model and data

We estimate the following model:

yiℓ = αi + βisiℓ + ziℓ
′δ + viℓ, i = 1, ..., N, ℓ = 1, ..., L, (60)

where i and ℓ index mothers and children, respectively.

In this equation, the dependent variable yiℓ is the weight at birth of child ℓ of mother i,

siℓ is the smoking status of mother i when she was pregnant of child ℓ (siℓ = 1 indicating

that the mother was smoking), and ziℓ gathers other determinants of birth weight.

Weight at birth strongly correlates with outcomes later in life. For this reason, the

determinants of birth weight have been extensively studied.35 Abrevaya (2006), using a panel

data approach, finds strong negative effects of smoking on birth weights. He assumes that

βi is homogeneous across mothers in (60). Here we take advantage of the panel dimension

to account for heterogeneity in the smoking effect.

The parameters αi and βi in model (60) are mother-specific effects. They stand for

persistent health characteristics of the mother, which could be partly genetic. It is possible

to interpret model (60) as describing a production function, the output of which being the

child and the producer being the mother. The production technology is then represented

by the mother-specific characteristics αi and βi. These characteristics are supposed to stay

constant between births. In addition, they may be correlated with smoking status. In

particular, a mother could decide not to smoke if she knows that her children will suffer from

it (i.e., if she has a very negative βi).

However, strict exogeneity (Assumption 1) requires that mothers will not change their

smoking behavior because one of their children had a low birth weight, as the shocks viℓ

are assumed uncorrelated with the sequence of smoking statuses. This assumption will fail

to hold if for example mothers do not know their αi and βi before they have had a child,

and learning takes place over time. This is a common concern when estimating any type of

34At: http://www.cemfi.es/∼bonhomme/Random codes.zip.
35See Rosensweig and Wolpin (1991) for a study of various determinants. Studies of the effect of smoking

during pregnancy on birth weight are Permutt and Hebel (1989), and Evans and Ringel (1999).
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production function, where there can be feedback effects on the choice of inputs. We will

attempt to relax the strict exogeneity assumption at the end of this section.

Data. We use a sample of mothers from Abrevaya (2006). Abrevaya uses the Natality

Data Sets for the US for the years 1990 and 1998. As there are no unique identifiers in these

data, he develops a method to match mothers to children, in particular focusing on pairs of

states of birth (for mother and child) that have a small number of observations. Abrevaya

carefully documents the possible errors caused by this matching strategy. We will use the

“matched panel #3”, which is likely to be less contaminated by matching error.

This results in a panel dataset where children are matched to mothers. The determinants

ziℓ gathers determinants of birth weights that present between-children variation: the gender

of the child, the age of the mother at the time of birth, dummy variables indicating the

existence of prenatal visits, and the value of the “Kessner” index of the quality of prenatal

care (see Abrevaya, 2006, p.496).

To allow for heterogeneity, we focus on mothers who had at least 3 children during the

period (1989-1998). In the dataset, the number of children is exactly 3 per mother. In

addition, we need the smoking indicator siℓ to vary (at least once). So we only consider

mothers who changed smoking status between the three births. The final sample contains

1445 mothers.36

6.2 Results

Common parameters. We first estimate common parameters δ in (60). For this, we

use the generalized within-group estimator (45), with the identity as weighting matrix. The

results are shown in Table 1. Although they have the expected signs, the variables indicating

the number of prenatal visits and the quality of prenatal care are never significant. The only

significant covariate is the gender of the child, boys having higher birth weight.

Average effects. We now turn to mother-specific effects. Table 2 shows the estimates

of the moments of αi and βi. The mean smoking effect, computed using the mean-group

formula (46) with the identity as weighting matrix, is −161 grams. This represents a negative

36Descriptive statistics show that this subsample is somewhere in-between the subsample of women who
always smoked, and the one of women who never smoked. For example, women who smoke during a larger
number of pregnancies are younger on average, and their children have lower weight at birth.
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Table 1: Estimates of common parameters δ

Variable Estimate Standard error

Male 130 22.8
Age 39.0 32.0
Age-sq -.638 .577
Kessner=2 -82.0 52.7
Kessner=3 -159 81.9
No visit -18.0 124
Visit=2 83.2 53.9
Visit=3 136 99.2

Note: Estimates of δ using (45) with Ψi = IT . The dataset is the “Matched panel data #3” in

Abrevaya (2006). The sample only includes mothers who had three children and changed smoking

status between births (1445 mothers). Standard errors are clustered at the mother level.

and significant effect of smoking on birth weight. Note that this value is close to the fixed-

effects estimate obtained by Abrevaya: −144 g, when imposing homogeneity of the β’s in

model (60). In comparison, the mean of αi is 2782 g.

To assess the predictability of the mother-specific effects, we estimate the projection coef-

ficients in a regression of αi and βi on a set of mother-specific characteristics: the education

of the mother, her marital status, and the mean of the smoking indicators over the three

births.37 Results are given in Table 3.38

The estimates from the linear projection measure by how much the mother-specific effects

αi and βi correlate with observed covariates. As a result, they have no causal interpretation.

For example, Table 3 shows that black mothers have children with lower birth weight (lower

αi), though they seem to be less sensitive to smoking (higher βi). Also, the children of

mothers who smoke more have on average a lower αi. The R2 in the regressions are .113

and .021 for αi and βi, respectively. This shows that observed covariates explain little of the

variation in βi.
39 One can interpret this finding as a motivation for treating βi as unobserved

mother heterogeneity.

37None of the covariates in Table 3 varies across births. This is due to the way mother-births pairs are
matched in the dataset. See Abrevaya (2006).

38The coefficient estimates are simply calculated by regressing the fixed-effects estimates α̂i and β̂i on the
mother-specific covariates. Standard errors are corrected as explained in Subsection 5.1.

39Remark that the R2 needs to be corrected, as explained in Subsection 5.1. For comparison, the uncor-
rected R2 are .055 and .005 for αi and βi, respectively.
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Table 2: Moments of αi and βi

Moment Estimate Standard error

Means
Mean αi 2782 435
Mean βi -161 17.0

Variances (i.i.d. errors)
Variance αi 127647 15161
Variance βi 98239 21674
Covariance (αi, βi) -52661 14375

Variances (non stationary errors)
Variance αi 120423 24155
Variance βi 85673 34550
Covariance (αi, βi) -45437 24165

Note: Estimates of moments of αi and βi. The dataset is the “Matched panel data #3” in Abrevaya

(2006). The sample only includes mothers who had three children and changed smoking status

between births (1445 mothers). See the text for an explanation of the various estimators reported.

Standard errors are clustered at the mother level.
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Table 3: Regression of αi and βi on mother-specific characteristics

Variable Estimate Standard error

αi

High-school 15.1 42.7
Some college 38.5 55.3
College graduate 58.7 72.1
Married 3.51 34.6
Black -364 54.0
Mean smoking -161 83.9
Constant 2879 419

R2= .113

βi

High-school -15.9 42.8
Some college -15.9 42.8
College graduate 64.5 63.8
Married 31.9 41.8
Black 132 60.6
Mean smoking -49.8 101
Constant -172 67.1

R2= .021

Note: Estimates of projection coefficients of of αi and βi on mother-specific characteristics. The

dataset is the “Matched panel data #3” in Abrevaya (2006). The sample only includes mothers

who had three children and changed smoking status between births (1445 mothers). Standard

errors are clustered at the mother level.
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Variances. We now turn to variances of mother-specific effects. Rows 3 to 5 in Table 2

show the estimates of the coefficients of the variance matrix of (αi, βi) obtained from the

levels restrictions, see (49), assuming that errors are i.i.d. given covariates.40 Given the i.i.d.

assumption, the estimates are numerically equal to those using the Swamy formula (51).

Both αi and βi show substantial dispersion. In particular, the standard deviation of βi

is 313 g.41 This can be compared to the standard deviation of 628 g of the least squares

estimates β̂i. So in this example, removing the sample noise due to the very small number of

observations per mother (3 children) leads to a drastic decrease in the variance. In addition,

the estimate of the correlation between αi and βi is−.47. Given those estimates, the standard

deviation of αi + βi is estimated to be 347 g, compared to 357 g for αi. This means that the

two potential outcomes, for smokers and non smokers, have roughly the same variance.

Having three observations per mother, we need to impose strong restrictions on the

variance matrix of errors in order to preserve identification. Using restrictions in levels, one

can slightly relax the i.i.d. assumption. Rows 6 to 8 in Table 2 show variance estimates

under a weaker assumption, which permits the variances of errors for the first, second and

third children to be different. As we saw in Subsection 3.1, one cannot leave those three

variances unrestricted, however. In rows 6 to 8 we impose that the variance of errors for the

jth child is a + bj, where a and b are scalars.42 The results show that the variances of αi

and βi are not much affected. For example, the standard deviation of βi is now 292 g. This

suggests that the i.i.d. assumption is not strongly rejected on these data.

Density and quantiles. Lastly, we present the estimates of the density and quantile

function of the smoking effect βi. In Section 5.3 we argued that, when covariates are dis-

crete, densities of individual effects and errors may be estimated using nonparametric kernel

deconvolution techniques.

One specific feature of our application, however, is the small signal-to-noise ratio (that is,

Var(βi)/Var(∆viℓ)), roughly 23% according to our estimates. In Appendix B, we calibrate

a simulation exercise to our empirical results. We find that kernel deconvolution estimates

of the density are substantially biased when the signal-to-noise ratio is low. In addition, in

the same section of the appendix we describe a deconvolution algorithm recently proposed

40Hence, the selection matrix in (49) is S2 = vec (I3).
41Interestingly, when including the number of cigarettes smoked during pregnancy as an additional control,

the average smoking effect drops to −135 g, but the standard deviation remains almost unchanged.
42Technically, this translates into a different selection matrix S2 in (49).
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by Mallows (2007), and we compare its performance relative to kernel deconvolution. This

simple algorithm, based on elementary simulations and permutations of the sample, shows

remarkably good results. For this reason, the results we report on the left column of Figure

1 use Mallows’ algorithm. For comparison, density and quantile function of the least squares

estimates β̂i are reported on the right column of the figure.

We see that correcting for sample noise in the estimation has strong effects on density

and quantile estimates. The density of βi is much less dispersed than that of β̂i, and its mode

is much higher. In addition, our approach allows to estimate the smoking effect at various

quantiles. When corrected for the presence of sample noise, the effect is mostly negative

(up to percentile 75), and reaches very negative values for some mothers (around 400 g at

percentile 20). This points to strong heterogeneity in the effect, suggesting that the cost of

smoking (in terms of children outcomes) is very high for some mothers.

A surprising result apparent from the left column of Figure 1 is that for a high percent-

age of mothers (roughly 30%) smoking has a positive effect. This result could be due to

misspecification. For example, errors viℓ could be non i.i.d., in which case our correction to

estimate the dispersion of βi would be incorrect. With only three births per mother, there is

little that can be done to overcome this problem. Another possibility is that smoking status

is not strictly exogenous. The last part of this section focuses on this possibility.

6.3 Predeterminedness of smoking behavior

The previous results have been derived under the assumption that the smoking status is

strictly exogenous. We now relax the strict exogeneity assumption and assume that smoking

is predetermined in model (60), that is:

E (viℓ|αi, βi, siℓ, si,ℓ−1, ...) = 0. (61)

Condition (61) is less restrictive than the strict exogeneity condition (Assumption 1). In

particular, (61) could hold in contexts where mothers react to an unexpected birth outcome

by changing their smoking behavior.

We consider a simple version of the model without exogenous time-varying regressors.

Including time-varying regressors reduces the possibilities of point identification of effects

of interest, requiring to restrict the correlation between individual effects and regressors.
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Figure 1: Density and quantile estimates of the smoking effect

Density

βi β̂i

Quantile function

βi β̂i

Note: The left column shows the density and quantile function estimates of the smoking effect

βi, obtained using Mallows’ (2007) deconvolution algorithm. The right column shows density and

quantiles of the fixed effects estimates β̂i. Densities were estimated using a Gaussian kernel with

Silverman’s rule of thumb for the bandwidth. Thick solid lines represent point estimates, dashed lines

show 95% bootstrapped pointwise confidence bands (clustered at the mother level, 300 replications).
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Taking differences between child ℓ and child m < ℓ we have:

yiℓ − yim = βi [siℓ − sim] + viℓ − vim. (62)

It turns out that interesting average effects are point identified in this framework under

the predeterminedness condition (61). To see why, remark that, for k = 0, 1:

E (yiℓ − yim|sim = k) = E (βi [siℓ − sim] |sim = k) + E (viℓ − vim|sim = k)

= E (βi [siℓ − sim] |sim = k) ,

where we have used that, because of (61), both viℓ and vim are mean independent of sim.

Moreover, using that siℓ can take only two values:

E (βi [siℓ − sim] |sim = k) = (1− 2k) Pr (siℓ = 1− k|sim = k)E (βi|sim = k, siℓ = 1− k) .

Hence, the following average effects are identified:

E (βi|sim = k, siℓ = 1− k) = (1− 2k)
E (yiℓ − yim|sim = k)

Pr (siℓ = 1− k|sim = k)
. (63)

Table 4: Average smoking effects under predeterminedness

Predetermined Strictly exogenous

Smoking Estimate Standard error Estimate Standard error Number
sequence obs.

(0, 1, .) -85.0 43.0 -117 28.9 482
(1, 0, .) -221 36.4 -189 28.8 460
(., 0, 1) -168 38.0 -150 28.0 452
(., 1, 0) -139 45.9 -151 33.9 386
(0, ., 1) -123 33.9 -146 25.8 599
(1, ., 0) -218 37.7 -213 29.3 511

Note: Estimates of the mean of βi in model (60) without exogenous regressors, for various smoking

sequences. For example, (0, 1, .) refers to mothers who did not smoke during the pregnancy of their

first child, and smoked while pregnant of their second child. Estimates in column 1 are computed

under predeterminedness of the smoking status, while estimates in column 3 are computed under

strict exogeneity. Standard errors are clustered at the mother level.

We report empirical estimates of (63) in Table 4, for various values of m, ℓ and k. In the

same table (column 3), we report the estimates calculated under strict exogeneity.43 Table

43That is, computing the mean of β̂i on the various sequences of smoking statuses.
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4 shows a wide dispersion of average effects estimates between types of smoking sequences.

For example, the mean smoking effect is −221 g for mothers who quitted smoking between

the first and second child, while it is −85.0 g for mothers who started to smoke during

the second pregnancy, the difference between the two estimates being significant at 1%. A

similarly striking difference can be observed for women who changed their smoking status

between the first and third pregnancies (effects of −218 g and −123 g, respectively). The

effects for the second to third pregnancies are not statistically different (see rows 3 and 4).

These findings are consistent with mothers taking into account their own effect of smoking

on children outcomes (their βi) when deciding whether to smoke or not. Moreover, they

reinforce the evidence that the smoking effect is heterogeneous across mothers, in a setting

where smoking choices are predetermined.

Another interesting result from Table 4 is that, though quantitatively distinct, the results

obtained under predeterminedness and strict exogeneity of smoking behavior are qualitatively

similar. For example, under strict exogeneity the mean effect is −189 g for mothers who

quitted smoking between the first and second child, while it is−117 g for mothers who started

to smoke during the second pregnancy, the difference being significant at 5%. Indeed, none

of the effects obtained under strict exogeneity is statistically different from the one obtained

under predeterminedness (for a given smoking sequence) at the 5% level.44 This suggests

that the strict exogeneity assumption is not unreasonable on these data.

7 Conclusion

Documenting heterogeneity in behavior and response to interventions is one of the main

goals of modern econometrics. For this purpose, panel data have an important value-added

compared to (single or repeated) cross-sectional data. The reason is that by observing the

same units (individuals, households, firms...) over time, it is possible to allow for the presence

of unobserved heterogeneity with a clear empirical content. The main goal of this paper has

been to derive conditions under which the distribution of heterogeneous components can be

consistently estimated in a class of panel data models with multiple sources of heterogeneity.

In many microeconomic applications, it is of interest to estimate the distributions of

individual-specific effects. We have provided fixed-T identification results for variances and

44The only significant difference at the 10% level is the one for the sequence (1, 0, .). In addition, a joint
Wald test of significance has a p-value of .60.
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more generally distributions of random coefficients and time-varying errors, in linear panel

data models with strictly exogenous regressors. Distributional characteristics of individual

effects (other than the mean) are not identified under the assumptions of unrestricted in-

tertemporal distribution of the errors and unrestricted distribution of the effects conditioned

on the regressors. In our results we have exploited the identifying content of limited time

dependence of time varying errors.

In addition, we have proposed fixed-T consistent estimators of variances and densities.

Density estimators rely on a conditional nonparametric deconvolution approach. We have not

studied the asymptotic properties of the density estimators. When covariates are discrete,

proving consistency and deriving rates of convergence is a simple extension of the existing

literature. When covariates are continuous, however, the extension is not immediate and is

an interesting topic for future work.

It is also of interest to relax some of the model’s assumptions. In particular, strict

exogeneity is a concern in many applications. Our analysis of the effect of smoking on

birth weight suggests that, in cases where regressors are predetermined instead of strictly

exogenous, some average effects may still be point identified. Chernozhukov et al. (2009)

obtain similar results in some nonlinear panel data models. This seems an interesting route

for further research.
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APPENDIX

A Proofs

A.1 Proofs

Proposition 1. We have, using Assumption 1:

E (Qi(yi − Ziδ)|Wi) = E (Qivi|Wi)

Likewise, again using Assumption 1:

E (Hi(yi − Ziδ)|Wi, S) = E (γi +Hivi|Wi, S) = E (γi|Wi, S) .

Corollary 1. Using that E(vi|Wi,Fi) = 0 it is immediate to see that:

E (γ̂i|Wi,Fi, S) = E (γi +Hivi|Wi,Fi, S) = E (γi|Wi,Fi, S) .

By the law of iterated expectations we obtain:

E
(
Fiγ̂

′
i|S
)

= E
(
Fiγ

′
i|S
)
.

Lastly, (6) implies that E (γ̂i|S) = E (γi|S), so:

Cov (Fi,γi|S) = E
(
Fiγ

′
i|S
)
−E (Fi|S)E

(
γ ′
i|S
)
= E

(
Fiγ̂

′
i|S
)
−E (Fi|S)E

(
γ̂ ′
i|S
)
= Cov (Fi, γ̂i|S) .

The conclusion follows.

Corollary 2. Similar to the proof of Proposition 1.

Theorem 1. It follows from (23) and (24) that ωi is identified. Hence Ωi is identified. So, by
(19), XiE (γiγ

′
i|Wi)X

′
i is also identified.

For any i ∈ S, Xi has full-column rank. So, E (γiγ
′
i|Wi, S) is identified. This ends the proof.

Proof of (25). In matrix form, (23) becomes:

E
[
(yi − Ziδ) (yi − Ziδ)

′ − (IT −Qi) (yi − Ziδ) (yi − Ziδ)
′ (IT −Qi) |Wi

]

= Ωi − (IT −Qi)Ωi (IT −Qi) .

Applying the trace operator yields, in the particular case where errors are i.i.d. independent of
Wi with variance σ2:

E
[
(yi − Ziδ)

′ (yi − Ziδ)− (yi − Ziδ)
′ (IT −Qi) (yi − Ziδ)

]
= (T − q)σ2,

where we have used that Tr (Qi) = T − q. Hence:

σ2 =
1

T − q
E((yi − Ziδ)

′
Qi (yi − Ziδ)).
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Theorem 2. We need the following elementary lemma.

Lemma A1 Let g : RL → R be a twice-differentiable function such that ∂2g(x)
∂x∂x′ = 0 for all x ∈ RL,

∂g(0)
∂x

= 0, and g(0) = 0. Then g(x) = 0 for all x ∈ RL.

Proof. As ∂
∂x

(
∂g(x)
∂x′

)
= 0, it follows that ∂g(x)

∂x
is a constant, equal to zero as ∂g(0)

∂x
= 0. Hence

g(x) is a constant, equal to zero as g(0) = 0.

Similarly as in the proof of Theorem 1, it follows from (24) and (41) that ωi (τ ) is identified
for all τ ∈ RT . Hence

∂2 lnΨvi|Wi
(τ |Wi)

∂τ∂τ ′
= S2ωi (τ ) , τ ∈ RT ,

is identified.
Note that, because of Assumption 1:

∂ lnΨvi|Wi
(0|Wi)

∂τ
= E (vi|Wi) = 0.

In addition, because of the definition of a characteristic function:

lnΨvi|Wi
(0|Wi) = 0.

Moreover, by Lemma A1 it follows that the log-characteristic function of errors is uniquely deter-
mined by these restrictions.

Next, using (41) we have that:

Xi

(
∂2 lnΨγi|Wi

(X′
iτ |Wi)

∂ξ∂ξ′

)
X′

i, τ ∈ RT ,

is identified. Using that Xi has full-column rank in S, this implies that:

∂2 lnΨγi|Wi,S(ξ|Wi)

∂ξ∂ξ′
, ξ ∈ Rq,

is also identified. Next, noting that lnΨγi|Wi,S (0|Wi) = 0, and that:

∂ lnΨγi|Wi,S (0|Wi)

∂ξ
= E (γi|Wi, S)

is identified by Proposition 1, it follows from Lemma A1 that lnΨγi|Wi,S is identified.
Lastly, distribution functions fvi|Wi

and fγi|Wi,S are identified by the uniqueness property of
characteristic functions (e.g., Dudley, 2002, p.303).

This ends the proof.

B Mallows’ algorithm (2007)

The algorithm. The model is:
Ai = Bi + Ci,

where Bi and Ci are independent of each other. Two unrelated random samples from Ai and Ci

are available, which we denote as A and C, respectively. We assume that A and C are sorted in
ascending order. The objective of the algorithm is to draw approximate random samples from Bi.

The algorithm is as follows.
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1. Start with B0 = sort{A−C}.

2. Start step one. Permute B0 randomly, this yields B̃0.

3. Let Ã0 be the permutation of A sorted according to B̃0 +C.

4. Set B1 = sort{Ã0 −C}. Go to step two.

In our experiments, the algorithm always converged to a stationary chain after a short “burn-in”
period. In practice, we removed the first 500 initial iterations out of total of 2000.

Lastly, note that, for this algorithm to work, A and C must have the same size. If this is not
the case, one may replace them by m bootstrap draws with replication from A and C, respectively,
where m is the desired common size. In the application A is twice the size of C. We simply used
the stacked vector [C′,C′]′ instead of C.

Illustration. We here briefly present some simulation results, which suggest that Mallows’ al-
gorithm works well in practice. We calibrate the data generating process (DGP) to the results of
Section 6. Formally, the DGP is:





yi1 = αi + βi + vi1
yi2 = αi + vi2
yi3 = αi + vi3,

where βi, vi1, vi2, and vi3 follow independent normal distributions.45 The mean of βi is −150 and its
standard deviation is 300, while viℓ has zero mean and standard deviation σ ∈ {100, 300, 400, 500}.
For comparison, our empirical estimate of the standard deviation is σ̂ ≈ 450.

We apply Mallows’ algorithm to equations (58) and (59).46 We also estimate the density of βi

using a nonparametric kernel deconvolution estimator. As an infeasible choice for the truncation
parameter TN , we minimize the mean integrated squared error (MISE) of the density estimate on
an equidistant grid of 99 points on (1/1500, 9/1500).

Figure B1 shows the results of 1000 simulations. The column on the left of the figure shows
estimates using Mallows’ algorithm, while the column on the right refers to kernel deconvolution
estimates. We report the median, and 10% and 90% quantiles across simulations, along with the
normal density.

The results show that Mallows’ algorithm performs well, showing no bias and tight confidence
bands. By comparison, kernel deconvolution estimates perform worse. This is especially so when σ
is large and the signal-to noise ratio in the first-differenced equation is small. This situation arises
in the empirical application of Section 6. In this case, the simulation-based approach of Mallows
seems to strongly outperform characteristic-function based estimators.

45Note that the presence of αi does not affect estimation.
46The density of βi is estimated using a Gaussian kernel with a rule-of-thumb bandwidth.
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Figure B1: Estimates of fβi
on simulated data

Mallows’ algorithm Kernel deconvolution

σ = 100 (Var(βi)/2σ
2 = 450%)

σ = 300 (Var(βi)/2σ
2 = 50%)

σ = 400 (Var(βi)/2σ
2 = 28%)

σ = 500 (Var(βi)/2σ
2 = 18%)

Note: The DGP is that of Example 2 with parameters roughly chosen to match the empirical results

(where σ̂ ≈ 450). Thick dashed line is the pointwise median across 1000 simulations, thin dashed

lines are the 10%-90% pointwise confidence bands. The thick solid line is the truth. For kernel

deconvolution, the truncation parameter TN minimizes the MISE on a grid of values.
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