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S1 Bounds analysis

We show that the quantile bounds (10) and (11) cannot be improved upon. In the analysis we

omit the x subscript for conciseness. Throughout we work under the assumption that the model

is correctly specified. Hence there exists a copula C0 (with conditional copula G0) and a cdf F0,

which are the true copula and cdf of (U, V ) and Y ∗, respectively. Let P denotes the support of

p(Z), and let p = supP p.

Let G̃ be a conditional copula strictly increasing in its first argument, and let us define the

following subcopula:

C(τ , p) ≡ C0

(
G−10

(
G̃ (τ , p) , p

)
, p
)
, for all (τ , p) ∈ (0, 1)× P. (S1)

It is simple to see that C is a subcopula.1 It can thus be extended to a copula on (0, 1) × (0, 1)

(e.g., Lemma 2.3.5. in Nelsen, 1999). With some abuse of notation we denote the extension as C,

and denote G(τ , p) = C(τ , p)/p.

Lastly, we assume that the supports of Y ∗ and Y coincide, denote the support as Y, and we

let:

F (y) ≡ G̃−1 (G0 (F0(y), p) , p) , for all y ∈ Y. (S2)

Note that F is a cdf.

Let (Ũ , Ṽ ) be a bivariate random variable drawn from C, independently of Z. Let D̃ = 1{Ṽ ≤
p(Z)}, Ỹ ∗ = F−1(Ũ), and Ỹ = Ỹ ∗ if D̃ = 1. We start by showing that the distributions of (Ỹ , D̃, Z)

and (Y,D,Z) coincide. To see this, note that:

Pr
(
Ỹ ≤ y | D̃ = 1, Z = z

)
= G (F (y), p(z))

= G
(
G̃−1 (G0 (F0(y), p) , p) , p(z)

)
= G0 (F0(y), p(z))

= Pr (Y ≤ y |D = 1, Z = z) ,

1This is because C(τ , 0) = C(0, p) = 0, and C is two-increasing; that is: C(τ2, p2)−C(τ2, p1)−C(τ1, p2)+
C(τ1, p1) ≥ 0 for τ1 ≤ τ2 and p1 ≤ p2.
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where we have used (S2) and (S1) in the second and third equalities, respectively.

Finally, to see that F in (S2) can get arbitrarily close to the bounds in (10) and (11), we take G̃

to be arbitrarily close to the lower and upper Fréchet copula bounds. For the upper bound, we take

a conditional copula G̃ that satisfies Assumption A3 and is arbitrarily close to (τ , p) 7→ min
(
τ
p , 1
)

.

Similarly, for the lower bound we take a G̃ that satisfies Assumption A3 and is arbitrarily close to

(τ , p) 7→ max
(
τ+p−1
p , 0

)
.2

S2 Nonparametric specification with discrete covari-

ates

Consider a model where covariates X and Z are discrete, with a nonparametric quantile specifica-

tion:

q(τ ,X) = X ′βτ =
K∑
k=1

βτk1 {X = xk} ,

with xk denoting the points of support of X. Let Gk(τ , c) denote the mean of G
(
τ , p(Zi; θ̂); c

)
for

participants in cell Xi = xk. Let also r̂i denote the empirical rank of Yi in the outcome distribution,

conditional on (Di = 1, Xi). By (16), x′kβ̂τk (c) is simply the empirical Gk(τ , c)-quantile of Yi
conditional on (Di = 1, Xi = xk). It follows that, conditional on (Di = 1, Xi = xk), Yi ≤ X ′iβ̂τ (c)

is equivalent to r̂i ≤ Gk(τ , c).
Let us replace the finite sum in (15) by an integral with respect to a continuous function κ(τ).

The above shows that, in the model with discrete covariates, ρ̂ minimizes:∥∥∥∥∥
N∑
i=1

K∑
k=1

∫ 1

0
Di1 {Xi = xk}ϕ (τ , Zi)

[
1
{
r̂i ≤ Gk(τ , c)

}
−G

(
τ , p(Zi; θ̂); c

)]
κ(τ)dτ

∥∥∥∥∥ .
Using the change in variables u ≡ Gk(τ , c) we equivalently have that ρ̂ minimizes the following

objective:∥∥∥∥∥
N∑
i=1

K∑
k=1

∫ 1

0
Di1 {Xi = xk}ϕ

(
G
−1
k (u, c) , Zi

)
×

[
1 {r̂i ≤ u} −G

(
G
−1
k (u, c) , p(Zi; θ̂); c

) ]
κ(G

−1
k (u, c))

∂G
−1
k (u, c)

∂u
du

∥∥∥∥∥,
which is continuously differentiable with respect to c as long as ϕ, κ, G, and G

−1
k , ∂G

−1
k

∂u , are

continuously differentiable with respect to τ and c, respectively.

2For example, one may take G̃(τ , p) = Cθ(τ , p)/p for θ > 0, where:

Cθ(τ , p) ≡
1

2(θ − 1)

(
1 + (τ + p)(θ − 1)−

√
(1 + (τ + p)(θ − 1))

2 − 4τpθ(θ − 1)

)
is the Plackett copula family (e.g., Smith, 2003). Lower and upper Fréchet bounds correspond to θ → 0 and
θ → +∞, respectively.
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S3 An alternative estimator for the copula parameter

From (6) we have, for all x ∈ X and (z1, z2) ∈ Zx ×Zx:

E
(
1
{
Y ≤ qd (τ , z2)

} ∣∣∣ D = 1, Z = z1

)
= G

[
G−1 (τ , p(z2; θ); ρ) , p(z1; θ); ρ

]
,

where qd (τ , z2) denotes the τ -quantile of Y conditional on (D = 1, Z = z2).

Given consistent estimates q̂d (τ , z) and θ̂, we thus propose estimating ρ by minimizing the

following objective with respect to c:

N∑
i=1

∑
j 6=i

L∑
`=1

Di

(
1
{
Yi ≤ q̂d (τ `, Bj , Xi)

}
−G

[
G−1

(
τ `, p(Bj , Xi; θ̂); c

)
, p(Bi, Xi; θ̂); c

] )2
.

In case covariates are discrete, the qd(τ , z) may be estimated as sample quantiles, cell-by-cell,

as in Chamberlain (1993). Alternatively, when covariates are continuous, nonparametric quantile

regression methods may be used, such as the series-based quantile regression estimator of Belloni,

Chernozhukov and Fernández-Val (2011). The asymptotic properties of such estimators of ρ could

be characterized using U-process techniques (e.g., Jochmans, 2013), although we leave this analysis

to future work.

The method can be iterated (possibly multiple times). Recall that the observed quantiles satisfy

qd (τ , z) = x′βG−1(τ ,p(z);ρ). Hence, given estimates ρ̂ and β̂, one could estimate:

q̃d (τ , z) ≡ x′β̂G−1(τ ,p(z);ρ̂),

and update ρ by minimizing:

N∑
i=1

∑
j 6=i

L∑
`=1

Di

(
1
{
Yi ≤ q̃d (τ `, Bj , Xi)

}
−G

[
G−1

(
τ `, p(Bj , Xi; θ̂); c

)
, p(Bi, Xi; θ̂); c

] )2
.

S4 Asymptotic properties

In this section we start by deriving the asymptotic distribution of β̂τ given a consistent and asymp-

totically normal estimator of the copula parameter ρ. Then, in the second part of the section

we derive the joint asymptotic distribution of β̂τ and ρ̂, for ρ̂ given by (15). The derivations are

standard (e.g., Section 7 in Newey and McFadden, 1994).

S4.1 Analysis conditional on a consistent and asymptotically nor-
mal estimator of ρ

Let:

giτ ≡ Di

(
1
{
Yi ≤ X ′iβτ

}
−G (τ , p (Zi; θ) ; ρ)

)
.

We make the following assumptions.

Assumption S1

i) There exists a positive definite matrix Στ such that:

√
N

 1
N

∑N
i=1Xigiτ
θ̂ − θ
ρ̂− ρ

 d→ N (0,Στ ) .
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ii) The cdf of Y given Z = Zi and Di = 1 is absolutely continuous, with continuous density fi
bounded away from zero and infinity at the points X ′iβτ , i = 1, ..., N .

iii) The function G is continuously differentiable with respect to its second and third arguments,

with derivatives ∂pG and ∂ρG, respectively. The propensity score p(·; θ) is continuously differentiable

with respect to its second argument, with derivative ∂θp.

iv) There exist a positive definite matrix Jτ , and matrices P1τ and P2τ , such that

Jτ = plim
N→∞

1

N

N∑
i=1

p (Zi; θ)XiX
′
ifi
(
X ′iβτ

)
,

P1τ = plim
N→∞

1

N

N∑
i=1

p (Zi; θ)Xi (∂θp (Zi; θ))
′ ∂pG (τ , p (Zi; θ) ; ρ) ,

P2τ = plim
N→∞

1

N

N∑
i=1

p (Zi; θ)Xi (∂ρG (τ , p (Zi; θ) ; ρ))′ .

Condition i) requires that 1
N

∑N
i=1Xigiτ , θ̂, and ρ̂ jointly satisfy an asymptotic normality result.

In particular, this requires ρ to be point-identified from (18). Under weak regularity conditions, it

is easy to show that:

1√
N

N∑
i=1

Xigiτ
d→ N

(
0,E

[
Gτi (1−Gτi) p (Zi; θ)XiX

′
i

])
,

where we have denoted:

Gτi ≡ G (τ , p (Zi; θ) ; ρ) . (S3)

Condition ii) is standard in quantile regression (e.g., Theorem 4.2 in Koenker and Bassett,

1978). The only difference here is that we work with the cdf of Y given Z, and not given X.

Condition iii) requires that the copula and propensity score be differentiable. Most of the usual

parametric families of copulas are differentiable in both their arguments. Exceptions are piecewise-

constant empirical copulas, which are not continuous. Lastly, Condition iv) requires the existence

of moments.

Theorem S41 Let τ ∈ (0, 1), and let Assumptions A1 to A4 and S1 hold. Then, as N tends to

infinity: √
N
(
β̂τ − βτ

)
d→ N

(
0, J−1τ PτΣτP

′
τJ
−1
τ

)
,

where Pτ ≡ [Idimβ,−P1τ ,−P2τ ], and Jτ , P1τ , P2τ are given in Assumption S1.

Theorem S41 provides the asymptotic distribution of quantile estimates, corrected for the fact

that θ̂ and ρ̂ have been estimated. Note that, in the absence of sample selection, the formula boils

down to a well-known expression (Koenker, 2005, p.120).

Proof.

By a standard result in quantile regression, the following approximate moment condition is

satisfied, see e.g. Theorem 3.3. in Koenker and Bassett (1978):

1

N

N∑
i=1

Xigi

(
τ , β̂τ , θ̂, ρ̂

)
= Op

(
1

N

)
, (S4)
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where:

gi (τ , b, a, c) ≡ Di

(
1
{
Yi ≤ X ′ib

}
−G (τ , p (Zi; a) ; c)

)
.

Under standard conditions we have:

1

N

N∑
i=1

Xigi

(
τ , β̂τ , θ̂, ρ̂

)
= Op

(
1

N

)
= Ê [Xigiτ ] +

∂E [Xigiτ ]

∂β′

(
β̂τ − βτ

)
+
∂E [Xigiτ ]

∂θ′

(
θ̂ − θ

)
+
∂E [Xigiτ ]

∂ρ′
(ρ̂− ρ) + op

(
1√
N

)
,

where Jτ = ∂E[Xigiτ ]
∂β′

, P1τ = −∂E[Xigiτ ]
∂θ′

, and P2τ = −∂E[Xigiτ ]
∂ρ′ exist by Assumption S1 parts ii), iii),

and iv), and Ê[Zi] = 1
N

∑N
i=1 Zi denotes a sample mean. Hence, as Jτ is non-singular:

β̂τ − βτ = −J−1τ
[
Ê [Xigiτ ]− P1τ

(
θ̂ − θ

)
− P2τ (ρ̂− ρ)

]
+ op

(
1√
N

)
(S5)

= −J−1τ Pτ

 Ê [Xigiτ ]

θ̂ − θ
ρ̂− ρ

+ op

(
1√
N

)
.

The result then comes from part i) in Assumption S1.

S4.2 Joint analysis of β̂τ and ρ̂

We now derive the joint asymptotic distribution of β̂τ and ρ̂, for ρ̂ given by (15). For simplicity we

focus on the just-identified case, where ρ and ϕ have the same dimensions.3

The estimation of θ, ρ, and βτ1 , ..., βτL is based on the following just-identified system of

moment restrictions (in addition to the score equations for θ):

L∑
`=1

E
[
ϕ(τ `, Zi)gi(τ `, βτ` , θ, ρ)

]
= 0,

E
[
Xigi(τ1, βτ1 , θ, ρ)

]
= 0,

... ... ...

E
[
Xigi(τL, βτL , θ, ρ)

]
= 0.

Throughout this subsection we assume that the conditions of Theorem 7.2 in Newey and Mc-

Fadden (1994) are satisfied, so the estimators are root-N consistent and jointly asymptotically

normal. We gather relevant notation in the following assumption, with the aim of deriving explicit

expressions for asymptotic variances.

3Note that the instrument function ϕ (τ , Zi) = p
(
Zi; θ̂

)
used in Section 5 depends on θ̂. This slightly

affects the formula for the asymptotic variance. For simplicity here we do not account for this dependence.
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Assumption S2

i) There exists a positive definite matrix H, and a function Si ≡ s (Di, Zi), such that:

θ̂ − θ = −H−1Ê [Si] + op

(
1√
N

)
. (S6)

ii) For all `, there exist a positive definite matrix J̃τ`, and matrices P̃1τ` and P̃2τ`, such that

J̃τ` = plim
N→∞

1

N

N∑
i=1

p (Zi; θ)ϕ (τ `, Zi)X
′
ifi
(
X ′iβτ`

)
,

P̃1τ` = plim
N→∞

1

N

N∑
i=1

p (Zi; θ)ϕ (τ `, Zi) (∂θp (Zi; θ))
′ ∂pG (τ `, p (Zi; θ) ; ρ) ,

P̃2τ` = plim
N→∞

1

N

N∑
i=1

p (Zi; θ)ϕ (τ `, Zi) (∂ρG (τ `, p (Zi; θ) ; ρ))′ .

iii) The following matrix inverse exists:

Aρ ≡

[
L∑
`=1

(
P̃2τ` − J̃τ`J

−1
τ`
P2τ`

)]−1
. (S7)

Condition i) will be satisfied if θ̂ is asymptotically linear, for example when it is a regular

maximum likelihood estimator. Conditions ii) and iii) require that some moments exist.

Define the following matrices:

Bρ ≡ −Aρ
[
J̃τ1J

−1
τ1 , ..., J̃τLJ

−1
τL

]
, (S8)

Cρ ≡ Aρ

(
L∑
`=1

[
P̃1τ` − J̃τ`J

−1
τ`
P1τ`

]
H−1

)
, (S9)

and, for a given τ ∈ (0, 1):

Aβ (τ) ≡ J−1τ P2τAρ, (S10)

Bβ (τ) ≡ J−1τ P2τBρ, (S11)

Cβ (τ) ≡ J−1τ
(
P2τCρ − P1τH

−1) . (S12)

Then, let:

∆τ ≡
(
Aβ (τ) −J−1τ Bβ (τ) Cβ (τ)
Aρ 0 Bρ Cρ

)
.

Lastly, let:

σi`m ≡ min {Gτ`i, Gτmi} −Gτ`iGτmi,
σi` (τ) ≡ min {Gτ`i, Gτi} −Gτ`iGτi,
σi (τ) ≡ Gτi (1−Gτi) ,

where Gτi is given by (S3), and define:

Ωτ ≡


Ω1,1
τ Ω1,2

τ ... Ω1,L+2
τ 0

Ω2,1
τ Ω2,2

τ ... Ω2,L+2
τ 0

... ... ... ... ...

ΩL+2,1
τ ΩL+2,2

τ ... ΩL+2,L+2
τ 0

0 0 ... 0 E [SiS
′
i]

 , (S13)
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where Ωτ is symmetric, and:

Ω1,1
τ ≡

L∑
`=1

L∑
m=1

E
[
σi`mp (Zi; θ)ϕ (τ `, Zi)ϕ (τm, Zi)

′] ,
Ω1,2
τ ≡

L∑
`=1

E
[
σi`(τ)p (Zi; θ)ϕ (τ `, Zi)X

′
i

]
,

Ω1,2+m
τ ≡

L∑
`=1

E
[
σi`mp (Zi; θ)ϕ (τ `, Zi)X

′
i

]
, m = 1, ..., L,

Ω2,2
τ ≡ E

[
σi(τ)p (Zi; θ)XiX

′
i

]
,

Ω2,2+m
τ ≡ E

[
σim(τ)p (Zi; θ)XiX

′
i

]
, m = 1, ..., L,

Ω2+`,2+m
τ ≡ E

[
σi`mp (Zi; θ)XiX

′
i

]
, ` = 1, ..., L, m = 1, ..., L.

We have the following result.

Theorem S42 Let Assumptions A1 to A4, S1, and S2 hold. Suppose that dimϕ = dim ρ. Then:

√
N

(
β̂τ − βτ
ρ̂− ρ

)
d→ N

(
0,∆τΩτ∆′τ

)
.

Proof.

As in the proof of Theorem S41, we start with an approximate moment equation:

L∑
`=1

Ê
[
ϕ (τ `, Zi) gi

(
τ `, β̂τ` , θ̂, ρ̂

)]
= op

(
1√
N

)
.

Moreover, we have:

L∑
`=1

Ê
[
ϕ (τ `, Zi) gi

(
τ `, β̂τ` , θ̂, ρ̂

)]
=

L∑
`=1

{
Ê [ϕ (τ `, , Zi) giτ` ] + J̃τ`

(
β̂τ` − βτ`

)
−P̃1τ`

(
θ̂ − θ

)
− P̃2τ` (ρ̂− ρ)

}
+ op

(
1√
N

)
.

So, by (S5):

op

(
1√
N

)
=

L∑
`=1

{
Ê [ϕ (τ `, Zi) giτ` ]− P̃1τ`

(
θ̂ − θ

)
− P̃2τ` (ρ̂− ρ)

−J̃τ`
(
J−1τ`

[
Ê [Xigiτ` ]− P1τ`

(
θ̂ − θ

)
− P2τ` (ρ̂− ρ)

])}
+ op

(
1√
N

)
.

So, by (S6):

ρ̂− ρ =

[
L∑
`=1

(
P̃2τ` − J̃τ`J

−1
τ`
P2τ`

)]−1
×{

L∑
`=1

Ê [ϕ (τ `, Zi) giτ` ]−
L∑
`=1

J̃τ`J
−1
τ`

Ê [Xigiτ` ]

+

(
L∑
`=1

[
P̃1τ` − J̃τ`J

−1
τ`
P1τ`

]
H−1

)
Ê [Si]

}
+ op

(
1√
N

)
.
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Hence:

ρ̂− ρ = Aρ

(
L∑
`=1

Ê [ϕ (τ `, Zi) giτ` ]

)
+BρÊ [Xigi] + CρÊ [Si] + op

(
1√
N

)
,

where Aρ, Bρ, and Cρ are given by (S7)-(S9), and:

Ê [Xigi] =

 Ê [Xigiτ1 ]
...

Ê [XigiτL ]

 .

Let now τ ∈ (0, 1). Using (S5):

β̂τ − βτ = −J−1τ
[
Ê [Xigiτ ]− P1τ

(
θ̂ − θ

)
− P2τ (ρ̂− ρ)

]
+ op

(
1√
N

)
= −J−1τ

[
Ê [Xigiτ ] + P1τH

−1Ê [Si]

−P2τ

(
Aρ

(
L∑
`=1

Ê [ϕ (τ `, Zi) giτ` ]

)
+BρÊ [Xigi] + CρÊ [Si]

)]
+ op

(
1√
N

)
.

So:

β̂τ − βτ = Aβ (τ)

(
L∑
`=1

Ê [ϕ (τ `, Zi) giτ` ]

)
− J−1τ Ê [Xigiτ ]

+Bβ (τ) Ê [Xigi] + Cβ (τ) Ê [Si] + op

(
1√
N

)
,

where Aβ (τ), Bβ (τ), and Cβ (τ) are given by (S10)-(S12).

Next, denote:

ψiτ ≡



∑L
`=1 ϕ (τ `, Zi) giτ`

Xigiτ
Xigiτ1
...

XigiτL
Si

 .

From the above, we have:

√
N

(
β̂τ − βτ
ρ̂− ρ

)
d→ N (0, Vτ ) ,

with:

Vτ =

(
Aβ (τ) −J−1τ Bβ (τ) Cβ (τ)
Aρ 0 Bρ Cρ

)
E
(
ψiτψ

′
iτ

)( Aβ (τ) −J−1τ Bβ (τ) Cβ (τ)
Aρ 0 Bρ Cρ

)′
.

Finally, we check that E
(
ψiτψ

′
iτ

)
= Ωτ given by (S13):

E

( L∑
`=1

ϕ (τ `, Zi) giτ`

)(
L∑

m=1

ϕ (τm, Zi) giτm

)′ =

L∑
`=1

L∑
m=1

E
[
σi`mp (Zi; θ)ϕ (τ `, Zi)ϕ (τm, Zi)

′] ,
8



and similarly:

E

[(
L∑
`=1

ϕ (τ `, Zi) giτ`

)
(Xigiτm)′

]
=

L∑
`=1

E
[
σi`mp (Zi; θ)ϕ (τ `, Zi)X

′
i

]
,

E
[
(Xigiτ`) (Xigiτm)′

]
= E

[
σi`mp (Zi; θ)XiX

′
i

]
,

and, as Si is a function of (Di, Zi), we have E [giτ`S
′
i] = 0.

This completes the proof of Theorem S42.

Estimating the asymptotic variance. To construct an empirical counterpart of the asymp-

totic variance appearing in Theorem S41, note that all matrices but Jτ can be estimated by sample

analogs, replacing the population expectations by empirical means. Moreover, following Powell

(1986), a consistent estimator of Jτ is:

Ĵτ =
1

2NhN

N∑
i=1

1 {|̂εi (τ) | ≤ hN}DiXiX
′
i,

where ε̂i ≡ Yi −X ′iβ̂τ , and hN is a bandwidth that satisfies hN → 0 and Nh2N → +∞ as N tends

to infinity. We may proceed similarly to estimate J̃τ that appears in Theorem S42.

S5 Extensions

Nonparametric propensity score. Although the paper focuses on the case where the propen-

sity score is parametrically specified, our approach can accommodate a nonparametric modelling

of p (Z) as well. A difficulty is that the G function has p (Z) in the denominator. A similar prob-

lem arises in Buchinsky and Hahn (1998)’s censored quantile regression estimator. Similarly as in

Buchinsky and Hahn, one could trim out the observations for which p̂ (Zi) < c, where p̂ (Z) is a

nonparametric estimate (for example, a kernel-based Nadaraya-Watson estimator) and c > 0 is a

vanishing trimming threshold. We leave this extension to future work.

Testing for the absence of sample selection. Under the null hypothesis of absence of

sample selection, we have G (τ , p (Z; θ) ; ρ) = τ . So, βτ satisfies:

E
[
1
{
Y ≤ X ′βτ

}
− τ |D = 1, Z = z

]
= 0, for all τ ∈ (0, 1).

This motivates using a test statistic of the form:

S =

∥∥∥∥∥
L∑
`=1

N∑
i=1

Diϕ (τ `, Zi)
(
1
{
Yi ≤ X ′iβ̂τ`

}
− τ `

)∥∥∥∥∥
2

,

where ϕ (τ , Zi) are instrument functions, and β̂τ is the quantile regression estimate of the τ -specific

slope coefficient, computed on the sample of participants (Di = 1).
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Endogeneity. Let us assume that the latent outcome is given by the following linear quantile

model:

Y ∗ = E′αU +X ′βU , (S14)

where the percentile level U is independent of X, but may be correlated with the endogenous regres-

sor E. As before, the participation equation is given by (2). Suppose that (U, V ) is independent of

Z given X. Assume also that q (τ ,X,E) ≡ E′ατ +X ′βτ is strictly increasing in its first argument.

Then, for any τ ∈ (0, 1):

E
[
1
{
Y ≤ E′ατ +X ′βτ

}
−G (τ , p (Z; θ) ; ρ) | D = 1, Z = z

]
= 0. (S15)

To estimate ρ, θ, and {ατ , βτ} for any τ ∈ (0, 1), one can use the following three-step estimation

method, which extends Chernozhukov and Hansen (2006)’s estimator to correct for selection. In

the first step, we compute θ̂. In the second step, we compute ρ̂ as:

ρ̂ = argmin
c

∥∥∥∥∥
L∑
`=1

N∑
i=1

Diϕ (τ `, Zi)
(
1
{
Yi ≤ E′iα̃τ` (c) +X ′iβ̃τ` (α̃τ` (c) ; c)

}
−G

(
τ `, p

(
Zi; θ̂

)
; c
))∥∥∥∥∥,

where, for µτ (Zi) a dimα× 1 vector of instruments we have defined:

(
β̃τ (α; c) , γ̃τ (α; c)

)
≡ argmin

(b,g)

N∑
i=1

Di

{
G
(
τ , p̂

(
Zi; θ̂

)
; c
) (
Yi −X ′ib− µτ (Zi)

′ g
)+

+
(

1−G
(
τ , p̂

(
Zi; θ̂

)
; c
)) (

Yi −X ′ib− µτ (Zi)
′ g
)− }

,

and:

α̃τ (c) ≡ argmin
a
‖γ̃τ (a; c)‖ .

Lastly, once ρ̂ has been estimated, we compute α̂τ ≡ α̃τ (ρ̂), and β̂τ ≡ β̃τ (α̂τ ; ρ̂).

Censoring. Suppose that Y ∗ is censored when Y ∗ < y0, where y0 is a known threshold, so

that we observe Y = max {Y ∗, y0} when D = 1. From the equivariance property of quantiles, the

τ -quantile of max {Y ∗, y0} is max {X ′βτ , y0}. So, under Assumptions A1 to A4:

Pr
(
Y ≤ max

{
X ′βτ , y0

}
|D = 1, Z = z

)
= G (τ , p (z; θ) ; ρ) . (S16)

This implies that theG (τ , p (Z; θ) ; ρ)-quantile of observed outcomes coincides with max {X ′βτ , y0}.
The β coefficients can thus be estimated as in the main text, replacing X ′ib and X ′iβ̂τ (c) by

max {X ′ib, y0} and max
{
X ′iβ̃τ (c) , y0

}
, respectively, where:

β̃τ (c) ≡ argmin
b

N∑
i=1

Di

{
G
(
τ , p̂

(
Zi; θ̂

)
; c
) (
Yi −max

{
X ′ib, y0

})+
+
(

1−G
(
τ , p̂

(
Zi; θ̂

)
; c
)) (

Yi −max
{
X ′ib, y0

})− }
. (S17)

The optimization problem in (S17) is a selection-corrected version of Powell’s (1986) censored

quantile estimator.
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S6 Frank and generalized Frank copulas

Let us consider the following two-parameter family of copulas, which we call the “generalized

Frank” family for reasons that will be clear below. The copula depends on two parameters θ ≥ 1

and γ ∈ (0, 1), and is given by:

C (u, v; γ, θ) =
1

δ

[
1−

{
1− 1

γ

[
1− (1− δu)θ

] [
1− (1− δv)θ

]} 1
θ

]
, (S18)

where δ = 1− (1− γ)
1
θ . Joe (1997) refers to (S18) as the “BB8” copula.

It is convenient to introduce the following concordance ordering ≺ on copulas:

C1 ≺ C2 if and only if C1 (u, v) ≤ C2 (u, v) for all (u, v).

As ≺ is the first-order stochastic dominance ordering, C1 ≺ C2 unambiguously indicates that C1

induces less correlation than C2. The concordance of the generalized Frank copula given by (S18)

increases in θ and γ. In particular, θ = 1 or γ → 0 correspond to the independent copula.

An interesting special case is obtained when θ →∞, for fixed γ. Then

C (u, v; γ, θ) →
θ→∞

CF (u, v; γ) ,

where:

CF (u, v; γ) =
1

ln (1− γ)
ln

[
1− 1

γ
{1− exp [ln (1− γ)u]} {1− exp [ln (1− γ) v]}

]
. (S19)

CF given by (S19) is the Frank copula (Frank, 1979), with parameter η = − ln (1− γ). Here also,

concordance increases with η.

The density of the Frank copula is symmetric with respect to the point
(
1
2 ,

1
2

)
in the (U, V )

plane. In comparison, the generalized Frank copula (S18) permits some asymmetries, by allowing

the dependence to increase on the main diagonal. However, the generalized Frank copula treats

symmetrically u and v, so that it is symmetric with respect to the main diagonal.

Taking negative η, the Frank copula exhibits negative dependence. This is important in our

empirical application, as we estimate that U and V are negatively correlated. To allow for negative

dependence in the generalized Frank copula, we simply consider:

C̃ (u, v; γ, θ) = v − C (1− u, v; γ, θ) ,

which is the copula of (1− U, V ) where (U, V ) is distributed as C.4 In addition, by taking instead

the copula of (U, 1− V ) we obtain:

C̃ (u, v; γ, θ) = u− C (u, 1− v; γ, θ) .

In this way, we may allow for decreasing dependence along the second diagonal.

4This is because Pr (1− U ≤ u, V ≤ v) = Pr (V ≤ v)− Pr (1− U > u, V ≤ v) = v − C (1− u, v; γ, θ).
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S7 Additional figures: Fit of the model used in the

equilibrium counterfactual exercise

Figure S1: Fit to wage quantiles, by gender
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Note: FES data for 1978-2000. Specification used in Section 6. Quantiles of log-hourly wages

conditional on employment. Data (solid lines) and predicted by the model (dashed). Male wages

(at the top) are plotted in thick lines, while female wages are in thin lines.

Figure S2: Fit to employment, by gender
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Note: FES data for 1978-2000. Specification used in Section 6. Employment rate in the data (solid

lines) and predicted by the model (dashed). Male employment (at the top) is plotted in thick lines,

while female employment is in thin lines.
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