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Abstract
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1 Introduction

Non-random sample selection is a major issue in empirical work. Most selection-correction

approaches focus on estimating conditional mean models. In many applications, however, a

flexible specification of the entire distribution of outcomes is of interest. In this paper we

propose a selection correction method for quantile models.

Quantile regression is widely used to estimate conditional distributions. In a linear quan-

tile model, each percentile is associated with a percentile-specific parameter. Conveniently,

quantile parameters can be estimated by minimizing a convex (“check”) function (Koenker

and Bassett, 1978). Quantile regression has proved to be a valuable tool to analyze changes

in distributions, beginning with Chamberlain (1993) and Buchinsky (1994). However, to our

knowledge there is yet no widely accepted quantile regression approach in the presence of

sample selection.

A classic example where sample selection features prominently is the study of wages and

employment (Gronau, 1974, Heckman, 1974). Only the wages of employed individuals are

observed, so conventional measures of wage gaps or wage inequality may be biased. For

example, in our empirical application we study the evolution of wage inequality and employ-

ment in the UK. Over the past three decades wage inequality has sharply increased. This

change in the wage distribution, similar to the one experienced in the US, has motivated a

large literature.1 At the same time, employment rates have also varied during the period,

especially for males. In this context, our method to correct for selection allows us to doc-

ument the evolution of distributions of latent wages, by separating them from changes in

employment composition. Wage inequality for those at work may provide a distorted picture

of market-level wage inequality.

In regression models, correcting for sample selection involves adding a selection factor as

a control. In quantile regression models, we show that selection-corrected estimates can be

obtained by suitably shifting the percentile levels as a function of the amount of selection. In

practice, this amounts to rotating the “check” function that is optimized in standard quantile

regression. The objective function is “discordantly tilted”, since the perturbations applied

to percentile levels are observation-specific and depend on the strength of selection. This

1Gosling, Machin, and Meghir (2000) use quantile regression to study the evolution of wage inequality
in the UK. Recent studies for the US are Autor, Katz and Kearney (2005) and Angrist, Chernozhukov and
Fernández-Val (2006).
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rotation preserves the linear programming structure, and thus the computational simplicity

of quantile regression methods.

In our quantile model, sample selection is modelled via the bivariate cumulative distri-

bution function, or copula, of the errors in the outcome and the selection equation. Our

identification analysis covers the case where the copula is left unrestricted. However, in

practice, one may wish to let the copula depend on a low-dimensional vector of parameters.2

As in linear sample selection models, excluded variables (e.g., determinants of employment

that do not affect wages directly) are key to achieving credible identification. We show how

to estimate the parameters of the copula by minimizing a method-of-moments criterion that

exploits variation in excluded regressors.

Our estimation algorithm consists of three steps: estimation of the propensity score of

participation, the copula parameter, and the quantile parameters, in turn. We derive the

asymptotic distribution of the estimator. We also analyze a number of extensions of the

method. In particular, we propose a bounds method to assess the influence on the quantile

estimates of the parametric restrictions imposed on the copula.

We apply the method to study the evolution of wage inequality in the UK in the last

quarter of the twentieth century. We find that correcting for selection into employment

strongly affects male wages at the bottom of the distribution, which is consistent with low-

skilled males being progressively driven out of the labor market. Sample selection has smaller

effects for females. As a result, correcting for sample selection accentuates the decrease in

the gender wage gap at the bottom (though less at the top) of the distribution. We also

perform several robustness checks, in particular regarding the specification of the copula.

Lastly, we propose a method to obtain counterfactual distributions of wages taking into

account general equilibrium effects. Our approach combines the quantile selection model of

wages and participation with a labor demand side in the spirit of Katz and Murphy (1992)

and Card and Lemieux (2001). Because of demand responses, shifts in participation may

affect latent equilibrium wage distributions. We apply the method to a counterfactual exer-

cise where potential out-of-work income, a strong policy-based determinant of participation,

is kept constant throughout the period.

2Copulas have been extensively used in statistics and financial econometrics (e.g., Joe, 1997, and Nelsen,
1999). Single-parameter copula families have been shown to yield satisfactory fit to empirical data in various
contexts. For example, Bonhomme and Robin (2009) use a Plackett copula to model year-to-year earnings
mobility.
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Literature and outline. Our approach connects with two complementary approaches

that have been used to deal with sample selection. Parametric and semiparametric versions of

the Heckman (1979) sample selection model have been extensively studied. See for example

Heckman and Sedlacek (1985), Heckman (1990), Ahn and Powell (1993), Donald (1995),

Chen and Khan (2003), and Das, Newey, and Vella (2003). Vella (1998) provides a number

of additional references. In comparison, bounds methods (Manski, 1994, Blundell, Gosling,

Ichimura, and Meghir, 2007, Kitagawa, 2010) have been less studied. The sensitivity analysis

in Kline and Santos (2013) is also related to our approach. However, unlike in the missing

data settings that they consider, excluded variables in selection models provide information

on the sign and strength of sample selection, which we exploit.

The paper also connects with the large literature on quantiles, distributions, and treat-

ment effects. Chernozhukov and Hansen (2005, 2006) develop an instrumental variables

quantile regression approach. Unlike in this paper, they rely on a rank invariance or rank

similarity assumption (see also Vuong and Xu, 2014). Related models with continuous

endogenous regressors are studied in Torgovitsky (2015) and D’Haultfoeuille and Février

(2015). Imbens and Rubin (1997) study identification and estimation of unconditional dis-

tributions of potential outcomes in a treatment effects model with a binary instrument, and

achieve identification for compliers (as in Abadie, 2003, and Abadie, Angrist and Imbens,

2002). Carneiro and Lee (2009) use the framework of Heckman and Vytlacil (2005) to iden-

tify and estimate distributions of potential outcomes on suitable “complier” subpopulations.

The tools we propose could be used to provide alternative estimators in treatment effects

settings. In addition, being distribution-based, our approach allows one to perform distribu-

tional decomposition exercises (as in DiNardo, Fortin and Lemieux, 1996, and Firpo, Fortin

and Lemieux, 2011) while accounting for sample selection.

The literature on quantile selection models, in contrast, is scarce (see the review in Arel-

lano and Bonhomme, 2016). Buchinsky (1998, 2001) proposes an additive approach to correct

for sample selection in quantile regression. Huber and Melly (2015) consider a more general,

non-additive quantile model, as we do; they focus on testing for additivity. In contrast,

our focus is on providing a practical estimation method. Also related are Neal (2004), who

develops imputation methods to correct the black/white wage gap among women, Olivetti

and Petrongolo (2008), who apply similar methods to the gender wage gap, and Picchio and

Mussida (2010), who propose a parametric model to correct the gender wage gap for selec-
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tion into employment. See also Lee (1983) and Smith (2003) for parametric distributional

selection-correction methods.

The rest of the paper is as follows. In Section 2 we present the quantile selection model

and discuss identification. In Section 3 we describe the estimator and its asymptotic prop-

erties. In Section 4 we outline several extensions of our approach. The empirical analysis

is contained in Section 5, and the counterfactual exercise in Section 6. Lastly, we conclude

in Section 7. Computer codes and an appendix with additional results are provided in the

supplementary material.

2 Model and identification

2.1 Model and assumptions

We consider the following sample selection model:

Y ∗ = q (U,X) , (1)

D = 1 {V ≤ p (Z)} , (2)

Y = Y ∗ if D = 1, (3)

where Y ∗ is the latent outcome (e.g., market wage), D is the participation indicator (em-

ployment), U and V are error terms, and Z = (B,X) strictly contains X, so B are the

excluded covariates. We observe (Y,D,Z), so that potential outcomes Y ∗ = Y are observed

only when D = 1 (e.g., if the individual is a labor market participant).

We make four assumptions.

Assumption 1

A1 (exclusion restriction) (U, V ) is jointly statistically independent of Z given X.

A2 (unobservables) The bivariate distribution of (U, V ) given X = x is absolutely contin-

uous with respect to the Lebesgue measure, with standard uniform marginals and rectangular

support. We denote its cumulative distribution function (cdf) as Cx (u, v).

A3 (continuous outcomes) The conditional cdf FY ∗|X (y|x) and its inverse are strictly

increasing. In addition, Cx(u, v) is strictly increasing in u.

A4 (propensity score) p (Z) ≡ Pr (D = 1|Z) > 0 with probability one.

Assumption A1 is satisfied if Z = (B,X) strictly contains X, and (U, V ) is jointly

independent of B given X. In the example of wages and employment, B may measure
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opportunity costs of participation in the labor market. Following Blundell et al. (2003), our

empirical application will use a measure of potential out-of-work welfare income as exclusion

restriction.

Model (1)-(3) depends on two sources of unobserved heterogeneity: the latent outcome

rank U and the percentile rank V . In Assumption A2 we normalize their marginal distribu-

tions to be uniform on the unit interval, independent of Z. In particular, τ 7→ q (τ , x) is the

conditional quantile function of Y ∗ given X = x, and it is increasing in τ by A3. A special

case is the linear quantile model Y ∗ = X ′βU , which is widely used in applied work since

Koenker and Bassett (1978). The Skorohod representation (1) is without loss of generality.3

Joint independence between (U, V ) and Z given X, as stated in Assumption A2, is

stronger than marginal independence. This requires the conditional cdf (that is, the copula)

of the pair (U, V ) given (B,X) to solely depend on X. The presence of dependence between

U and V is the source of sample selection bias.

Lastly, A3 restricts the analysis to absolutely continuous outcomes, and A4 is a support

assumption on the propensity score often made in sample selection models.

Examples. Before discussing identification of model (1)-(3) we briefly outline two special

cases. A first special case is obtained when outcomes are additive in unobservables: Y ∗ =

g (X) + ε, where (ε, V ) is independent of Z. Note that Assumption A1 is satisfied, with

U = Fε (ε), for Fε the cdf of ε. Moreover, the following restrictions hold (as in Das et al.,

2003):

E (Y |D = 1, Z) = g (X) + E (ε |V ≤ p (Z) , Z) = g (X) + λ (p (Z)) ,

where λ (p) ≡ E (ε |V ≤ p).

As a second special case suppose the following reservation rule:

D = 1 {Y ∗ ≥ R(Z) + η} , (4)

where (Y ∗, η) is statistically independent of Z given X. In a labor market application, (4)

may represent the participation decision of an individual, who compares her potential wage

Y ∗ with a reservation wage R(Z) + η. Note that (4) may equivalently be written as:

D = 1
{
V ≤ Fη−Y ∗|Z (−R(Z)|Z)

}
,

3Indeed, U = FY ∗|X (Y ∗|X), where FY ∗|X is the conditional cdf of Y ∗ given X. Moreover, U being
independent of Z given X is equivalent to the potential outcome Y ∗ being independent of Z given X.
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where V ≡ Fη−Y ∗|Z (η − Y ∗|Z) = Fη−Y ∗|X (η − Y ∗|X) is uniformly distributed on the unit

interval, and independent of Z. Letting Y ∗ = q (U,X), (U, V ) is independent of Z given

X, so Assumption A1 is satisfied. At the same time, however, U and V are not jointly

independent of X. Thus, in this reservation wage model the copula Cx(·, ·) depends on x in

general.

2.2 Main restrictions and identification

We have, conditional on participation and for all τ ∈ (0, 1):

Pr (Y ∗ ≤ q (τ , x) |D = 1, Z = z) = Pr (U ≤ τ |V ≤ p(z), Z = z) ,

= Gx (τ , p(z)) , (5)

where Gx (τ , p) ≡ Cx (τ , p) /p, and we have used Assumptions A1 to A4. The conditional

copula Gx(·, ·) measures the dependence between U and V , which is the source of sample

selection bias. As a special case, if U and V are conditionally independent given X = x

then Gx(τ , p(z)) = τ . More generally, (5) shows that Gx maps ranks τ in the distribution of

latent outcomes (given X = x) to ranks Gx(τ , p(z)) in the distribution of observed outcomes

conditional on participation (given Z = z).

An implication of (5) is that, for each τ ∈ (0, 1), the conditional τ -quantile of Y ∗ coin-

cides with the conditional Gx (τ , p(z))-quantile of Y given D = 1. Hence, if we knew the

mapping Gx from latent to observed ranks, one could recover q(τ , x) as a quantile of observed

outcomes, by suitably shifting percentile ranks.

Equation (5) is instrumental to correct quantile functions from selection. Given knowl-

edge of the mapping Gx, latent quantiles can readily be recovered. Moreover, the exclusion

restriction provides information about Gx. The intuition for this is that (5) holds for all z

in the support of Z given X = x, thus generating restrictions on Gx.

The following result spells out the restrictions on the conditional copula Gx. We denote as

X the support of X, and as Zx the support of Z given X = x. G−1x and F−1Y |D=1,Z denote the

inverses of Gx and FY |D=1,Z with respect to their first arguments, which exist by Assumption

A3. Proofs are given in Appendix A.

Lemma 1 Let x ∈ X . Then, under Assumptions A1 to A4:

FY |D=1,Z

(
F−1Y |D=1,Z

(
τ
∣∣z2) ∣∣z1) = Gx

(
G−1x (τ , p(z2)) , p(z1)

)
, for all (z1, z2) ∈ Zx ×Zx.

(6)
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Moreover, for any Gx satisfying (6), one can find a distribution of latent outcomes FY ∗|X

such that Gx

(
FY ∗|X(y|x), p(z)

)
= FY |D=1,Z(y|z) for all (z, y) in the support of (Z, Y ) given

X = x.

Note that the restrictions in (6) are uninformative in the absence of an exclusion restric-

tion. They may become informative as soon as the conditional support of Z given X = x

contains two or more values. Moreover, the second part of Lemma 1 shows that these are

the only restrictions on Gx, in the sense that, for any Gx satisfying (6), one can find a

distribution of latent outcomes that rationalizes the data.

Nonparametric point-identification. Two simple conditions lead to nonparametric point

identification of Gx, and hence to point-identification of q(·, x) as well. We denote as Px the

conditional support of the propensity score p(Z) given X = x.

Proposition 1 Let Assumptions A1 to A4 hold. Let x ∈ X . Suppose that one of the two

following conditions holds:

i) (identification at infinity) There exists some zx ∈ Zx such that p(zx) = 1.

ii) (analytic extrapolation) Px contains an open interval and, for all τ ∈ (0, 1), the

function p 7→ Gx(τ , p) is real analytic on the unit interval.

Then the functions (τ , p) 7→ Gx(τ , p) and τ 7→ q(τ , x) are nonparametrically identified.

Both conditions in Proposition 1 allow one to point-identify the dependence mapping Gx

and the quantile function q(·, x) using an extrapolation strategy. Under i), identification is

achieved at the boundary of the support of the propensity score (“at infinity”). Under ii),

extrapolation is based on the property that real analytic functions that coincide on an open

neighborhood coincide everywhere. Absent conditions i) and ii) of Proposition 1, the model

is nonparametrically partially identified in general.

Partial identification Let x ∈ X and z̃ ∈ Zx. Using the worst-case Fréchet bounds

(Fréchet, 1951, Heckman, Smith and Clements, 1997) on the copula Cx we can bound:

max

(
τ + p(z̃)− 1

p(z̃)
, 0

)
≤ Gx (τ , p(z̃)) ≤ min

(
τ

p(z̃)
, 1

)
, for all τ ∈ (0, 1). (7)
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Let now z ∈ Zx. Evaluating (6) at (z1, z2) = (z, z̃), and using (7) to bound Gx (τ , p(z̃)),

we obtain the following bounds on Gx (τ , p(z)):

Gx (τ , p(z)) ≤ inf
z̃∈Zx

FY |D=1,Z

[
F−1Y |D=1,Z

(
min

(
τ

p(z̃)
, 1

) ∣∣∣ z̃) ∣∣∣ z] (8)

Gx (τ , p(z)) ≥ sup
z̃∈Zx

FY |D=1,Z

[
F−1Y |D=1,Z

(
max

(
τ + p(z̃)− 1

p(z̃)
, 0

) ∣∣∣ z̃) ∣∣∣ z] . (9)

Moreover, using (5) and (7) we have the following bounds on the quantiles of latent

outcomes:

q(τ , x) ≤ inf
z̃∈Zx

F−1Y |D=1,Z

(
min

(
τ

p(z̃)
, 1

) ∣∣∣ z̃) (10)

q(τ , x) ≥ sup
z̃∈Zx

F−1Y |D=1,Z

(
max

(
τ + p(z̃)− 1

p(z̃)
, 0

) ∣∣∣ z̃) . (11)

The quantile bounds in (10) and (11) were first derived by Manski (1994, 2003) in a

slightly more general selection model. In related work, Kitagawa (2009, 2010) provides

comprehensive studies of the role of independence and first-stage monotonicity restrictions

in LATE and sample selection settings, respectively. The bounds in (10) and (11) coincide

with the choice of the upper or lower Fréchet bounds for the copula of (U, V ). In this sense,

these are worst-case bounds.4 In Section S1 of the supplementary appendix we show that

these bounds cannot be improved upon. Importantly, in this paper we work under the

maintained assumption that the model is correctly specified; that is, that (1)-(2)-(3) hold. If

the threshold specification in (2) were relaxed, for example in the absence of monotonicity, it

would be possible to improve over the quantile bounds (10) and (11), as shown in Kitagawa

(2010).

3 Estimation

We adopt a flexible semi-parametric specification. Following a large literature on quantile

regression, we assume that quantile functions are linear, that is:

q (τ , x) = x′βτ , for all τ ∈ (0, 1) and x ∈ X . (12)

Although our estimation strategy can be extended to deal with nonlinear specifications, the

linear quantile model is convenient for computation. We discuss a nonparametric extension

in the next section.
4Note, however, that the Fréchet copula bounds do not satisfy (6) in general. By (8) and (9), the bounds

on Gx are generally tighter than the Fréchet bounds.
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We assume that the copula function, and hence the functionGx, is indexed by a parameter

vector ρ; that is:

Gx(τ , p) ≡ G(τ , p; ρ) =
C(τ , p; ρ)

p
.

The statistical literature offers a number of convenient parsimonious specifications, including

the Gaussian, Frank, or Gumbel copulas. See Nelsen (1999) and Joe (1997) for comprehensive

references. Flexible families may be constructed, for example by relying on the Bernstein

family of polynomials (Sancetta and Satchell, 2004). In all these examples, one may let the

vector ρ depend on x.5 For simplicity we omit the dependence of ρ on x in the following.

The parametric assumptions on the copula are substantive. Restricting the analysis to a

finite-dimensional ρ allows us to focus on the case where ρ is point-identified and to propose

a simple estimation method. In addition, below we propose a bounds approach to assess the

influence on quantile estimates of the parametric assumptions made on the copula.

Lastly, the propensity score p(z; θ) is specified as a known function of a parameter θ. This

assumption may be relaxed, at the cost of making the asymptotic analysis more involved

(see the next section).

The functional form of selected quantiles. Before describing the estimator, we first

comment on the form of the conditional quantiles given participation, when quantile functions

of latent outcomes are linear as in (12). The τ -quantile of outcomes of participants given

z = (b, x) is, by (5):

qd (τ , z) ≡ F−1Y |D=1,Z (τ |z) = x′βG−1(τ ,p(z);ρ). (13)

Equation (13) makes it clear that sample selection affects all quantiles, and that quantile

functions of observed outcomes are generally non-additive in x and p(z). We have the

following result, where it is assumed that ρ does not depend on x.

Proposition 2 Let τ ∈ (0, 1). Suppose that ρ does not depend on x. Then z 7→ qd(τ , z) is

non-additive in x and p (z), unless:

i) All coefficients of βτ but the intercept are independent of τ , or

ii) U and V are statistically independent.

5For example, for scalar ρ ∈ (−1, 1) one may specify ρ(x) =
(
ex
′γ − 1

)
/
(
ex
′γ + 1

)
, where γ is a vector

of parameters.
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Additive specifications such as qd (τ , z) = x′βτ + λτ (p (z)), for a smooth function λτ (p),

are sometimes used in applied work (see the review in Arellano and Bonhomme, 2016). In

contrast, in our framework, conditional quantiles of participants are non-additive. Huber

and Melly (2015) make a related point in a testing context. Correcting for sample selection

thus requires shifting the percentile ranks of individual observations. We now explain how

this can be done in estimation.

3.1 Three-step estimation strategy

Let (Yi, Di, Bi, Xi), i = 1, ..., N , be an i.i.d. sample, with Zi ≡ (Bi, Xi). We propose to

compute selection-corrected quantile regression estimates in three steps. In the first step, we

compute θ̂, a consistent estimate of the propensity score parameter θ. In the second step, we

compute a consistent estimator ρ̂ of the copula parameter vector ρ. Lastly, given θ̂ and ρ̂,

for any given τ ∈ (0, 1) we compute β̂τ , a consistent estimator of the τth quantile regression

coefficient.

The first step can be done using maximum likelihood. We now present the third and

second steps in turn.

Rotated quantile regression (Step 3). Let us suppose that consistent estimators θ̂ and

ρ̂ are available. Then, for any given τ ∈ (0, 1) we compute:

β̂τ = argmin
b∈B

N∑
i=1

Di

[
Ĝτi (Yi −X ′ib)

+
+
(

1− Ĝτi

)
(Yi −X ′ib)

−
]
, (14)

where B is the parameter space for βτ , a
+ = max(a, 0), a− = max(−a, 0), and:

Ĝτi ≡ G
(
τ , p

(
Zi; θ̂

)
; ρ̂
)
.

Solving (14) amounts to minimizing a rotated check function, with individual-specific

perturbed τ . As with standard quantile regression, the optimization problem takes the form

of a simple linear program, and can thus be solved in a fast and reliable way. It is instructive

to compare the rotated quantile regression estimate β̂τ with the following infeasible quantile

regression estimate based on the latent outcomes:

β̃τ = argmin
b∈B

N∑
i=1

[
τ (Y ∗i −X ′ib)

+
+ (1− τ) (Y ∗i −X ′ib)

−
]
.

We see that, in order to correct for selection in (14), τ is replaced by the selection-corrected,

individual-specific percentile rank Ĝτi.
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Estimating the copula parameter (Step 2). From (5), we obtain the following condi-

tional moment restrictions:

E
[
1 {Y ≤ X ′βτ} −G (τ , p(Z; θ); ρ)

∣∣∣D = 1, Z = z
]

= 0.

We propose to estimate the copula parameter ρ as:

ρ̂ = argmin
c∈C

∥∥∥∥∥
N∑
i=1

L∑
`=1

Diϕ (τ `, Zi)
[
1
{
Yi ≤ X ′iβ̂τ` (c)

}
−G

(
τ `, p(Zi; θ̂); c

)]∥∥∥∥∥ , (15)

where τ 1 < τ 2 < ... < τL is a finite grid on (0, 1), ‖·‖ is the Euclidean norm, ϕ (τ , Zi) are

instrument functions with dimϕ ≥ dim ρ, and:

β̂τ (c) ≡ argmin
b∈B

N∑
i=1

Di

[
G
(
τ , p(Zi; θ̂); c

)
(Yi −X ′ib)

+

+
(

1−G
(
τ , p(Zi; θ̂); c

))
(Yi −X ′ib)

−
]
. (16)

Effectively, in this step we are estimating ρ together with βτ1 , ..., βτL . Hence, if the researcher

is only interested in βτ for τ ∈ {τ 1, ..., τL}, Step 3 is not necessary.

This step is computationally more demanding. In particular, the objective function in

(15) is not continuous, due to the presence of the indicator functions, and generally non-

convex. In practice, for low-dimensional ρ one may use grid search, as in our application.

For higher-dimensional ρ, simulation-based methods such as simulated annealing (see, e.g.,

Judd, 1998), or the pseudo-Bayesian approach of Chernozhukov and Hong (2003), could be

used. Importantly, evaluating the objective function is usually fast and straightforward. The

reason is that (16) is a linear programming problem, for which there exist fast algorithms.6

In addition, in experiments we observed that using a large number of percentile values τ `

in (15) tends to smooth the objective function. In Section S2 of the supplementary appendix

we consider a nonparametric quantile specification with discrete covariates, and show that

in this case an integrated version of the objective function in (15), with a continuum of τ

values, is differentiable with respect to the copula parameter c under weak conditions.

Finally, solving (15) is only one possibility to estimate the copula parameter. In Section

S3 of the supplementary appendix we describe an alternative estimator of ρ that relies on

the copula restrictions (6). The method provides a fast and straightforward way to obtain

good starting values to minimize the objective function in (15). Another possibility would

6For example, the Matlab version of Morillo, Koenker and Eilers is directly applicable to the problem at
hand. Available at: http://www.econ.uiuc.edu/∼roger/research/rq/rq.m
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be to estimate ρ using a likelihood approach, based on the semi-parametric structure of

the model. An interesting question, which we do not address in this paper, would be to

construct a semi-parametric efficient estimator for ρ by exploiting the continuum of moment

restrictions in (6).

Remark: unconditional quantiles. Once θ and ρ have been estimated, the param-

eters βτ are estimated by simple quantile regression using the rescaled percentile levels

Ĝτi = G
(
τ , p

(
Zi; θ̂

)
; ρ̂
)

in place of τ . So, the techniques developed in the context of or-

dinary quantile regression can be used in the presence of sample selection. As an example,

counterfactual distributions may be constructed as explained in Machado and Mata (2005)

and Chernozhukov, Fernández-Val and Melly (2013). Specifically, the unconditional cdf of

Y ∗ may be estimated as a discretized or simulated version of:

F̂Y ∗(y) =
1

N

N∑
i=1

∫ 1

0

1
{
X ′iβ̂τ ≤ y

}
dτ ,

and unconditional quantiles can be estimated as q̂(τ) = inf
{
y, F̂Y ∗(y) ≥ τ

}
. Also, a perva-

sive problem in quantile regression is that estimated quantile curves may cross each other

because of sampling error. The approach proposed by Chernozhukov, Fernández-Val and

Galichon (2010), based on quantiles rearrangement, may also be applied in our context.7

3.2 Asymptotic properties

In Section S4 of the supplementary appendix we derive the asymptotic distributions of ρ̂ and

β̂τ for given τ . Under standard conditions for quantile regression estimators (as in Koenker,

2005), an identification condition to be discussed below, and suitable differentiability condi-

tions on G, the estimators satisfy:

√
N

(
β̂τ − βτ
ρ̂− ρ

)
d→ N (0, Vτ ) , (17)

where ρ and βτ denote true parameter values. We provide an explicit expression for the

asymptotic variance Vτ , which can be estimated using an approach similar to the one in

Powell (1986). These results can be easily generalized to derive the asymptotic distribution

for a finite number of quantiles
(
β̂τ1 , ..., β̂τL

)
. An interesting extension is to derive the large

7A difference with standard quantile regression concerns inference, as one needs to take into account that
ρ and θ have already been estimated when computing asymptotic confidence intervals.

12



sample theory of the quantile process τ 7→
√
N
(
β̂τ − βτ

)
, which can be done along the

lines of Koenker and Xiao (2002) or Chernozhukov and Hansen (2006). Confidence bands

for unconditional effects may be derived using the results in Chernozhukov, Fernández-Val

and Melly (2013). Alternatively, given the distributional characterization in (17), confidence

intervals may be estimated using subsampling (Politis, Romano and Wolf, 1999). In our

empirical application, given the large sample sizes, subsampling is computationally attractive

relative to other methods such as the conventional nonparametric bootstrap.

An important condition in the asymptotic analysis is the identification of ρ based on the

following unconditional moment restrictions:

L∑
`=1

E
[
Dϕ (τ `, Z)

(
1
{
Y ≤ X ′βτ` (ρ)

}
−G (τ `, p(Z; θ); ρ)

)]
= 0, (18)

where βτ (c) solves the population counterpart to (16). A rank condition for local identifi-

cation is readily obtained.8 Identification intuitively requires that the propensity score vary

sufficiently conditionally on X, and that both ϕ and the ρ-derivative of G depend on it.

3.3 Estimating bounds

The above method to estimate the copula parameter ρ relies on the assumption that the

copula, and hence the quantile functions, are point-identified. In the absence of functional

form assumptions on the copula, both G and q(τ , x) are partially identified in general. In

particular, the quantiles of latent outcomes are bounded by (10) and (11).9 In practice, a

simple way to informally assess the influence of functional form assumptions on the results

is to compute estimates of the bounds in (10) and (11), obtained from the semi-parametric

model.

Denoting px = supb p(x, b) the supremum of the support of the excluded variable B for

8For example, when L = 1 and τ1 = τ , it suffices that the following matrix be full column rank:

E [Dϕ (τ , Z)X ′fZ (X ′βτ )]E [DXX ′fZ (X ′βτ )]
−1 E [DX∇G′Z ]− E [Dϕ (τ , Z)∇G′Z ] ,

where fZ denotes the conditional density of Y given D = 1 and Z, and ∇GZ = ∂G(τ,p(Z;θ);ρ)
∂c .

9Note that (10) and (11) do not impose a linear representation of the quantile functions as in q(τ ,X) =
X ′βτ . Under linearity one could in principle derive tighter bounds, although such bounds would not be valid
under misspecification of the quantile functions.
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given X = x, the model implies the following bounds:10

q(τ , x) ≡ x′β
G−1

(
max

(
τ+px−1
px

,0
)
,px;ρ

) ≤ q(τ , x) ≤ x′β
G−1

(
min

(
τ
px
,1
)
,px;ρ

) ≡ q(τ , x). (19)

Under the assumption that the support of B given X = x is independent of x, px can be

consistently estimated by p̂x = supi∈{1,...,N} p(x,Bi; θ̂). As these estimates may be sensitive

to outliers, in the application we will also consider alternative estimates based on a trimming

approach. Consistent estimates of q(τ , x) and q(τ , x) are then obtained by replacing px, βτ ,

and ρ, by p̂x, β̂τ , and ρ̂, respectively.

We are thus using our model as a semi-parametric specification for the self-selected con-

ditional quantiles, and therefore for the bounds, which themselves are nonparametrically

identified. An alternative, fully nonparametric strategy, robust to violation of the paramet-

ric assumptions on the copula, would be to construct estimators and confidence sets for the

identified sets of the copula and quantile functions. We will return to this possibility in the

conclusion.

4 Extensions

In this section we briefly discuss several extensions of our approach. More details are given

in Section S5 of the supplementary appendix.

Nonparametric quantile regression. Consistency of the estimator described in Section

3 requires quantile linearity (12) to hold, at least at all τ values of interest.11 Nonparametric

estimators could be used instead. As an example, denoting Xi net of the constant as X̃i,

one might consider replacing (15)-(16) using the following local linear approach:

ρ̂ = argmin
c∈C

∥∥∥∥∥
N∑
i=1

L∑
`=1

Diϕ (τ `, Zi)
[
1
{
Yi ≤ q̂τ`

(
c, X̃i

)}
−G

(
τ `, p(Zi; θ̂); c

)]∥∥∥∥∥ ,
where:

q̂τ (c, x) ≡ argmin
b0∈B0

min
b1∈B1

N∑
i=1

Diκ

(
X̃i − x
h

)[
G
(
τ , p(Zi; θ̂); c

)(
Yi − b0 − (X̃i − x)′b1

)+
+
(

1−G
(
τ , p(Zi; θ̂); c

))(
Yi − b0 − (X̃i − x)′b1

)− ]
,

10One can show that, given that G(·, ·; ρ) is a conditional copula, p 7→ G−1
(

min
(
τ
p , 1
)
, p
)

is non-

increasing, and p 7→ G−1
(

max
(
τ+p−1
p , 0

)
, p
)

is non-decreasing, for all τ ∈ (0, 1).
11For example, if one is only interested in the median β1/2, when using Step 2 of the algorithm with

L = 1 and τ1 = 1/2, consistency will only require a linearity assumption on the conditional median; that is,
q(1/2, x) = x′β1/2.

14



where h is a vanishing bandwidth and κ is a kernel function (e.g., Chaudhuri, 1991).

Treatment effects with selection on unobservables. As a direct extension of model

(1)-(3), consider the following system of equations:

Y ∗0 = q (U0, X) , Y ∗1 = q (U1, X) , Y = (1−D)Y ∗0 +DY ∗1 , (20)

where, in the spirit of Assumption A1, (U0, U1, V ) is assumed independent of Z given X. This

model coincides with the standard potential outcomes framework in the treatment effects

literature (Vytlacil, 2002). In the context of the empirical application, Y ∗0 = 0, and Y ∗1 is

the partial equilibrium causal effect of working. In this framework, the quantile IV method

of Chernozhukov and Hansen (2005) relies on an assumption of rank invariance or rank

similarity which restricts the dependence between U0 and U1. Specifically, rank invariance

(respectively, similarity) requires the comonotonicity of U0 and U1 (resp., given V ), thus

ruling out most patterns of sample selection. In contrast, in the identification analysis our

approach leaves the joint distribution of U0, U1 and V given X unrestricted.

The treatment effects literature has characterized quantities of economic interest, which

may be identified in model (20) absent rank invariance. Related to this paper, Carneiro

and Lee (2009) extend the analysis in Heckman and Vytlacil (2005) to identify and estimate

conditional distributions of potential outcomes. They provide conditions under which con-

ditional cdfs and quantiles of Y ∗0 and Y ∗1 are identified given V = p and X = x, for p in the

support of p(Z) given X = x. In estimation, Carneiro and Lee specify potential outcomes

as additive in X and an unobservable independent of Z. Interestingly, our approach may

be used to estimate such conditional quantiles (or cdfs), while allowing observables X and

unobservables (U0, U1) to interact.12 At the same time, as pointed out in Section 2, iden-

tification of the unconditional distributions of potential outcomes in a nonseparable setup

would require either identification at infinity or analytic extrapolation.13 In the absence of

such conditions, unconditional quantiles may only be bounded in general.

Other extensions. In Section S5 of the supplementary appendix we outline several addi-

tional extensions of the framework. The first one is to allow for a nonparametric propensity

12Specifically, when applying our approach one could parametrically specify the copulas of (U0, V ) and
(U1, V ) given X, or alternatively specify the trivariate copula of (U0, U1, V ) given X.

13A related though different extrapolation strategy is introduced in Brinch, Mogstad and Wiswall (2015),
who rely on parametric restrictions on the marginal treatment effects functions.
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score, instead of a parametric specification. The second one is the construction of a test

statistic to test for the absence of sample selection. We also outline how to adapt the

method to allow for some regressors to be endogenous (as in Chernozhukov and Hansen,

2005, 2006), and for outcomes to be partially censored (as in Powell, 1986).

5 Wages and labor market participation in the UK

In this section, we apply our method to measure market-level changes in wage inequality in

the UK. Moreover, we compare wages of males and females in the UK at different quantiles,

correcting for selection into work. Due to changes in employment rates, wage inequality

for those at work may provide a distorted picture of market-level inequality. Our exercise

decomposes actual changes in the aggregate wage distribution into different interpretable

sources (selection and non-selection components). Our procedure could be standardized into

building economic statistics, similar to other decomposition-based statistics such as price

indices adjusted for changes in quality.

In this application, the latent variable Y ∗ represents the opportunity cost of working for

each person, whether employed or not, at given employment rates. It is not a potential

outcome in the conventional treatment-effect sense, because Y ∗ depends on the market price

of skill, which may be affected by changes in participation rates. In order to account for

equilibrium effects on skill prices, in Section 6 we also propose an extension of the method

and we apply it to a counterfactual exercise.

5.1 Data and methodology

We use data from the Family Expenditure Survey (FES) from 1978 to 2000. To construct the

sample, we closely follow previous work using these data: Gosling et al. (2000) and Blundell

et al. (2003), who focus on males, and Blundell et al. (2007), who consider both males

and females. We select individuals aged 23 to 59 who are not in full-time education, and

drop observations for which education is not reported, or for which wages are missing but

the individual is working. Hourly wages are constructed by dividing usual weekly pre-tax

earnings by usual weekly hours worked. In addition, we drop the self-employed from the

sample. We end up with 77, 630 observations for males, and 89, 848 observations for females.

During the period of analysis, wage inequality increased sharply in the UK. For example,

in our sample, the logarithm of the 90/10 percentile ratio of male hourly wages increased
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Table 1: Descriptive statistics (conditional on employment)

Mean Min Max q10 q50 q90

Males
Married

Log-wage 2.10 .172 4.30 1.56 2.06 2.71
Propensity score .879 .021 1.00 .766 .893 .979

Single
Log-wage 1.99 .319 4.28 1.45 1.95 2.58

Propensity score .753 .259 1.00 .574 .765 .916

Females
Married

Log-wage 1.64 -.378 3.59 1.11 1.57 2.32
Propensity score .681 .006 .998 .512 .699 .844

Single
Log-wage 1.78 -.465 3.58 1.20 1.76 2.42

Propensity score .718 .019 1.00 .475 .735 .933

Source: Family Expenditure Survey, 1978-2000.

Note: The propensity score is estimated using a probit model.

from .90 in 1978 to 1.34 in 2000. This is in line with previous evidence on wage inequality

(Gosling et al., 2000). Moreover, a comparison of mean log-wages between males and females

shows a mean log-wage gap of .44 in 1978, and a mean gap of .30 in 2000. During the same

period the overall employment rate of males fell from 92% to 80%. The mean employment

rate of females also changed over the period, though not in a monotone way. This suggests

that correcting for selection into employment might be important. We now use our approach

to provide selection-corrected measures of wage inequality and gender wage gaps.

We use the quantile selection model to model log-hourly wages Y and employment status

D. Our controls X include linear, quadratic, and cubic time trends, four cohort dummies

(born in 1919-34, 1935-44, 1955-64, and 1965-77, the baseline category being 1945-54), two

education dummies (end of schooling at 17 or 18, and end of schooling after 18), and 11

regional dummies. In addition, we include as regressors the marital status and the number

of kids split by age categories (six dummies, from 1 year old to 17-18 years old). Our sample

contains 75% of married men and 74% of married women.

We follow Blundell et al. (2003) and use their measure of potential out-of-work (welfare)

income, interacted with marital status, as our excluded regressor B. This variable is con-
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structed for each individual in the sample using the Institute of Fiscal Studies (IFS) tax and

welfare-benefit simulation model. We estimate the propensity score using a probit model. In

Table 1 we report several descriptive statistics on the distribution of log-wages, and on the

distribution of the estimated propensity score, by gender and marital status. Out-of work

income is a strong determinant of labor market participation. For example, in the sample

of married (respectively, single) males the log-likelihood of the probit model of participation

increases from −21, 454 to −20, 438 (resp., −10, 480 to −10, 275) when out-of-work income

is added.

The main sources of variation in out-of-work income are the demographic composition

of households (age, household size) and the housing costs that households face, as well as

changes in policy over time. Our maintained assumption is that those determinants are

exogenous to the latent wage equation, and the participation equation satisfies a monotonic-

ity condition. Though not uncontroversial,14 out-of-work income provides a natural choice

for an excluded variable in this context. Moreover, variations in out-of-work income over

time are partly due to changes in policy, motivating the counterfactual analysis that we will

present at the end of this section.

Implementation. We specify the copula C (., .; ρ) as a member of the one-parameter Frank

family (Frank, 1979). We provide details on Frank copulas in Section S6 of the supplementary

appendix. We let the copula parameter be gender- and marital-status specific, as both

dimensions play an important role in potential out-of-work income. We will return to the

choice of the copula below. In addition, to compute ρ̂ in (15) we take τ ` = `/10 for ` = 1, ..., 9,

and ϕ (τ `, Zi) = ϕ (Zi) = p
(
Zi; θ̂

)
.15 Finally, we use grid search for computation of ρ̂, and

take 200 grid points.

14For example, as argued by Blundell et al. (2007), the way the out-of-work income variable operates
may imply a positive correlation with potential wages, if individuals who earn more on the labor market
have better housing, hence a higher out-of-work income. Kitagawa (2010) tests the validity of independence
assumptions based on a discretization of X and B, and finds a rejection in 5 out of 16 covariates cells.

15When considering a two-parameter copula we take p
(
Zi; θ̂

)
and p

(
Zi; θ̂

)2
as instrument functions. We

also estimated the model with ϕ (τ `, Zi) =
√
τ `(1− τ `) p

(
Zi; θ̂

)
, in order to give more weight to central

quantiles, and obtained very similar results. As already mentioned, here we do not attempt to address the
question of efficient estimation of ρ.
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5.2 Selection-corrected wage distributions

On the nine panels of Figure 1 we plot the evolution of the log-wage deciles for men (thick

lines), and women (thin lines). The solid lines show the deciles of observed log-wages,

conditional on employment. The dashed lines show the selection-corrected deciles, by gender.

To compute the latter, we estimated the selection-corrected quantile regression coefficients

using our method, and we then simulated the wage distribution using the method of Machado

and Mata (2005), re-adjusting the percentile levels in order to correct for sample selection.16

Focusing first on male wages, we see that correcting for sample selection makes a strong

difference at the bottom of the wage distribution. For example, at the 10% percentile male

wages increased by 10% conditional on employment, while latent wages remained broadly

flat. We also see sizable differences between latent and observed wages at the 20% and 30%

percentiles. There are smaller differences in the middle and at the top of the distribution.

In addition, differences across quantiles illustrate the sharp increase in male wage inequality

in the UK over the period.

The results for male wages are consistent with low-skilled individuals being progressively

driven out of the labor market. Our estimated copula has a rank correlation of −.24 for

married males, and of −.79 for singles,17 which means that individuals with higher wages

(higher U) tend to participate more (lower V ). Thus, associated with the fall in participa-

tion over time, positive selection into employment implies that individuals at the bottom

of the latent wage distribution tend to become increasingly non-employed. Selection into

employment is stronger for singles than for married males. The 95% confidence intervals

for the rank correlation coefficients are (−.35,−.06) for married males, and (−.84,−.42) for

singles, respectively.18

Looking now at female wages, we observe less difference between wages conditional on

employment and latent wages. Indeed, we estimate a copula with rank correlation of −.17 for

married females, and of −.08 for singles, suggesting that there is less positive selection into

16We jointly simulate wages and participation decisions as follows. For every individual, we draw

(U
(m)
i , V

(m)
i ), m = 1, ...,M , from the relevant copula. Then we compute Y

(m)
i = Xiβ̂U(m)

i
, and D

(m)
i =

1{V (m)
i ≤ p̂(Zi)}. Finally, we compute unconditional quantiles, either latent or conditional or participation,

as empirical quantiles from the simulated data (Y
(m)
i , D

(m)
i ). In practice we take M = 20, and we round τ

in β̂τ to the closest percentile.
17The rank (or “Spearman”) correlation of a copula C is given by: 12

∫ 1

0

∫ 1

0
uvdC (u, v)− 3.

18We computed the confidence intervals using subsampling. Following Chernozhukov and Fernández-Val
(2005) we chose the subsample size as a constant plus the square-root of the sample size, where the constant
(≈ 1000) was taken to ensure reasonable finite sample performance of the estimator.
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Figure 1: Wage quantiles, by gender
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Note: FES data for 1978-2000. Quantiles of log-hourly wages, conditional on employment (solid

lines) and corrected for selection (dashed). Male wages are plotted in thick lines (top lines in each

graph), while female wages are in thin lines (bottom lines).
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Figure 2: Fit to wage quantiles, by gender (employed individuals)
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Note: FES data for 1978-2000. Quantiles of log-hourly wages conditional on employment, data

(solid lines) and model fit (dashed). Male wages are plotted in thick lines (top lines in each graph),

while female wages are in thin lines (bottom lines).

employment for women than for men. A tentative explanation could be that for females non-

economic factors play a bigger role in participation decisions. The confidence intervals for

the correlation coefficients are (−.30,−.01) for married females, and (−.24, .16) for singles.

As a result of this evolution, the selection-corrected gender wage gap tends to decrease

over time. This is especially true at the bottom of the wage distribution. For example, at

the 10% percentile, the difference in log wages between men and women decreases from 45%

at the beginning of the period to 18% at the end. A comparable decrease can be seen at the

20% and 30% percentiles. Hence, correcting for sample selection magnifies the reduction in

the wage gap in this part of the distribution. At the top of the distribution the gap seems

to decrease less, from 39% to 24% at the 90% percentile.

Model fit. Figure 2 shows the model fit to the wage percentiles of employed workers.

To predict wage percentiles, we simulated wages using our parameter estimates. The results

show that the fit to wage quantiles is accurate at the top of the distribution for both genders.

At the bottom of the distribution we observe some discrepancies, particularly for females.

In addition, we estimated the model allowing the Frank copula parameter to vary with

calendar time, on subsamples before and after 1990, in addition to gender and marital status

(not reported). We found some evidence of increasingly positive selection into employment
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Figure 3: Contour plots of the copula
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Note: FES data for 1978-2000. Contour plots of the estimated copula. Negative correlation indi-

cates positive selection into employment. The first row shows the Frank copula, while the second

row shows the generalized Frank copula; see Section S6 of the supplementary appendix.

for females.19 The fit to the selected wage quantiles improved slightly. At the same time,

quantiles of latent wages were comparable to the ones in Figure 1.

Choice of copula. We then investigate the robustness of our results to the choice of the

copula. The symmetry properties of the Frank copula are apparent in the first two rows of

Figure 3, which shows the contour plots of the copula densities that we estimated on the

FES data.20 As a specification check, we consider an encompassing two-parameter family,

19On US data, Mulligan and Rubinstein (2008) document that women’s selection into participation shifted
from being negative in the 1970s to being positive in the 1990s.

20As a graphical convention (common in the literature on copulas), we plot the copula density by rescaling
the margins so that they are standard normal. That is, if C(u, v) denotes the copula, we plot the contours
of:

(x, y) 7→ φ (x)φ (y)
∂2C

∂u∂v
(Φ (x) ,Φ (y)) ,

where φ and Φ denote the standard normal density and cdf, respectively.
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Figure 4: Wage quantiles, by gender (generalized Frank copula)
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Note: FES data for 1978-2000. Percentiles of log-hourly wages, conditional on employment (solid

lines) and corrected for selection (dashed). Male wages are plotted in thick lines (top lines in each

graph), while female wages are in thin lines (bottom lines).

which we call the “generalized Frank copula”. This family may capture different degrees

of dependence in different regions of the (U, V ) plane, as we explain in Section S6 of the

supplementary appendix. The estimated copula densities in the generalized Frank family

are shown in the last two rows of Figure 3. We see that, for both males and females, the

differences between the estimated Frank and generalized Frank copulas are relatively small.

Moreover, as shown by Figure 4, the quantiles of latent wages are quite similar for both

genders when using a Frank or a generalized Frank copula.

Lastly, we also estimated the model based on a Gaussian copula. With a Gaussian copula

and Gaussian marginals the quantile selection model boils down to the Heckman (1979)

model. Our approach makes it possible to combine a Gaussian copula with a non-Gaussian

outcome distribution given by (12). The results of this specification (not reported) are very

similar to the ones based on the Frank copula. In particular, the Spearman correlation

coefficients of the estimated copulas are almost identical.21

Bounds estimates. As a further check of the influence of functional forms on the esti-

mates, in Figure 5 we report estimates of the bounds derived in equation (19). On the top

panel we plot bounds estimates by gender. We see that bounds on wage quantiles for males

21Dependence of the copula on additional covariates could also be relevant. In unreported results we found
that higher education, conditional on gender and marital status, tends to be associated with more positive
selection into employment, particularly for females.
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Figure 5: Estimated bounds on latent wage quantiles
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Note: FES data for 1978-2000. Estimated bounds on quantiles of log-hourly wages (dashed). The

solid lines show the quantiles conditional on employment. Top two panels: male wages are plotted

in thick lines, female wages are in thin lines. Bottom panel: wages for high-school and college are

plotted in thick lines, wages for statutory schooling are in thin lines.
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(in dashed lines) are very close to each other. The bounds for females are wider, though still

informative. However, the results for females are sensitive to the estimator of the supremum

of the propensity score (px) that we use. Larger participation rates are associated with

smaller values of out-of-work income. On the middle panel of Figure 5 we report estimates

of the bounds when trimming 1% of extreme observations in out-of-work income. We see

that, while the results for males are very stable, those for females are very different, showing

extremely wide bounds throughout the wage distribution. This reflects the fact that the

selection problem is more severe for females, as their employment rates are lower.

Lastly, on the bottom panel of Figure 5 we compare the bounds, for males, for two

education groups: statutory schooling (71% of the sample, in thin lines) and high-school and

college (29%, in thick lines). We use a trimmed estimator of the supremum of the propensity

score. We see that the bounds are narrow for more educated individuals, and that they are

wider for the low educated whose employment rates are lower. We observe some evidence of

an increase in the education gap over time, particularly at the median, although the evidence

after correcting for selection is more mixed. The graphs also show evidence of an inequality

increase within the education groups that we consider (similarly as in Blundell et al., 2007).

6 Counterfactuals in the presence of equilibrium ef-

fects

In this last section we consider a simple equilibrium model of wage quantile functions and

nonrandom selection into work as a flexible tool for examining changes in the distribution of

wages over time. We show how the simplicity of linear quantiles can be essentially preserved

while embedding wage functions in a model of human capital, employment decisions, and

labor demand. We then use the model to recompute wage and employment distributions in

a counterfactual scenario where potential out-of-work income is kept at its 1978 value.

6.1 Model and computation

We abstract from hours of work and dynamics. Let rst be the skill price of a worker of

education level s in time period t. Let also h (s, x, u) be the amount of human capital of

a worker with education (or “skill level”) s, observed characteristics x (such as cohort and

gender), and unobserved ability u. The wage rate for an individual i of schooling level Si in
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period t is:

Wit = rSit · h (Si, Xit, Uit) ,

where there are two skill levels (Si ∈ {1, 2}). Note that the human capital function h is

time-invariant.22

Letting Zit = (Bit, Xit), the individual work decision is:

Dit = 1
{
rSit h (Si, Xit, Uit) ≥ WR (Si, Zit, ηit)

}
.

Let X it ≡ (Si, Xit). The log-human capital function and log-reservation wage are specified

as: lnh (Si, Xit, Uit) ≡ X
′
itβ(Uit), and: lnWR (Si, Zit, ηit) ≡ X

′
itγ (ηit) + B′itϕ, so that the

participation decision is:

Dit = 1
{
X
′
itγ (ηit)−X

′
itβ (Uit) ≤ ln rSit −B′itϕ

}
= 1

{
Vit ≤ F

(
ln rSit −B′itϕ,X it

)}
,

where the composite error X
′
it (γ (ηit)− β (Uit)) is assumed independent of Zit given X it = x

with cdf F (., x), and Vit is its uniform transformation. In practice, we approximate the

propensity score by a single-index (probit) model of the form F
(
ln rSit − Z ′itψ

)
.

Using wage and participation equations, our quantile selection approach allows one to

perform partial equilibrium counterfactual exercises where skill prices rst are kept constant.

In order to allow for equilibrium responses in skill prices, we now introduce a model for labor

demand. See Heckman, Lochner and Taber (1998) and Lee and Wolpin (2006) for related

approaches in dynamic structural settings.

Labor demand. Consider a one-sector economy with one physical capital input (which we

assume fixed) and two types of human capital. We assume a standard aggregate production

function: Ft (Lt, Kt) = AtL
α
tK

1−α
t , where Lt is a CES aggregator of the human capital inputs:

Lt =
[
atH

φ
1t + (1− at)Hφ

2t

]1/φ
. If φ = 1 the two labor skills are perfect substitutes, in which

case an increase in the supply of one type of human capital does not affect the relative skill

prices. The scope for equilibrium effects critically depends on the structure of production.

From the first-order conditions we obtain:

ln

(
r1t
r2t

)
= ln

(
at

1− at

)
+ (φ− 1) ln

(
H1t

H2t

)
. (21)

In Appendix B we discuss how to recover estimates of H1t, H2t, φ, and at from micro-data

based on (21). In practice, due to weak identification from our time-series, we calibrate

22This assumption is called the “proportionality hypothesis” in Heckman and Sedlacek (1985).
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φ = .4 using Card and Lemieux (2001)’s estimate on UK data. We take α = .6 in the results

below. We varied α between .4 and .8 and found small effects on the results.

Counterfactual equilibrium skill prices. Suppose we are interested in estimating the

counterfactual equilibrium skill prices, ln r̃st say, that would have prevailed under technology

conditions in period t and the labor force composition or the welfare policy in some other

period.

Equilibrium log skill prices satisfy the equations:

ln rst = lnAt + lnα + (1− α) ln

(
Kt

Lt

)
+ ln ast + (φ− 1) ln

(
Hst

Lt

)
,

where a1t ≡ at and a2t ≡ 1− at. In addition, the labor supply equations imply:

Hst (rst ) =
∑
Si=s

F (ln rst − Z ′itψ)

∫ 1

0

eX
′
itβ(u)dG [u, F (ln rst − Z ′itψ) ; ρ] , s = 1, 2, (22)

Lt =
(
a1t
[
H1t

(
r1t
)]φ

+ a2t
[
H2t

(
r2t
)]φ)1/φ

. (23)

The log-difference between observed and counterfactual skill prices is given by:

ln r̃st − ln rst = (1− α) ln

(
Lt

L̃t

)
+ (φ− 1)

[
ln

(
H̃st

L̃t

)
− ln

(
Hst

Lt

)]
, s = 1, 2, (24)

where the counterfactual skill aggregates H̃st and L̃t satisfy (22)-(23) at prices (r̃1t , r̃
2
t ). Note

that capital (which is fixed) and neutral technical progress are common to both sets of prices

and thus cancel out in (24).

Counterfactual log-skill prices ln r̃1t and ln r̃2t are then obtained as the solution to the

two nonlinear equations in (24), subject to (22)-(23). This fixed-point problem depends on

the following inputs: the parameters β, ψ, ρ, and rst (estimated using our quantile selection

method), the aggregate quantities Hst and Lt and the technological shocks at (estimated as

explained in Appendix B), and the parameters φ and α (which we take from the literature).

As starting value for the counterfactual r̃st we take the estimated rst , and we solve for the

fixed point iteratively.

6.2 Results

Figure 6 shows the estimates of latent wage quantiles in two scenarios: when out-of-work

income is as in the data (solid lines), and in a counterfactual scenario where out-of-work
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Figure 6: Latent wage quantiles and counterfactual equilibrium latent wage quantiles, by
gender
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Note: FES data for 1978-2000. Quantiles of log-hourly wages corrected for selection. Latent wage

quantiles (solid lines) and counterfactual general equilibrium latent wage quantiles (dashed). Male

wages are plotted in thick lines (top lines in each graph), while female wages are in thin lines

(bottom lines).

income is kept at its 1978 value (dashed). The specification that we use has some differences

compared to the one in Figure 1. In particular, here the two education groups are college

and non-college, the specification is pooled across genders, and controls are interacted with

gender.23 We present the results by gender.

We see that accounting for general equilibrium responses tends to lower latent counterfac-

tual quantiles throughout the distribution. This is due to the fact that in the counterfactual

scenario out-of-work income is lower, thus increasing employment rates, and as a result

pushing skill prices down. General equilibrium effects appear to be relatively small for both

genders, although they seem more sizable at the bottom of the distribution.

Figure 7 shows actual employment rates (as predicted by the model), and employment

rates in the partial equilibrium and general equilibrium counterfactuals. We see that in the

counterfactual scenario employment rates tend to increase (dashed lines). The dampening

effect on employment that comes from the general equilibrium response of skill prices is

quantitatively small (dotted lines).

Lastly, Figure 8 shows the actual evolution of wages conditional on employment as pre-

dicted by the model (solid lines), and the evolution in the counterfactual scenario where

23The fit of the model used in this subsection is shown in Section S7 of the supplementary appendix.
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Figure 7: Employment (actual and counterfactual), by gender
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Note: FES data for 1978-2000. Actual employment rate predicted by the model (solid lines), coun-

terfactual employment rate at constant prices (dashed), and counterfactual employment rate at

equilibrium prices (dotted). Male employment is plotted in thick lines (top lines), while female

employment is in thin lines (bottom lines).

Figure 8: Wage quantiles conditional on employment (actual and counterfactual), by gender
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Note: FES data for 1978-2000. Quantiles of log-hourly wages conditional on employment. Ac-

tual quantiles predicted by the model (solid lines), counterfactual quantiles in partial equilibrium

(dashed), and counterfactual quantiles in general equilibrium (dotted). Male wages are plotted in

thick lines (top lines in each graph), while female wages are in thin lines (bottom lines).
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out-of-work income is kept at its 1978 value, with skill prices fixed (dashed) and with skill

prices adjusting through general equilibrium (dotted). We see that, in the partial equilibrium

counterfactual, wages of male workers tend to be lower at the bottom of the distribution,

due to positive selection into employment. In addition, general equilibrium responses imply

further reduction in wages. In the middle and at the top of the distribution, and for females,

differences between actual and counterfactual evolution appear to be smaller.

7 Conclusion

We have presented a three-step method to correct quantile regression estimates for sample

selection. In a first step, the parameters of the participation equation are estimated. In a

second step, the parameters of the copula linking the percentile error of the outcome equa-

tion to the participation error are computed by minimizing a method-of-moments objective

function. In a third step, quantile parameters are computed by minimizing a weighted check

function, using a fast linear programming routine. The method provides a simple and in-

tuitive way to compute selection-adjusted quantile parameters. Moreover, our application

shows that such selection corrections for quantiles may be as empirically relevant as in the

standard regression context of the popular Heckman (1979) sample selection model.

An important issue is the choice of the copula. An approach that treats the copula non-

parametrically is conceptually attractive, for example a sieve approach based on conditional

moment restrictions as in Chen and Pouzo (2009, 2012). It would be desirable to allow the

copula to be unspecified, and to conduct inference on the identified set of quantile functions.

The empirical application suggests that nonparametric bounds might be informative when

selection is not too severe (as in the case of men in our application).
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APPENDIX

A Proofs on identification

Proof of Lemma 1. Equation (6) is a direct application of (5), using the fact that by A3 both
Gx and FY |D=1,Z are strictly increasing in their first argument.

To show the second part, let x ∈ X and let Gx satisfy (6). Pick a zx ∈ Zx, and define:

FY ∗|X(y|x) ≡ G−1x
(
FY |D=1,Z(y|zx), p(zx)

)
.

For all (z, y) in the support of (Z, Y ) given X = x we have:

Gx
(
FY ∗|X(y|x), p(z)

)
= Gx

(
G−1x

(
FY |D=1,Z(y|zx), p(zx)

)
, p(z)

)
= FY |D=1,Z

(
F−1Y |D=1,Z

(
FY |D=1,Z(y|zx)

∣∣zx) ∣∣z)
= FY |D=1,Z

(
y
∣∣z) ,

where we have used (6) to obtain the second equality.

Proof of Proposition 1. Let us start with i). Evaluating (6) at z1 = z and z2 = zx, and

noting that G−1x (τ , 1) = τ , we have that Gx (τ , p(z)) = FY |D=1,Z

(
F−1Y |D=1,Z

(
τ
∣∣zx) ∣∣z). Hence Gx

is identified. The identification of q then comes from (5) and Assumption A3.
Let us now suppose ii). Let Gx and G̃x satisfy model (1)-(3), and let Assumptions A1 to A4

hold. Then, by (6) we have:

Gx
[
G−1x (τ , p2) , p1

]
− G̃x

[
G̃−1x (τ , p2) , p1

]
= 0, for all (p1, p2) ∈ Px × Px.

Hence, for each τ ∈ (0, 1), the function:

(p1, p2) 7→ Gx
[
G−1x (τ , p2) , p1

]
− G̃x

[
G̃−1x (τ , p2) , p1

]
,

which is real analytic, is zero on a product of two open neighborhoods. As a result it is zero
everywhere on (0, 1)× (0, 1), and evaluating it at p2 = 1 leads to:

Gx (τ , p1)− G̃x (τ , p1) = 0, for all p1 ∈ (0, 1).

Hence Gx and G̃x coincide on (0, 1)× (0, 1). This implies that Gx, and hence q (as in the first part
of the proof), are identified.

Proof of Proposition 2. For clarity here we denote x = (x̃, 1), where x̃ contains all covariates
but the constant term. Let also β̃ contain all β coefficients except the intercept. Finally, let
q̃d (x, p) = x′βG−1(τ ,p;ρ). For q̃d (x, p) to be additive in x̃ and p, it is necessary and sufficient that

β̃G−1(τ ,p;ρ) does not depend on p. This happens only if β̃τ does not depend on τ , or if G−1 (τ , p; ρ)
does not depend on p. In the second case, U and V are independent on the relevant support. For
example, if the conditional support of p(Z) contains 1, taking p = 1 implies that G−1 (τ , p; ρ) = τ
for all (τ , p), so U and V are independent.
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B Estimating the elasticity of substitution

The estimation of equation (21) is based on time series aggregate data. We use the microdata to
construct time series of the relevant aggregates. The time series of the log-relative price of skill
ln
(
r̂1t /r̂

2
t

)
is obtained from the estimation of the wage functions. Time series of relative aggregate

labor supplies can be estimated by aggregation of individual units of human capital of employed
workers:

ln

(̂
H1t

H2t

)
= ln

∑
Si=1

Wit

r̂1t
− ln

∑
Si=2

Wit

r̂2t
= ln

∑
Si=1

Wit/
∑
Si=2

Wit

− ln
(
r̂1t /r̂

2
t

)
.

The log ratio of factor-specific productivities ln
(

at
1−at

)
is allowed to vary over time to capture

skill-biased technical change. It is specified as a trend λ(t) plus an unobservable shock εt. The
equation to be estimated is therefore:

ln
(
r̂1t /r̂

2
t

)
= λ(t) + (φ− 1) ln

(
Ĥ1t/Ĥ2t

)
+ εt. (B1)

This equation was estimated on aggregate US data by Katz and Murphy (1992), who obtained
φ̂ = 0.3. A comparable estimate on UK data in Card and Lemieux (2001) is φ̂ = 0.4. We then
estimate at as:

ât ≡ Λ
(

ln
(
r̂1t /r̂

2
t

)
−
(
φ̂− 1

)
ln
(
Ĥ1t/Ĥ2t

))
,

where Λ(r) = exp(r)/(1 + exp(r)).

Finally, note that the explanatory variable ln
(
Ĥ1t/Ĥ2t

)
is likely to be correlated with εt in (B1),

in which case OLS estimates are inconsistent. Natural instrumental variables would be aggregates
(by skill) of labor supply shifters such as potential out-of-work welfare income.
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