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1 Introduction

In a panel model the likelihood of the data yi for a given unit is typically a function

f (yi; �; �i) = fi (�; �i) of common and individual speci�c parameters � and �i, respectively.

Interest centers in the estimation of � or other common policy parameters constructed as

summary measures of the two types of parameters and data. The central feature of this es-

timation problem is the presence of many nuisance parameters (the individual e�ects) when

the cross-sectional dimension is large relative to the number of time series observations.

Many approaches to estimation of � in this context are based on an average likelihood

that assigns weights to di�erent values of �i:

fai (�) =

Z
fi (�; �i)wi (�i) d�i (1)

where wi (�i) is a possibly �-speci�c weight, related to a discrete or continuous measure. An

estimate of � is then usually chosen to maximize the average likelihood of the sample under

cross-sectional independence:
PN

i=1 ln f
a
i (�).

A �xed e�ects approach that estimates � jointly with the individual e�ects by maximum

likelihood (ML) falls in this category with weights assigning all mass to �i = b�i (�), whereb�i (�) is the maximum likelihood estimator of �i for given �. That is,

wi (�i) = � (�i � b�i (�)) (2)

where �(:) denotes Dirac's delta function. The resulting average likelihood in this case is

just the concentrated likelihood fi (�; b�i (�)).
A random e�ects approach is also based on an average likelihood in which the weights are

chosen as a model for the distribution of individual e�ects in the population given covariates

and initial observations. In this case wi (�i) is a parametric or semiparametric density or

probability mass function which does not depend on �, but includes additional unknown

coe�cients:

wi (�i) = �i (�i; �) :

Finally, in a Bayesian approach, beginning with a joint prior for common and individual

parameters � (�; �1; :::; �N), an average likelihood is also constructed. In this case, weights

are chosen as a formulation of the prior probability distribution of �i given �, covariates and

initial observations, under the assumption of prior conditional independence of �1; :::; �N

1



given �:

wi (�i) = �i (�ij�) ;

such that

�(�; �1:::�N) = �1(�1j�):::�N(�N j�)�(�): (3)

However, �i and � need not be independent, so that the weights assigned to di�erent values

of �i may depend on the value of �.

All these approaches, in general, lead to estimators of � that are not consistent as N

tends to in�nity for �xed T , but have large-N biases of order 1=T . This situation, known as

the \incidental parameter problem", is of particular concern when T is small relative to N

(a common situation in applications), and has become one of the main challenges in modern

econometrics.2

The traditional reaction to this problem has been to look for estimators yielding �xed-

T consistency as N goes to in�nity.3 One drawback of these methods is that they are

somewhat limited to linear models and certain nonlinear models, often due to the fact that

�xed-T identi�cation itself is problematic. Other considerations are that their properties

may deteriorate as T increases, and that there may be superior methods that are not �xed-

T consistent.4

More recently, it has been argued that the incidental parameter problem can be viewed

as time-series �nite-sample bias when T tends to in�nity. Following this perspective, several

approaches have been proposed to correct for the time-series bias. These methods include

bias-correction of the ML estimator of the common parameters (Hahn and Newey 2004,

Hahn and Kuersteiner 2004, Dhaene et al., 2006), of the moment equation (Woutersen 2002,

Arellano 2003, Carro 2007) or of the objective function (Arellano and Hahn 2006, 2007,

Bester and Hansen 2005a, Hospido 2006), each of them based on analytical or simulation-

based approximations.

The aim in this literature has been to obtain estimators of � with biases of order 1=T 2

(as opposed to 1=T ) and similar large-sample dispersion as the corresponding uncorrected

methods when T=N tends to a constant. This is done in the hope that the reduction

in the order of magnitude of the bias will essentially eliminate the incidental parameter

2The classic reference on the incidental parameter problem is Neyman and Scott (1948). Lancaster (2000)
reviews the history of the problem since then.

3See Arellano and Honor�e (2001) for a review.
4Alvarez and Arellano (2003) showed that standard panel GMM estimators of linear dynamic models are

asymptotically biased as T and N increase at the same rate.
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problem, even in panels where T is much smaller than N , as long as individual time series

are statistically informative.

In this paper, we consider estimators that maximize an average likelihood such as (1) and

provide a characterization of the class of weights that produce estimators that are �rst-order

unbiased. Speci�cally, we consider b� = argmax�
PN

i=1 ln f
a
i (�) for general weight functions,

or priors, wi (�i).
5 For �xed T , we can de�ne the pseudo true value �T = plimN!1

b�. In

general, �T 6= �0. However, expanding in powers of T :

�T = �0 +
B

T
+ o

�
1

T

�
:

We look for priors that yield B = 0.

Our results suggest new bias reducing estimators with attractive computational proper-

ties, as well as a natural way of obtaining asymptotic con�dence intervals. They also provide

important insights into the properties of �xed e�ects, random e�ects, and Bayesian nonlinear

panel estimators in a uni�ed framework.

The approach we follow was �rst considered in the panel data context by Lancaster

(2002) from a Bayesian perspective, in situations where common parameters and �xed e�ects

can be made information orthogonal by reparameterization.6 Indeed, it can be shown that

under information orthogonality taking a uniform prior for the e�ects reduces the bias on

the parameter of interest. In this paper we generalize this approach to situations where

orthogonal reparameterizations do not exist.

We start with a characterization of bias reducing priors. For a given weight function

or prior, we derive the expression of the 1=T term of the bias of the average likelihood

relative to an infeasible average likelihood without uncertainty about pseudo true values of

the e�ects for given values of �. We use this �nding to show that there always exist bias

reducing weights. This result provides a generalization of Lancaster's approach to a much

wider class of models. We also �nd an expression for the bias of the score of the average

or integrated likelihood, which allows us to make the link with information orthogonality.

Namely we show that, when (generalized) orthogonal reparameterizations of the �xed e�ects

are not available, bias reducing priors will in general depend on the data.

We discuss two speci�c data dependent bias reducing priors. The �rst one, that we call

5We shall indistinctly use the terms \weights" and \priors", since in this paper we treat priors as automatic
weighting schemes.

6The classic paper on information orthogonality is Cox and Reid (1987), and its discussion by Sweeting
(1987) makes the connection between orthogonality and inference from the integrated likelihood.
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the \robust" prior, can be written as a combination of a Hessian and an outer product of

score term. As such it is related to, but di�erent from, the non-subjective prior introduced

by Harold Je�reys. The second bias reducing prior is just the normal approximation to the

sampling distribution of the estimated e�ects for given �:

wi (�i) � N
�b�i (�) ;dVar [b�i (�)]� :

The bias reduction property comes from the fact that, contrary to (2), the variability of the

�xed e�ects estimates and its dependence on � are taken into account.

Given a bias reducing prior, estimation of the common parameters can be performed by

integration methods, as well as using Bayesian simulation techniques such as Markov Chain

Monte Carlo. The possibility of using computationally e�cient techniques for estimation is

an appealing feature of the method we propose. In addition, simulation methods can also

be useful to compute con�dence intervals. Building on Chernozhukov and Hong (2003), we

argue that asymptotically valid con�dence intervals of the parameter estimates can be read

from the quantiles of the posterior distribution of � when N and T grow at the same rate.

Next we study random e�ects estimation, which we see as a particular case of the previous

analysis when the priors on the individual e�ects are independent of the common parameters.

We �nd that, in the absence of prior knowledge on the distribution of the individual e�ects in

the population, it is not possible in general to correct for �rst-order bias. For a given random

e�ects speci�cation, we characterize the set of models for which random e�ects maximum

likelihood (REML) is robust. As an important special case, we derive a necessary and

su�cient condition for the Gaussian REML estimator to be bias reducing, which includes

the class of linear autoregressive models. In more general nonlinear models, however, the

use of Gaussian REML has no bias reducing asymptotic justi�cation.

In contrast, if the random e�ects family approximates the population distribution of

individual e�ects well, the properties of REML improve. Speci�cally, we show that the

�rst-order bias of the REML estimator depends on the distance between the distribution

of individual e�ects and its best approximation, in a Kullback-Leibler sense, in the random

e�ects family. This suggests that using a exible distribution for the e�ects may reduce the

bias on the parameter of interest. As an example, we consider the case of a normal mixture

with a number of components that grows with N , and obtain �rst-order bias reduction of

the REML estimator in a model without covariates.

Finally, we study the estimation of averages over individual e�ects, such as average
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marginal e�ects. We compare two estimators. Firstly, the standard random e�ects estimator,

which is inconsistent for large T unless the population distribution of the e�ects belongs to

the chosen family of priors. Secondly, the Bayesian �xed e�ects (BFE) estimator, de�ned as

the posterior mean of the marginal e�ect, which is large-T consistent. Thus, in the presence

of misspeci�cation, by updating the prior given the data, the bias of marginal e�ects is

reduced by an order of magnitude.

We compute the �rst-order bias term of BFE estimators of marginal e�ects. Priors that

are bias reducing for the common parameters do not lead in general to bias reduction of mar-

ginal e�ects, and bias reducing priors for marginal e�ects are speci�c to the e�ect considered.

The BFE �rst-order bias depends on the distance between the population distribution of the

e�ects and its best �tting approximation in the chosen family of priors. So, while updating

lowers the bias on the marginal e�ects by an order of magnitude, the bias can be further

reduced either by using a bias-reducing prior or a su�ciently close approximating family to

the distribution of the e�ects.

The related literature includes Woutersen (2002), which obtained the �rst-order bias of

the integrated likelihood estimator in the case where parameters are information orthogonal,

and proposed a modi�cation of the score when there is no orthogonality. In a contribution

closely related to ours, Severini (1999) studies the conditions under which a classical pseudo-

likelihood is asymptotically equivalent to some integrated likelihood, corresponding to a

given prior distribution for the e�ects. The conditions he �nds can be seen as a special case

of our results when parameters are information orthogonal. Some of the results of this paper

have been independently obtained by Bester and Hansen (2005b). They consider the form of

bias reducing priors for general parametric likelihood models, and provide a data dependent

prior, which coincides with one of our proposals, but their focus is not on panel data, and

they do not discuss the duality between existence of orthogonal reparameterizations and

non-data dependent bias reducing priors. Other important di�erences are that we provide a

formal justi�cation for bias reduction in the panel context, and that we are also concerned

with developing a framework where we can study the bias reducing properties of random

e�ects estimators.

The plan of the paper is as follows. In section 2, we derive the expression of the bias of the

average likelihood and make the link with information orthogonality. In section 3, we obtain

analytical expressions of two special bias reducing weight functions and discuss inference
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issues. Section 4 focuses on the bias reducing properties of random e�ects estimators. In

section 5 we study the properties of marginal e�ects. Section 6 illustrates the results by means

of two examples: the dynamic AR(p) model and the static logit model with �xed e�ects.

In section 7, we report a small Monte-Carlo simulation to study the �nite-sample behavior

of the proposed estimators. Lastly, section 8 concludes. The appendix contains proofs of

results from sections 2-3 and subsections 4.1-4.2. Proofs of the remaining results, which are

of a more technical nature, are in an online supplementary appendix on the journal's website.

2 Biases of the integrated likelihood and score

In this section, we derive the expression of the �rst-order bias of the integrated likelihood

with respect to an arbitrary prior distribution for the individual e�ects. We start by setting

the notation.

2.1 Notation

Let (yit; x
0
it)
0, i = 1; :::; N and t = 0; 1; :::; T be the set of observations on the endogenous

variable yit and a vector of strictly exogenous variables xit, that we assume i.i.d. across

individuals. The density of yit conditioned on (xi1; :::; xiT ) and lagged y0s is given by:

fit(yitj�0; �i0) � f(yitjxit; yi(t�1); �0; �i0);

which leads to the expression for the scaled individual log-likelihood conditioned on exoge-

nous covariates and initial observations:

`i(�; �i) =
1

T

TX
t=1

ln fit(yitj�; �i):

The likelihood is assumed to depend on a vector of common parameters � and scalar indi-

vidual �xed e�ects �1:::�N .
7 Then, let �i(�ij�) be a conditional prior distribution on the

individual �xed e�ect given �. The conditioning on � follows from our treatment of �i as

nuisance parameters, while � are the parameters of interest. Moreover, the subindex i in �i

refers to possible conditioning on strictly exogenous regressors and initial conditions.

Throughout the paper, we will assume that standard regularity conditions are satis�ed

(e.g., Severini, 1999). In particular, all likelihood and pseudo-likelihood functions as well

7Considering further lags and multiple �xed e�ects would complicate the notation, but leave the essence
of what follows unaltered.

6



as all priors will be three-times di�erentiable. We will also assume that the prior is not

dogmatic in the following sense.

Assumption 1 The support of �i(�ij�) contains an open neighborhood of the true parame-

ters (�i0; �0).

The prior will generally depend on T . We assume that the order of magnitude of the

logarithm of the prior is bounded as T increases:

Assumption 2 When T tends to in�nity we have, for all � and �i:

ln �i(�ij�) = O(1); uniformly over i:8

Concentrated likelihood. Our analysis makes use of three di�erent objective functions

at the individual level. The �rst one is the concentrated or pro�le likelihood. It is de�ned as

`ci(�) = `i(�; b�i(�)), where the �xed e�ects estimates solve b�i(�) = argmax�i `i(�; �i). Thus,

the ML estimator solves b�ML = argmax�
PN

i=1 `
c
i(�). As is well-known, b�ML is in general

inconsistent for �xed T as N !1.

Integrated likelihood. Bias-corrected estimators for � based on the concentrated likeli-

hood have been recently studied in the statistical and econometric literatures (Arellano and

Hahn, 2007). In this paper, we study the behavior of the integrated likelihood with respect

to a given prior �i(�ij�). The individual log integrated likelihood is given by:

`Ii (�) =
1

T
ln

Z
exp [T`i(�; �i)]�i(�ij�)d�i:

As noted by Berger et al. (1999), this likelihood would be acceptable to a subjective Bayesian

whose joint prior is separable in the individual e�ects, see (3). From this perspective, in this

paper we implicitly assume a uniform prior on �: �(�) / 1.9 Allowing for any non dogmatic

prior on � does not a�ect the analysis.

Target likelihood. We shall compute the �rst-order bias of the integrated likelihood rela-

tive to a target likelihood without uncertainty about the value of the e�ects for given �. Let

the target likelihood be `i(�) = `i(�; �i(�)), where �i(�) = argmax�i plimT!1 `i(�; �i). This

8In what follows, uniformity is implicitly assumed everywhere.
9We write a / b to denote that a and b are equal up to a multiplicative constant.
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function possesses many properties of a proper likelihood. In particular, it is maximized

at �0 and satis�es Bartlett identities (Severini, 2000). Note that the e�ects �i(�){ and as

such the likelihood `i(�){ are infeasible. The target likelihood provides a useful theoretical

benchmark to compute �rst-order biases. It is a \least favorable" target likelihood in the

sense that the expected information for � calculated from `i(�) coincides with the partial

expected information.

The concentrated and target likelihood functions can be regarded as integrated likelihood

functions with respect to the priors

�i(�ij�) = � (�i � �i(�)) ; and �i
c(�ij�) = � (�i � b�i(�)) ;

respectively. In this perspective, �ci can be interpreted as a sample counterpart of �i. Below,

we investigate the existence of non-degenerate feasible counterparts of �i that, unlike �
c
i ,

reduce �rst-order bias.

Lastly, we denote the observed score with respect to the �xed e�ect as

vi(�; �i) =
@`i(�; �i)

@�i
;

and its derivatives as

v�ii (�; �i) =
@vi(�; �i)

@�i
; v�i (�; �i) =

@vi(�; �i)

@�
; v�i�ii (�; �i) =

@2vi(�; �i)

@�2
i

; etc.

2.2 Bias of the integrated likelihood

We now derive the expression of the �rst-order bias of the individual integrated likelihood

relative to the target likelihood:

E�0;�i0

�
`Ii (�)� `i(�)

�
= Cst +

�i(�)

T
+O

�
1

T 2

�
;

for a given prior �i(�ij�).10 The expectation is taken with respect to exp [T`i (�0; �i0)], so

that a quantity like E�0;�i0
�
`Ii (�)

�
will depend on �, �0 and �i0. We shall proceed in two

steps.

In a �rst step, we use a Laplace approximation (e.g., Tierney et al., 1989) to link the

integrated and the concentrated likelihood functions. The result is contained in the following

lemma.

10Throughout the paper, we use Cst to denote any constant term, which depending on the context may
be scalar or vector-valued, and stochastic or nonstochastic.

8



Lemma 1 Let Assumptions 1 and 2 hold. Then:

E�0;�i0

�
`Ii (�)� `ci(�)

�
= Cst� 1

2T
lnE�0;�i0 [�v�ii (�; �i(�))]+

1

T
ln �i(�i(�)j�)+O

�
1

T 2

�
: (4)

In a second step we use the formula that gives the �rst-order bias of the concentrated

likelihood (e.g., Arellano and Hahn, 2006, 2007):

E�0;�i0

�
`ci(�)� `i(�)

�
=

1

2T
fE�0;�i0 [�v�ii (�; �i(�))]g�1 E�0;�i0

�
Tv2i (�; �i(�))

�
+O

�
1

T 2

�
:

(5)

The expression of the �rst-order bias of the integrated likelihood then follows directly.

Theorem 1 Let Assumptions 1 and 2 hold. Then:

E�0;�i0

�
`Ii (�)� `i(�)

�
= Cst +

�i(�)

T
+O

�
1

T 2

�
where

�i(�) =
1

2
fE�0;�i0 [�v�ii (�; �i(�))]g�1 E�0;�i0

�
Tv2i (�; �i(�))

�
�1

2
lnE�0;�i0 [�v�ii (�; �i(�))] + ln �i(�i(�)j�): (6)

As the right-hand side of (6) is O(1), Theorem 1 shows that the e�ect of the prior vanishes

as the amount of data increases. When T goes to in�nity, the bias of the integrated likelihood

goes to zero irrespective of the prior, provided that the latter is non-dogmatic. In section 4,

we will see that this property is shared by random e�ects panel data models. However, it

turns out that the prior has an e�ect on the �rst-order bias of the integrated likelihood as,

in general, �i(�) is not locally constant around �0.

2.3 Bias of the integrated score

We start with a de�nition of robust priors.

De�nition 1 Let bi(�0) =
@
@�

��
�0
�i(�) be the �rst-order bias of the integrated score evaluated

at the true value. A prior family is said to be bias reducing, or robust, if and only if

b1(�0) � plim
N!1

1

N

NX
i=1

bi(�0) = o (1) :
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Bias reduction of the moment equation implies bias reduction of the estimator (e.g.,

Arellano and Hahn, 2006). So, for a robust prior family the mode of the integrated likelihood:

b�IML = argmax
�

NX
i=1

`Ii (�)

has zero �rst-order bias; that is:

plim
N!1

b�IML = �0 + o

�
1

T

�
:

We now use the results of the previous subsection to characterize robust priors. From

Theorem 1 we can obtain the expression of the bias of the integrated score evaluated at the

true value, bi(�0). It is convenient, in the likelihood context, to use a simpli�cation proposed

by Pace and Salvan (2006). At the true value �0, where the information matrix equality is

satis�ed, we have:

@

@�

���
�0

�
fE�0;�i0 [�v�ii (�; �i(�))]g�1 E�0;�i0

�
Tv2i (�; �i(�))

� �
=

@

@�

���
�0
ln
�fE�0;�i0 [�v�ii (�; �i(�))]g�1 E�0;�i0

�
Tv2i (�; �i(�))

��
: (7)

The bias of the integrated score is thus given by:

bi(�0) =
@

@�

���
�0
ln �i(�i(�)j�)� @

@�

���
�0
ln
�
E�0;�i0 [�v�ii (�; �i(�))]

�
E�0;�i0

�
Tv2i (�; �i(�))

�	�1=2�
:

(8)

Hence the following result:

Theorem 2 A prior �i is bias reducing if:

@

@�

���
�0
ln �i(�i(�)j�) = @

@�

���
�0
ln
�
E�0;�i0 [�v�ii (�; �i(�))]

�
E�0;�i0

�
Tv2i (�; �i(�))

�	�1=2�
+O

�
1

T

�
:

Theorem 2 gives a su�cient condition for bias reduction. The reason why the condition is

not always necessary is that bias reduction might happen because of cross-sectional averaging,

i.e. b1(�0) could be O(1=T ) even if some of the bi(�0), i = 1:::N , are not. However, the bias

reducing priors that we discuss in the next section will satisfy bi(�0) = O(1=T ) for all i.

2.4 Non-distribution dependent bias reducing priors
and orthogonality

We turn to consider the role of information orthogonality. The next proposition shows the

link between the ability of a prior to reduce bias and information orthogonality.
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Proposition 1 The following equality holds:

bi(�0) =
@

@�

���
�0
ln �i(�i(�)j�) + @

@�i

���
�i0
�i(�0; �i) (9)

where

�i(�; �i) � fE�;�i [�v�ii (�; �i)]g�1 E�;�i
�
v�i (�; �i)

�
:

Proposition 1 shows that the quantity �i(�; �i), the projection coe�cient in the e�cient

score for �, is key in the ability of a given prior to reduce bias. A particular case is the one

of information orthogonality studied by Cox and Reid (1987) and Lancaster (2002). In that

case the information matrix is block diagonal so that E�;�i
�
v�i (�; �i)

�
is identically zero. It

follows from Proposition 1 that the uniform prior �i(�ij�) / 1 is bias reducing. The same is

true of all priors that are independent of � in light of Proposition 1 and the fact that

@�i(�)

@�

���
�0
= �i(�0; �i0): (10)

Conversely, Proposition 1 implies that the uniform prior reduces bias if and only if:

plim
N!1

1

N

NX
i=1

@

@�i

���
�i0
�i(�0; �i) = o (1) : (11)

Condition (11) is slightly more general than information orthogonality. For it to be satis�ed,

it su�ces that �i(�; �i) is a function of � only.

The uniform prior does not depend on the distribution of the data. That is, it is inde-

pendent of the true parameters �0; �10; :::; �N0. We shall refer to the (infeasible) weighting

schemes that depend on the true values of the parameters as distribution dependent. In

particular, the uniform prior is non-distribution dependent.

Other non-distribution dependent priors are given by orthogonal reparameterizations of

the �xed e�ects, when available. Let  i =  i(�i; �) be a reparameterization of the individual

e�ects. To every prior e�i( ij�) on  i we can associate the transformed prior in the original

parameterization:

�i(�ij�) = e�i( i(�i; �)j�) ����@ i(�i; �)@�i

���� :
The following result shows that the bias reducing properties of a prior are not a�ected by a

reparameterization of the e�ects.

Proposition 2 e�i is bias reducing in the transformed parameterization  i if and only if �i

is bias reducing in the original parameterization �i.

11



We now apply Proposition 2 to a reparameterization  i =  i(�i; �) such that  i and �

are information orthogonal in the sense of equation (11). In this case the uniform prior on

 i is bias reducing. Hence, using Proposition 2, the transformed prior on �i:

�i (�ij�) =
����@ i(�i; �)@�i

����
is also bias reducing. Remark that this prior is the Jacobian of the transformation which

maps (�i; �) onto ( i; �). Conversely, any non-distribution dependent bias reducing prior

�i(�ij�) can be associated an orthogonal reparameterization in the sense of equation (11).

It su�ces to take  i =  i(�i; �), where:

 i(�i; �) =

Z �i

�1

�i(�j�)d�:

This discussion shows that there exists a mapping between non-distribution dependent

bias reducing priors and orthogonal reparameterizations in the sense of (11). Now, such

reparameterizations do not always exist. In the multiparameter case (when � is a vector)

one ends up with a partial di�erential equation which has no solution in general, in close

analogy with the case of strict information orthogonality (Cox and Reid, 1987). Hence, to

deal with the case where orthogonal reparameterizations are not available, it is in general

necessary to search for robust priors that depend on the distribution of the data. We address

this task in the next section.

3 Constructive bias reducing priors

In this section we discuss two speci�c data dependent priors that are bias reducing indepen-

dently of the possibility of orthogonalization.

3.1 A robust prior

Theorem 2 shows that the following prior is bias reducing:

�Ri (�ij�) / bE [�v�ii (�; �i)]
nbE �v2i (�; �i)�o�1=2 (12)

where bE [�v�ii (�; �i)] and bE [v2i (�; �i)] are consistent estimates of E�0;�i0 [�v�ii (�; �i)] and

E�0;�i0 [v
2
i (�; �i)], respectively, when T tends to in�nity. Remark that replacing the expec-

tations by large-T consistent estimates in the condition of Theorem 2 does not a�ect the

12



result.11

The bias reducing prior (12), which we call the \robust" prior, depends on the data. The

discussion in the previous section has shown that non-data dependent priors are generally not

robust in cases when orthogonal reparameterizations of the �xed e�ects are not available.12

Moreover, �Ri is the combination of a Hessian term (bE [�v�ii (�; �i)]) and a outer product

term (bE [v2i (�; �i)]). A closely related expression appears in Je�reys' automatic prior when

� is kept �xed, the expression of which is:

�Ji (�ij�) / fE�;�i [�v�ii (�; �i)]g1=2 : (13)

A crucial di�erence between �Ri (�ij�) and �Ji (�ij�) is that Je�reys' prior does not depend
on the data. In fact, Je�reys' prior (13) is generally not bias reducing (see Hahn, 2004).

Before ending this discussion, note that we have assumed a likelihood set-up, as opposed

to a pseudo-likelihood set-up. The likelihood assumption is required to obtain equation (7),

which uses the information identity at true parameter values. In the pseudo-likelihood case,

however, it is still possible to use Theorem 1 to obtain a robust weighting scheme for an

integrated objective function. In e�ect, using the expression of the bias of the integrated

likelihood (6), it is straightforward to show that the following prior is bias reducing in both

likelihood and pseudo-likelihood settings:nbE [�v�ii (�; �i)]
o1=2

exp

�
�T
2

nbE [�v�ii (�; �i)]
o�1 bE �v2i (�; �i)�� : (14)

Coming back to the likelihood set-up, note that Proposition 1 shows that many other

priors are robust. In particular, the two priors given by (12) and (14) are bias reducing.

Using (14) instead of (12) for estimation can make a di�erence in �nite samples. The Monte

Carlo simulations reported below will illustrate this remark.

3.2 Robust reparameterizations

The following result provides an additional characterization of the robust prior.

11Thus, the problem of computing bias reducing priors is analogous to the problem of estimating an additive
bias correction to the concentrated likelihood. See for example Hahn and Kuersteiner (2004), Arellano and
Hahn (2006, 2007), and Pace and Salvan (2006).

12This result is in a similar spirit to one in Wasserman (2000), which shows that for certain mixture models
data dependent priors are the only priors that produce intervals with second-order frequentist coverage.
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Proposition 3 We have:

�Ri (b�i(�)j�) / 1qdVar (b�i(�))
�
1 +Op

�
1

T

��
(15)

where TdVar (b�i(�)) is a consistent estimate of the asymptotic variance of
p
T (b�i(�)� �i(�))

when T tends to in�nity. In addition, every non-dogmatic prior satisfying (15) is bias re-

ducing.

Proposition (3) sheds some light on the properties of the robust prior. To see why, let us

consider the reparameterization:

 i(�i; �) =
�i � b�i(�)qdVar (b�i(�)) : (16)

Reparameterizing the individual e�ects as in (16) amounts to rescaling the e�ects, weighting

them in inverse proportion to the standard deviation of the �xed e�ects MLE.

Speci�cally, let us consider a prior on  i that is independent of �, with pdf f . In terms

of the original parameterization, the prior is:13

e�Ri (�ij�) = 1qdVar (b�i(�))f
0@ �i � b�i(�)qdVar (b�i(�))

1A :

Then, clearly: e�Ri (b�i(�)j�) / 1qdVar (b�i(�)) :
It thus follows from Proposition 3 that e�Ri is bias reducing.

For the particular choice of  i � N (0; 1), we obtain the result that the normal approx-

imation to the sampling distribution of the MLE b�i(�) is a bias reducing weighting scheme

for �i:

�ij� � N (b�i(�);dVar (b�i(�))): (17)

Specifying a prior distribution on the �xed e�ects as in (17) is intuitively appealing from the

point of view of bias reduction. First, unlike the robust prior (�Ri ), this prior is proper, so

that it will unambiguously lead to a proper posterior. Second, it can be seen as a feasible

counterpart of the (degenerate) prior associated to the target likelihood (�i). Unlike the prior

13Note that e�Ri does not satisfy Assumption 2. This does not matter for the present discussion, however,
as shown by the proof of Proposition 3.
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associated with the concentrated likelihood (�ci), it takes into account the way the precision

of b�i(�) varies with �. When Var (b�i(�)) varies slowly with �, the uniform prior on the

original e�ects is bias reducing. This happens when parameters are information orthogonal.

3.3 Asymptotic distribution and inference

Here we derive the asymptotic distribution of the integrated likelihood estimator, and discuss

how to perform inference from the posterior distribution of �.

Let `Ii (�) be associated with a bias reducing prior. Let b�IML = argmax
�

PN
i=1 `

I
i (�) be the

mode of the integrated likelihood. We are interested in the asymptotic distribution of b�IML

when N and T tend simultaneously to in�nity at the same rate: T=N ! Cst > 0.

Let � = argmax
�

PN
i=1 `i(�) be the (infeasible) mode of the target likelihood. Because the

prior is bias reducing, we have:

b�IML = � + op

�
1

T

�
:

So, when N and T tend to in�nity at the same rate:

p
NT

�b�IML � �
�
= op(1):

The mode of the integrated likelihood and the mode of the target likelihood are thus

asymptotically equivalent. In particular, the asymptotic variance of
p
NT

�b�IML � �0

�
is

equal to that of
p
NT

�
� � �0

�
. Now, � has the same asymptotic dispersion as the maximum

likelihood estimator b�ML. So, as in the case of the additive approaches to bias reduction

(Hahn and Newey, 2004), bias reduction occurs with no increase in the asymptotic variance

relative to �xed e�ects maximum likelihood.

Given a robust weighting scheme, estimation based on the integrated likelihood can be

performed using classical or Bayesian techniques. For this purpose, one can use integration

routines (quadrature, Monte Carlo) to compute the integrated likelihood, and then maximize

the latter using optimization algorithms. This is the approach we have adopted in the Monte

Carlo experiments reported below. However, in highly nonlinear models with possibly many

parameters, this approach can be problematic. Our connection to Bayesian statistics makes

it possible to use Bayesian techniques, such as Markov Chain Monte Carlo, to perform the

estimation.

Moreover, an additional appealing feature of the simulation approach is the ability to

read con�dence intervals directly from the posterior distribution. Following Chernozhukov
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and Hong (2003), it can be shown that, in a double asymptotics perspective when N and

T tend to in�nity at the same rate, the quantiles of the posterior distribution of � provide

asymptotically valid con�dence intervals for �0. Indeed, the marginal posterior of � can be

interpreted as a pseudo-posterior calculated from the integrated likelihood. Moreover, this

objective function satis�es a generalized information equality in a double asymptotic sense.

4 Random e�ects and bias reduction

In this section, we study the �rst-order bias properties of random e�ects maximum likelihood

(REML) estimators.

4.1 The random e�ects model

We assume that �i0, i = 1:::N , are drawn from a distribution with density �0 conditioned

on covariates and initial observations. The marginal density of an observation is thus given

by

fi(yi1; :::; yiT jyi0; �0; �0) =
Z

TQ
t=1

f(yitjxit; yi(t�1); �0; �i)�0(�i)d�i:

This model is very common in the panel data literature. Often, �0 is supposed to belong to

a known parametric family such as the normal or a multinomial distribution with a �nite

number of mass points, possibly independent of covariates. In contrast, here we make no

assumption about the functional form of �0.

Let � be a parameter and �i(�i; �) be a family of prior distributions indexed by �. A

typical example is when �(�i; �) is a normal distribution with unknown mean and variance,

� = (m; s2). Importantly, �i(�i; �) does not depend directly on the common parameter

�, nor on the cdf of the distribution of the data (that is, on the true parameters �0; �i0).

Nevertheless, we do allow �i to depend on conditioning covariates and/or initial conditions.

For example, the mean and variance of the normal m and s2 may be functions of covariates

and/or initial conditions as in Chamberlain (1984).

The function �i(�i; �) has two possible interpretations. It can be regarded as a model for

the population distribution of �i0; this is the \random e�ects" perspective. In a Bayesian

perspective, it can also be seen as a hierarchical prior assuming independence between �i

and �. In both approaches, we are interested in the random e�ects pseudo-likelihood:

`REi (�; �) =
1

T
ln

Z
exp [T`i(�; �i)]�i(�i; �)d�i;
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which is the integrated likelihood with respect to the prior �i(�i; �).

4.2 Robust random e�ects

Here we study the existence of random e�ects speci�cations that are bias reducing for any

population distribution of the individual e�ects �0.
14

It is convenient to start by concentrating the likelihood with respect to �. Let:

b�(�) = argmax
�

NX
i=1

`REi (�; �):

The score of the concentrated random e�ects likelihood is given by:

1

N

NX
i=1

@

@�

���
�0
`REi (�;b�(�)) = 1

N

NX
i=1

@

@�

���
�0
`REi (�;b�(�0));

where the equality comes from the envelope theorem.

The bias of the score of the concentrated random e�ects likelihood is thus:

b1(�0) = plim
N!1

1

N

NX
i=1

@

@�

���
�0
`REi (�;b�(�0))

= plim
N!1

1

N

NX
i=1

E�0

�
@

@�

���
�0
`REi (�; �(�0))

�
; (18)

where: �(�) = plim
N!1

�b�(�)�. The following result helps to interpret the pseudo true value

�(�0).

Lemma 2 For all �, we have:

plim
N!1

1

N

NX
i=1

E�0

�
@ ln �i(�i(�); �(�))

@�

�
= O

�
1

T

�
: (19)

Lemma 2 provides a heuristic interpretation of �(�), up to a O(1=T ) term, as the pseudo

true value of � for the model �i(:; �) and the \data" �1(�); :::; �N(�). Evaluated at � = �0,

equation (19) shows that �i
�
:; �(�0)

�
is the best approximation to �0, in a Kullback-Leibler

sense, in the family �i(:; �). In the next subsection, we will see that the distance between �0

and its best approximation also matters for bias reduction.

14In general, �0 is conditional on covariates and initial conditions, but for simplicity our notation does not
make explicit that �0 may be unit-speci�c.
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Equation (18) shows that the �rst-order bias properties of the random e�ects likelihood

are the same as the ones of an integrated likelihood with prior �i(�i; �(�0)). In particular,

using Proposition 1 we obtain:

b1(�0) = plim
N!1

1

N

NX
i=1

E�0

�
@

@�

���
�0
ln �i

�
�i(�); �(�0)

�
+

@

@�i

���
�i0
�i(�0; �i)

�
: (20)

So, using (20) together with equation (10) and rearranging, we �nd that REML is �rst-

order bias reducing if and only if:

plim
N!1

1

N

NX
i=1

E�0

 
1

�i
�
�i0; �(�0)

� @

@�i

���
�i0
�i(�i; �(�0))�i(�0; �i)

!
= o (1) : (21)

A �rst implication of (21) is that, if the common parameters and the individual e�ects

are information orthogonal, then every REML estimator is bias reducing. This is because in

this case �i(�; �) = 0 is identically zero.

Another case where REML is bias reducing is when �0 belongs to the parametric family

�i(:; �). Then the random e�ects model is correctly speci�ed. So, under standard identi�ca-

tion conditions, the REML estimator is �xed-T consistent, hence bias reducing.

Moreover, equation (21) allows to characterize the set of models for which a given random

e�ects speci�cation is bias reducing, as shown by the following theorem.

Theorem 3 Let �i(:; �) be a random e�ects speci�cation depending on a q-dimensional vec-

tor of hyperparameters �. Then REML is bias reducing for all �0 and covariate distributions

if and only if there exists a constant dim(�)� q matrix �(�) such that:

@

@�

���
�i
�i (�; �)�i

�
�; � (�)

�
= �(�)

@

@�

���
�(�)

�i (�i; �) + o (1) : (22)

Theorem 3 shows that, for a given random e�ects family, the set of models where there

is bias reduction is limited: it corresponds to �i being a linear combination of q functions,

where q is the number of hyperparameters. As an important special case, we mention the

following corollary.

Corollary 1 (uncorrelated random e�ects) REML based on a location-scale family

reduces �rst-order bias for all �0 and covariate distributions if and only if there exist 1(�)

and 2(�) such that:

�i(�; �i) = 1(�) + 2(�)�i + o (1) : (23)
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Corollary 1 gives a necessary and su�cient condition for REML based on a location-

scale family to reduce bias. In the corollary, the mean and variance hyperparameters are

independent of xi. We also have the following result, where we let the mean depend linearly

on xi (correlated random e�ects).15

Corollary 2 (correlated random e�ects) REML based on a location-scale family with

mean depending linearly on xi reduces �rst-order bias for all �0 and covariate distributions

if and only if there exist 1(�) and 2(�) such that:

�i(�; �i) = 1(�)xi + 2(�)�i + o (1) : (24)

In particular, these results apply to Gaussian REML. Section 6 will give examples of

models that satisfy conditions (23) or (24), such as dynamic AR(p) models with or without

strictly exogenous regressors. In these models, the bias of REML based on the Gaussian

family is of order 1=T 2. Still, most models do not satisfy conditions (23) or (24). In those

cases, the bias of the Gaussian REML estimator is of order 1=T .

Corollaries 1 and 2 are interestingly related to the minimax �nite sample result obtained

by Chamberlain and Moreira (2008). Using a very di�erent perspective, our results also

emphasize the importance of the model's linearity in order for Gaussian REML to have good

properties.

4.3 Flexible random e�ects

In the previous subsection we asked the question: Given a random e�ects family of priors,

what is the set of models in which REML is robust for any population distribution of the

individual e�ects? In particular, we required bias reduction to hold even if the population

distribution �0 was very poorly approximated by the parametric family of prior distributions

�i(:; �). In contrast, here we ask: Is it possible to reduce the bias on � by choosing a family

of priors that approximates �0 \su�ciently well"? Our motivation comes from the fact that,

in the absence of misspeci�cation, that is when �0 belongs to the chosen family of prior

distributions, the bias is zero.

To answer this question, it is convenient to de�ne the following objects:

�0 = argmax
�

E�0 (ln � (�i0; �)) ; and: e�0 � �
�
:; �0
�
:

15As in Chamberlain's (1984) random e�ects probit, for example.
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�0 is the infeasible ML estimand of �, for the \data" �10; :::; �N0. So e�0 is the best approx-
imation to �0, in a Kullback-Leibler sense, in the family �(:; �). Note that both �0 and e�0
are theoretical objects.16 Remark also that we have assumed for expositional simplicity that

�i(:; �) � �(:; �) does not depend on covariates. We come back to this point at the end of

this subsection.

It is also convenient to de�ne, for a density p:

K(�0; p) =
"
E�0

�
ln

p(�i0)

�0(�i0)

�2
#1=2

:

K(�0; p) is the L2 Kullback-Leibler loss. We will use it to measure how close the true �0 and

its best parametric approximation e�0 are.
Let b�REML = argmax

�

NX
i=1

`REi

�
�;b�(�)�

be the REML estimator, and let � = argmax
�

PN
i=1 `i(�) be the infeasible mode of the target

likelihood. Unlike that of �, the asymptotic distribution of b�REML is generally not centered

at zero. The following theorem shows that the bias in the asymptotic distribution of b�REML

depends on the discrepancy between the true density �0 and its best �tting approximatione�0, as measured by the L2 Kullback-Leibler loss. The theorem requires some conditions on

the tails of �0 that we detail in the supplementary appendix, together with its proof.

Theorem 4 Let N and T tend to in�nity such that N=T ! Cst. Under suitable regularity

conditions:

p
NT

�b�REML � �0

�
=

p
NT

�
� � �0

�
+O (K(�0; e�0)) + op (1) :

Theorem 4 shows that if the distance between �0 and its best parametric approximatione�0 is o(1), then the REML estimator is �rst-order unbiased and has the same asymptotic

variance as the �xed e�ects estimator.

As a special case, Theorem 4 implies that b�REML and � are asymptotically equivalent if

the model is correctly speci�ed and �0 belongs to the parametric family �(:; �).

More interestingly, the result in Theorem 4 also suggests that, for a exible choice of

�(:; �), one should be able to obtain asymptotically unbiased inference on �. The following

16Note also that �
0
does not coincide with �(�0), although due to (19) their di�erence is O(1=T ).
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result formalizes this intuition in the case of normal mixtures. For this purpose, we adopt

the set-up in Ghosal and Van der Vaart (2001).

Corollary 3 Assume that �0 can be expressed as a mixture of normals of the form:

�0(�) =

Z
1

�
'

�
�� �

�

�
dH0(�; �)

where � 2 [�; �] belongs to a compact interval. Let � be the pdf of a �nite mixture of K

normal components:

�(�) =
KX
k=1

pk
1

�k
'

�
�� �k
�k

�
where pk � 0,

PK
k=1 pk = 1 and �k 2 [�A;A], with A = O ((lnN)�) for some � > 0. Assume

also that there exists � 2]0; 1] such that:17Z
�0(�)=e�0(�)�e1=�

�
�0(�)e�0(�)

��
�0(�)d� <1: (25)

Then, for K � C lnN with C large enough

K(�0; e�0) = O
�
N� 1

2
+
�
; for any  > 0: (26)

So, when N; T tend to in�nity such that N=T ! Cst:

p
NT

�b�REML � �0

�
=

p
NT

�
� � �0

�
+ op(1): (27)

Corollary 3 shows that, in the case where �0 is a mixture of normals, the rate of conver-

gence of the discrete sieve MLE is almost root-N in (26). As noted by Ghosal and Van der

Vaart (2007) this near-parametric rate is driven by the assumptions on �0. Working under

much weaker assumptions, Ghosal and Van der Vaart (2007) �nd convergence rates of sieve

MLEs that are close to the rate of nonparametric kernel estimators O(N�2=5). Applied to

the case of �nite mixtures of normals, their results imply that (27) holds for REML based

on a normal mixture with a su�ciently large number of components, under much weaker

assumptions on �0. Indeed, for (27) to hold we only need that K(�0; e�0) = o (1), and do not

require a speci�c convergence rate.

17Condition (25) imposes that the tails of e�0 are not too thin relative to that of �0. We need this condition
because Ghosal and Van der Vaart (2001) bound the Hellinger distance between the two distributions (i.e.,
the L2 distance of square roots), while we need to bound the L2 Kullback-Leibler loss. A useful inequality
between the two distances is given in Wong and Shen (1995). Also remark that (25) is clearly satis�ed if �0
is compactly supported.
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Importantly, all results in this section are stated under the assumption that � and �0 do

not depend on covariates, or that covariates are discrete and the analysis is conducted for

speci�c values. If �0 depends on more general x's, then the statements of the theorem and

corollary will still hold, provided that we let �i(:; �) depend in an unrestricted way on xi.

5 Policy parameters: marginal e�ects

5.1 Estimating marginal e�ects

In this section we study the bias properties of some estimators of averages over individual

e�ects, such as average marginal e�ects. We consider quantities of the form:

M =
1

N

NX
i=1

mi(�0; �i0):

A �rst example is the marginal e�ect of a covariate in a probit or logit model, e.g. for

probit: mi(�; �i) = �k
1
T

PT
t=1 ' (x

0
it� + �i), where ' is the N (0; 1) density. Other examples

are moments of the distribution of individual e�ects: mi(�; �i) = �ki .

A standard �xed e�ects estimator of M is given by

cMFE =
1

N

NX
i=1

mi

�b�; b�i �b���
where b�i(�) is the MLE of �i given �, and b� is a possibly bias reducing estimator of �. This

estimator was studied by Hahn and Newey (2004). Whether b� is bias corrected or not cMFE

has generally a non-zero �rst-order bias term. Hahn and Newey suggest an approach to bias

correct the marginal e�ects also, and obtain a bias of order 1=T 2.

We consider two other estimators of M . In a random e�ects framework with family

�i(:; �) we may consider the standard random e�ects estimator given by:

cMRE =
1

N

NX
i=1

Z
mi(b�; �i)�i ��i;b� �b��� d�i

where b� is a large-T consistent estimator of �, for example the REML estimator, and b�(�) is
the MLE of � given �.

More generally, assuming a family of prior distributions �i(�ij�) we can consider a

Bayesian �xed e�ects (BFE) estimator of M as:

cMBFE =

Z
:::

Z  
1

N

NX
i=1

mi(�; �i)

!
p(�1; :::; �N ; �jy; x)d�1:::d�Nd�
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where p is the posterior distribution of the model's parameters given the data. cMBFE is

the posterior mean of 1
N

PN
i=1mi(�; �i). One could as well consider the posterior mode. As

before, assuming a non-at prior on � does not a�ect the large-T bias or the asymptotic

distribution of the estimator.18

5.2 Bayesian �xed e�ects estimation

The following theorem gives the large-T bias of the BFE estimator cMBFE.

Theorem 5 When T tends to in�nity:

plim
N!1

�cMBFE �M
�
=
BM

T
+ o

�
1

T

�
;

where

BM =

"
plim
N!1

1

N

NX
i=1

@

@�

���
�0
mi(�; �i0)

#
B

+plim
N!1

1

N

NX
i=1

1

�i(�i0j�0)
@

@�

���
�i0

[E�0;�i0 (�v�ii (�0; �))]
�1 �i(�j�0)m�i

i (�0; �);

and B is the �rst-order bias of the mode of the integrated likelihood (or, equivalently, of the

posterior mean of �).

Theorem 5 shows that the BFE estimator of M is large-T consistent, independently of

�i, and gives an expression of the �rst-order bias. It follows that taking a robust prior on

�i leads to �rst-order unbiasedness for � (B = 0), but not for M in general (BM 6= 0). An

exception where the two bias terms are zero occurs when M = m(�0) does not depend on

the individual e�ects. So the properties of the BFE estimator are similar to those of the

standard �xed e�ects estimator.

As in the case of common parameters �, one may look for priors on �i that yield BM = 0.

If parameters are information orthogonal the uniform prior is not bias reducing for M , if the

marginal e�ect depends on individual e�ects. Instead, one may consider:

�mi (�i) =
1

m�i
i (�0; �i)

E�0;�i0 [�v�ii (�0; �i)] : (28)

18In a random e�ects model, we could also consider another estimator, that one could refer to as \Bayesian
random e�ects", namely the posterior mean or mode of 1

N

PN

i=1

R
mi(�; �i)�i (�i; �) d�i. Using a Laplace

approximation, it is easy to show that this estimator is asymptotically equivalent to cMRE when N and T
tend to in�nity at the same rate.
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Under information orthogonality, �mi is both bias reducing for � and M . In the general case,

one can verify that the following prior is robust for � and M simultaneously:

�R;mi (�ij�) = m�i
i (�0; �i (�))

m�i
i (�0; �i)

E�0;�i0 [�v�ii (�0; �i)]
�
E�0;�i0

�
v2i (�0; �i (�))

�	� 1

2 : (29)

As the robust priors considered in section 3, �R;mi depends on the distribution of the

data.19 However, �R;mi also depends on mi, and, although it is not unique, there does not

seem to be a way of �nding priors that are bias reducing for any marginal e�ect considered.

So, in practice one would need to estimate the model with di�erent priors on �i for the

various marginal e�ects that one would consider.

In keeping with the discussion in section 4, we now look for a exible speci�cation for �i

that is bias reducing, independently of the marginal e�ect considered. For this purpose we

use the set-up of subsection 4.3, and denote the population distribution of individual e�ects

as �0, the parametric random e�ects family as �i(:; �), and the best �tting approximation ase�0. Then we have the following corollary to Theorem 5.

Corollary 4 Under suitable regularity conditions given in the supplementary appendix:

plim
N!1

�cMBFE �M
�
= O

�K (�0; e�0)
T

�
+ o

�
1

T

�
:

Corollary 4 shows that the �rst-order bias of the BFE estimator of M depends on the

distance between the true �0 and its parametric approximation e�0, as measured by the L2

Kullback-Leibler loss. As in the case of Corollary 3, in order to eliminate �rst-order bias,

one could choose �i(:; �) to be the pdf of a �nite normal mixture with a su�ciently large

number of components.

Finally, let us discuss inference when N and T tend to in�nity at the same rate. Provided

that one uses either a robust prior for M or a exible random e�ects speci�cation, the

asymptotic distribution of
p
NT

�cMBFE �M
�
is normal with zero mean and variance given

by the large-T inverse information matrix.20 In addition, asymptotically valid con�dence

intervals can be read from the posterior distribution of the marginal e�ects, as in the case

of common parameters.

19As such, �R;mi and �mi are infeasible. Feasible counterparts could be constructed as explained in section
3.

20Remark that, if instead we are interested in inference about the plim ofM , then (unlessmi is independent
of �i) the con�dence intervals will be of order 1=

p
N as opposed to 1=

p
NT . This is because, when N and

T grow at the same rate, the sampling error due to the averaging over cross-sectional units dominates.
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5.3 Random e�ects estimation

Let us now turn to random e�ects estimation of marginal e�ects. The following theorem

shows that cMRE is generally inconsistent when N and T tend to in�nity.

Theorem 6 When T tends to in�nity:

plim
N!1

�cMRE �M
�
= plim

N!1

1

N

NX
i=1

Z
mi(�0; �i) (e�0 (�i)� �0 (�i)) d�i +O

�
1

T

�
:

In a random e�ects framework one can use either cMRE or cMBFE to estimateM . Theorem

5 showed that the BFE estimator of M is large-T consistent, independently of the priors

postulated on the individual e�ects. In sharp contrast with this result, Theorem 6 shows

that standard random e�ects estimators of M are inconsistent in general. This happens

because, in the estimation of M , cMBFE updates the prior knowledge on the distribution of

the �xed e�ects using the data while cMRE does not.21

To summarize the results in this section, the comparison of Bayesian �xed e�ects and

random e�ects estimators of marginal e�ects shows the bene�ts of updating by relying on the

posterior distribution, as this reduces bias by an order of magnitude, from O(1) to O(1=T ).

Moreover, the magnitude of the bias of the Bayesian �xed e�ects estimator depends on

how well the parametric distribution of priors approximates the population distribution of

individual e�ects.

6 Examples

In this section and the next we consider two speci�c examples: a dynamic AR(p) model,

and a static logit model. Derivations and an additional example concerning a Poisson counts

model are available in section S2 of the supplementary appendix.

6.1 Dynamic AR(p)

The model we consider is given by:

yit = �10yi;t�1 + :::+ �p0yi;t�p + �i0 + "it; i = 1:::N; t = 1:::T:

21Under suitable tail assumptions it can be shown that the bias of cMRE is O (K (�0; e�0)). However, using
a exible parametric family to reduce the bias would increase the asymptotic variance of the estimator,
because e�0 appears in the �rst term of the expansion of cMRE .
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Let y0i = (yi;1�p; :::; yi0)
0 be the vector of initial conditions, that we assume observed. Obser-

vations are iid across i. Moreover, it is assumed that:

("i1; :::; "iT )
0j�i0; y0i � N

�
0; �20IT

�
;

where IT is the identity matrix of order T .

For this model there exist likelihood-based �xed-T consistent estimators (see for example

Alvarez and Arellano, 2004), which can provide a useful benchmark for the application of our

general methods. Another interesting aspect of this illustration is that, as we argue below,

an orthogonal reparameterization is available for the �rst-order process but not for models

with p > 1.

The individual log likelihood is given by:

`i(�; �
2; �i) =

1

T
ln f(yijy0i ; �i;�; �2) = �

1

2
ln(2�)� 1

2
ln(�2)� 1

2T

TX
t=1

(yit � x0it�� �i)
2

�2

where xit = (yi;t�1; :::; yi;t�p)
0 and � =

�
�1; :::; �p

�0
.

We show in the supplementary appendix that a robust prior can be chosen as a large-T

consistent estimate of the following infeasible quantity:

�IRi
�
�ij�; �2

� / �1 + a(�� �0) + bi(�� �0; �i � �i0)
��1=2

;

where a (:) and bi (:; :) are linear and quadratic functions, respectively, the coe�cients of

which depend on true parameter values and initial conditions. More precisely, a � a(�0) is

a function of �0 only, while bi � b(�0; �i0; yi0) depends on true values and initial conditions.

The quadratic term bi(� � �0; �i � �i0) has no e�ect on the bias. Indeed, it could be

replaced by any other quadratic function in di�erences � � �0 and �i � �i0. Removing the

quadratic terms we may consider:

e�IR ��ij�; �2� / f1 + a(�� �0)g�1=2 : (30)

The prior e�IR is also bias reducing. Note that, as a(���0) is linear, the function e�IR (�ij�; �2)
is degenerate for some values of �. When estimating the prior in practice, this degeneracy

can be a problem. It can then make sense to use the alternative expression (14) for the

robust prior and consider instead:

e�IR ��ij�; �2� / exp

�
�1

2
a(�� �0)

�
: (31)
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Now, the priors given by (30) and (31), are distribution dependent because a depends on

�0. Looking for a non-distribution dependent prior requires solving:

@

@�

���
�
0
;�2

0

ln �
�
�i
�
�; �2

� j�; �2� / @

@�

���
�
0

ln
�
f1 + a(�� �0)g�1=2

�
; (32)

for some function � independent of (�0; �
2
0; �i0).

In the AR(1) case, we show in the supplementary appendix that

@

@�

���
�
0

ln
�
f1 + a(�� �0)g�1=2

�
=

1

T

T�1X
t=1

(T � t)�
t�1

10 :

In this case, equation (32) admits solutions independent of true parameter values. For

example, the following choice works:

�
�
�ij�; �2

�
= exp

 
1

T

T�1X
t=1

T � t

t
�t

!
: (33)

This is the prior found by Lancaster (2002) in terms of the original (non information orthog-

onal) parameterization. Note that this property is speci�c to the AR(1) case. In the AR(p)

model, p > 1, there generally does not exist a non-data dependent bias reducing prior. At

the end of this section we discuss the existence of bias reducing data dependent priors for

the AR(p) model that are independent of the common parameters, in the context of random

e�ects estimation.

6.2 Static logit

We now consider the model:

yit = 1 fx0it�0 + �i0 + "it > 0g ; i = 1:::N; t = 1:::T

where the x's are known, and "it are i.i.d. and drawn from the logistic distribution with cdf

�.

The individual log-likelihood is given by:

`i(�; �i) =
1

T

TX
t=1

fyit ln �(x0it� + �i) + (1� yit) ln [1� �(x0it� + �i)]g :

In the supplementary appendix we derive the expression of a robust prior as a consistent

estimate of:

�IRi (�ij�) /
 

TX
t=1

E�0;�i0

�
[yit � �(x0it� + �i)]

2
�!�1=2 TX

t=1

�(x0it� + �i) [1� �(x0it� + �i)] :

(34)
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As shown in Lancaster (2000), there also exists an orthogonal reparameterization in this

model. Let:

 i =
TX
t=1

�(x0it� + �i):

Then  i and � are information orthogonal.

The uniform prior on  i is thus bias reducing. The corresponding prior on the original

individual e�ects is:

�i(�ij�) /
TX
t=1

�(x0it� + �i) [1� �(x0it� + �i)] : (35)

Note that in this case, Je�reys' prior is given by �Ji (�ij�) / f�i(�ij�)g1=2. It is readily

veri�ed that �Ji is not bias reducing. On the other hand, both �IRi and �i reduce bias.

In practice, one can thus compute the following robust prior:

�Ri (�ij�) /
(

TX
t=1

�
(yit � �(x0it� + �i))

2
�)�1=2 TX

t=1

�(x0it� + �i) [1� �(x0it� + �i)] : (36)

One can also use expected quantities and compute:

�Ri (�ij�) /
(

TX
t=1

�(x0it
b� + b�i) [1� 2�(x0it� + �i)] + [�(x0it� + �i)]

2

)�1=2

�
TX
t=1

�(x0it� + �i) [1� �(x0it� + �i)] ; (37)

where b� and b�i are consistent estimates of the true parameters when T tends to in�nity (for

example maximum likelihood estimates).

6.3 Random e�ects

We study the properties of random e�ects maximum likelihood (REML) estimators in the

previous examples.

Dynamic AR(p). We start with the dynamic AR(p) model of subsection 6.1. We show

in the supplementary appendix that, for this model:

�i(�; �
2; �i) = a0(�)y

0
i + a1(�)�i;

where y0i is the vector of initial conditions, and a0(�) and a1(�) are matrices. Moreover,

if the process is stationary then a0(�) = O(1=T ). Hence, it follows from Corollary 1 that

28



uncorrelated Gaussian REML is bias reducing for this model. This result was proven by

Cho, Hahn and Kuersteiner (2004) in the case p = 1. If strictly exogenous covariates are

included in the model then it is easy to check that correlated Gaussian REML is robust,

while uncorrelated REML is not in general.

Linear model with one endogenous regressor and many instruments. A closely

related example is the following linear model with one endogenous regressor in a panel

context:22

yit = ��i + uit;

xit = �i + vit;

where errors are i.i.d. and: �
uit
vit

�
� N (0;
) :

In the following we assume that covariance matrix 
 is given. We let


�1 =

�
!11 !12

!21 !22

�
:

In this example there is an analogy between having a large number of individual e�ects and

a large number of instruments in a simultaneous equations perspective (see Hahn, 2000).

We show in the supplementary appendix that:

�i(�; �i) = �i
�!11� � !12

!11�
2 + 2!12� + !22

:

We are thus in the case of Corollary 1, and Gaussian REML is bias reducing. A related

situation arises in Chamberlain and Imbens' (2004) use of REQML under Bekker's (1994)

asymptotics. Our treatment of this example shows that the linearity of the model is crucial

for the success of random e�ects methods.

Static logit. In the case of the static logit model, we have that:

�i(�; �i) = �
PT

t=1 �(x
0
it� + �i)(1� �(x0it� + �i))xitPT

t=1 �(x
0
it� + �i)(1� �(x0it� + �i))

:

This is a highly nonlinear expression in �i, � and xi = (xi1:::xiT )
0. Thus, usual REML

estimators are not bias reducing. For example, Corollary 1 shows that uncorrelated Gaussian

REML is not robust.
22We are grateful to Jinyong Hahn for this suggestion.
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Note that this lack of unbiasedness is not corrected for by allowing the prior to depend

on covariates xit, as in Chamberlain's (1984) probit model. In that case, it is still impossible

to correct for the �rst-order bias without permitting the prior to depend on the common

parameters �. In nonlinear models, thus, the success of random e�ects likelihood inference

depends critically on prior knowledge about the form of the �xed e�ects.

7 Monte Carlo simulation

In this section, we provide some Monte Carlo evidence on the �nite sample behavior of

integrated likelihood estimators.

7.1 Static logit

We �rst focus on the static logit model:

yit = 1 fx0it�0 + �i0 + "it > 0g ; i = 1:::N; t = 1:::T: (38)

The xit are constant across simulations and drawn from a N (0; 1) distribution. The indi-

vidual e�ects are drawn in each simulation from N (xi; 1), where xi =
1
T

PT
t=1 xit. Lastly, "it

are i.i.d. draws from the logistic cdf, and �0 is set to one. In all the experiments N is 100.

Table I shows some statistics of the empirical distribution of 100 draws of b�, where b� can
be one of the following estimators: \uncorrected" refers to the MLE, and \corrected" to the

corrected MLE, obtained using the DiCiccio and Stern (1993) adjustment based on equation

(5), see Arellano and Hahn (2007, p.392); \uniform" is the integrated likelihood estimator

with uniform prior �i / 1; \Lancaster" is the integrated likelihood with the uniform prior

on the orthogonal parameters written in terms of the original e�ects, see equation (35);

\robust, observed" refers to the integrated likelihood with the robust prior constructed from

observed quantities, see (36), while \robust, infeasible" refers to the integrated likelihood

with the robust prior estimated using expected quantities where the true parameter �0 is

assumed known, see (37); \robust, iterated 1" refers to the same estimator, but when the

expectation in (37) is evaluated at b�, the \robust" integrated likelihood estimator; then,

\robust, iterated1" is obtained iterating this procedure until convergence; \random e�ects"

is the Gaussian random e�ects estimator; lastly, \conditional logit" is Chamberlain's (1980)

conditional logit.23

23Both the random e�ects and conditional logit estimators were computed using the STATA xtlogit and
clogit commands, respectively. The other estimators were computed using GAUSS.
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Table I shows that the bias of the MLE can be large: it is equal to 33% for T = 5 and

still 6% for T = 20. The corrections based on the concentrated likelihood and the various

integrated likelihoods give roughly the same results. In all cases considered, using one of

these corrections reduces the bias by a factor between 2 and 3. The best performance, in

terms of bias, mean squared error (MSE) and mean absolute error (MAE), is achieved by

Lancaster's (1998) integrated likelihood given by equation (35). Note that the infeasible

estimator based on (37) and the iterated corrections do not give better results than the

correction based on observed quantities.

The Gaussian random e�ects MLE gives rather good results. Our experiments (not

reported) showed that the relative performance of REML worsens when the correlation

between �i0 and xi increases, and when the sampling distribution of the individual e�ects

departs from the normal. Lastly, the conditional logit estimator is consistent for �xed T .

Still, note that several corrected/integrated estimators yield MSE and MAE comparable to{

or lower than{ the ones of conditional logit for T = 10 and T = 20. This suggests that,

for intermediate values of T , it may not be obvious to choose a �xed-T consistent estimator

rather than bias-corrected alternatives. Hahn, Kuersteiner and Newey (2004) show that bias-

corrected estimators are second-order e�cient. Clearly, under suitable regularity conditions

our robust integrated likelihood estimator falls into the class considered by these authors.24

In contrast, there is a potential e�ciency loss in conditioning on the su�cient statistic in

the conditional logit model.

Finally, in Figure 1 we draw the likelihood function of the static logit model (thin line).

The thick line and the dashed line show the bias-corrected likelihood function (using the

DiCiccio and Stern formula) and the robust integrated likelihood. The two pseudo-likelihoods

are concave. Moreover, it is clear on the �gure that they both correct bias with respect to

the MLE.

7.2 Dynamic AR(1)

Next, we consider the dynamic AR(1) model:

yit = �10yit�1 + �i0 + "it; i = 1:::N; t = 1:::T: (39)

24A second-order Laplace approximation of the integrated likelihood (as in Tierney et al., 1989) is necessary
to prove this result formally.
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Individual e�ects are drawn in each simulation from a standard distribution. Moreover, the

initial condition yi0 is drawn in the stationary distribution of yit for �xed i. Lastly, "it are

i.i.d. standard normal draws, and �10 is set to :5. As before, N is 100. The standard

deviation of errors, set to one, is treated as known.

With non i.i.d. data, the choice of local approximation of the formulas for prior distri-

butions may be important, as illustrated in Figure 2. The left panel in Figure 2 shows the

likelihood function of the dynamic AR(1) model (thin line). The thick line shows the inte-

grated likelihood with prior given by the formula (30), obtained using expected quantities.

The function is degenerate around �1 = :8. Moreover, a close look at the Figure shows two

local extrema. The local maximum corresponds to �1 around :5, which means that inference

from this local maximum is bias reducing. Still, the atness of the curve suggests that one

might have trouble trying to �nd this maximum using standard maximization algorithms.

This problem is likely to be worse in situations with more parameters to consider. The right

panel on the same �gure shows the integrated likelihood for the prior (31). The situation

there is strikingly di�erent, as the pseudo-likelihood is nicely concave. Moreover, its maxi-

mum is still much closer to the truth than the MLE. In the rest of this section, we use the

prior (31) to estimate common parameters.

Table II shows some statistics of the empirical distributions of some estimators for T = 10:

the MLE (\observed"), and diverse corrections based on various degrees of trimming (from

q = 1 to q = 3); Then, the integrated likelihood based on the uniform prior (\uniform") and

on the Lancaster prior (\Lancaster") given by (33); the \robust" expression of the prior is

based on (14) where the outer product is estimated using observed quantities with various

degrees of trimming; the \expected" prior is the one given by (31), and plugged-in the

\robust, q = 2" result to start the iterations in \iterated"; \GMM" refers to the estimator

discussed in Arellano and Bond (1991); lastly, \random e�ects (uncorr.)" and \random

e�ects (corr.)" refer to the Gaussian random e�ects estimators assuming that the individual

e�ects are independent of initial conditions, or allowing that the mean depends linearly on

the initial condition.25

We �nd a large bias of the MLE (30%) that is corrected for by almost one half by both

the corrections of the concentrated likelihood and the robust integrated likelihood. In both

cases the preferred degree of trimming is 2. The uniform prior yields no bias reduction at

25We computed the GMM estimator using the STATA command xtabond2, with the option noleveleq. The
other estimators were programmed in GAUSS.
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all, and the Lancaster prior based on the available orthogonalization gives almost no bias.

Interestingly, the infeasible robust prior based on expected quantities and the true value of �10

gives even better results, in terms of bias, MSE and MAE. Moreover, the iterated estimators

have also very good �nite sample properties. In our simulations, we found that two iterations

were enough to get very close to the in�nitely iterated estimator. As the formulas of these

priors are not based on parameter orthogonalization, these results suggest that iteration

of the analytical expressions of the prior such as (14) can be useful in order to deal with

non i.i.d. data. Lastly, remark that the GMM estimator su�ers from a small bias, which

disappears when N grows (recall that N = 100 in the experiments). Moreover, it has larger

variance than all the other estimators. The result is that the integrated likelihood functions

with priors based on analytical calculations (infeasible and iterated) compare favorably with

the �xed-T consistent GMM estimator in terms of MSE and MAE.

The last two rows of Table II show the behavior of random e�ects estimators. In the

dynamic AR(1) model, Alvarez and Arellano (2003) showed that the Gaussian RE pseudo-

likelihood based on �i � N (m1 +m2yi0; s
2) reduces bias. Then, Cho et al. (2004) showed

that this is also the case of the RE speci�cation �i � N (m; s2), where the mean of �i

is misspeci�ed to be independent of the initial observation yi0. We have shown that this

result generalizes to dynamic AR(p) models without exogenous covariates. The numbers

reported show that, in spite of the theoretical result, the uncorrelated REML estimator is

substantially biased compared to its correlated counterpart. Thus, in dynamic linear models,

it may be important to allow (even parametrically) for correlation between the individual

e�ects and the initial conditions in the estimation. Lastly, note that the correlated random

e�ects estimator compares favorably to all other estimators studied, except the infeasible

and in�nitely iterated robust integrated likelihood estimators.

7.3 Dynamic AR(2)

We end this simulation section by considering the dynamic AR(2) model

yit = �10yit�1 + �20yit�2 + �i0 + "it; i = 1:::N; t = 1:::T: (40)

As before, the individual e�ects are drawn in each simulation from a standard distribution

and the initial conditions yi;�1 and yi0 are drawn in the stationary distribution of (yit; yit+1)

for �xed i. Then, "it are i.i.d. standard normal draws, �10 is set to :5 and �20 to 0. Lastly,

N is 100, and the standard deviation of errors, set to one, is treated as known.
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To estimate the priors, we use the robust formula given in (14). Analytical expressions

are given in the supplementary appendix. Table III presents the results for T = 10. We �nd

that the MLE is biased. A di�erence with the AR(1) case is that if the corrected concen-

trated likelihood and the robust integrated likelihood estimated using observed quantities

reduce bias, they do so only for the �rst autoregressive parameter. In that case, only the

analytical correction (\infeasible") reduces both biases. Interestingly, as before only one or

two iterations starting with the \robust" estimate get close to these infeasible estimates.

Moreover, as in the AR(1) case, the iterated analytical corrections compare favorably with

the GMM estimator. Note that in the AR(2) case no orthogonal reparameterization is avail-

able. The results obtained for the iterated estimators thus seem remarkable, both in terms

of bias and mean squared error.

8 Conclusion

Many approaches to the estimation of panel data models rely on an average likelihood that

assigns weights to di�erent values of the individual e�ects. In this paper, we study under

which conditions such weighting schemes are robust, in that they yield biases of order 1=T 2

as opposed to 1=T .

We �nd that robust weights, or priors, will in general satisfy two conditions. First, they

depend on the data, unless an orthogonal reparameterization is available. Second, they do

not impose prior independence between the common parameters and the individual e�ects,

as we show that random e�ects speci�cations are not bias reducing in general.

We propose two bias reducing priors, which deal with the incidental parameter problem

by taking into account the uncertainty about the individual e�ects. Our approach, based on

prior distributions and integration, has a natural connection with simulation-based estima-

tion techniques, such as MCMC. In addition, we argue that asymptotically valid con�dence

intervals can be read from the quantiles of the posterior distribution.

We show that in general standard random e�ects estimation of policy parameters is

inconsistent for large T , whereas the posterior mean is large-T consistent, and we provide

conditions for bias reduction. Priors that are bias reducing for the common parameters do

not lead to bias reduction of marginal e�ects, and bias reducing priors for marginal e�ects

are speci�c to the e�ect considered.

We also show that in random e�ects models, both the estimators of common parame-
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ters and the posterior means of marginal e�ects have �rst-order biases that depend on the

Kullback-Leibler distance between the population distribution of the e�ects and its best

approximation in the random e�ects family. So, while updating the prior given the data

lowers the bias on the marginal e�ects by an order of magnitude, the bias can be further

reduced by using either a bias-reducing prior or a su�ciently close approximating family to

the distribution of the e�ects.

The Monte Carlo evidence suggests rather good �nite sample properties of integrated

likelihood estimates based on robust priors. It seems very interesting to investigate the

behavior of our method as the complexity of the model increases. If what we propose turns

out to be feasible and satisfying, then structural microeconometric models would be a natural

�eld of application.

CEMFI; Casado del Alisal, 5, 28014 Madrid, Spain; arellano@cem�.es

and

CEMFI; Casado del Alisal, 5, 28014 Madrid, Spain; bonhomme@cem�.es.

APPENDIX: Proofs

This appendix provides proofs of the results in sections 2-3 and subsections 4.1-4.2. Proofs of

the results from subsection 4.3 are in the supplementary appendix.

Proof of Lemma 1: Let us �x i, and denote

LIi (�) =

Z
exp [T`i(�; �i)]�i(�ij�)d�i:

Assuming that `i(�; �i) has a unique maximum b�i(�) and using a Laplace approximation as in
Tierney et al. (1989) we obtain:

LIi (�) = �i(b�i(�)j�)Z exp

�
T`i(�; b�i(�)) + T

2
v�ii (�; b�i(�)) (�i � b�i(�))2� d�i�1 +Op

�
1

T

��
= �i(b�i(�)j�) exp [T`i(�; b�i(�))] Z exp

�
T

2
v�ii (�; b�i(�)) (�i � b�i(�))2� d�i�1 +Op

�
1

T

��
;

= �i(b�i(�)j�)p2� f�Tv�ii (�; b�i(�))g�1=2 exp [T`i(�; b�i(�))]�1 +Op

�
1

T

��
:

It thus follows that:

`Ii (�)� `ci (�) =
1

2T
ln

�
2�

T

�
� 1

2T
ln (�v�ii (�; b�i(�))) + 1

T
ln�i(b�i(�)j�) +Op

�
1

T 2

�
; (A1)
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where Assumption 1 allows us to take logs.
Now by expanding the sample moment condition vi(�; b�i(�)) = 0 around �i(�) we immediately

�nd that b�i(�)� �i(�) =
Ap
T
+Op

�
1

T

�
;

where A = Op(1) and E�0;�i0 [A] = 0. This implies that:

v�ii (�; b�i(�)) = v�ii (�; �i(�)) +
Bp
T
+Op

�
1

T

�
= E�0;�i0 [v

�i
i (�; �i(�))] +

Cp
T
+Op

�
1

T

�
;

where B and C are Op(1) with zero mean. Expanding the log yields:

E�0;�i0 ln (�v�ii (�; b�i(�))) = lnE�0;�i0 [�v�ii (�; �i(�))] +O

�
1

T

�
: (A2)

Likewise, using Assumption 2 we obtain:

E�0;�i0 ln�i(b�i(�)j�) = ln�i(�i(�)j�) +O

�
1

T

�
: (A3)

Taking expectations in (A1) and combining the result with (A2) and (A3) yields:

E�0;�i0

�
`Ii (�)� `ci (�)

�
=

1

2T
ln

�
2�

T

�
� 1

2T
lnE�0;�i0 [�v�ii (�; �i(�))] +

1

T
ln�i(�i(�)j�) +O

�
1

T 2

�
:

Q.E.D.

Proof of Theorem 1: Immediate from (4) and (5). Q.E.D.

Proof of Theorem 2: Immediate using (8). Q.E.D.

In preparation for the proof of Proposition 1 we state the following lemma:

Lemma A1

@

@�

���
�0
�i(�) = fE�0;�i0 [�v�ii (�0; �i0)]g�1 E�0;�i0

h
v�i (�0; �i0)

i
� �i(�0; �i0): (A4)

Proof of Lemma A1: By di�erentiating the moment condition solved by �i(�) with respect
to �:

E�0;�i0 [vi (�; �i(�))] = 0:

Q.E.D.

Proof of Proposition 1: The bias of the integrated score is:

bi(�0) =
@

@�

���
�0
ln�i(�i(�)j�)� @

@�

���
�0

�
ln
�
E�0;�i0 [�v�ii (�; �i(�))]

�
E�0;�i0

�
v2i (�; �i(�))

�	�1=2��| {z }
A

:

In addition to Lemma A1, we need the information matrix equality at true values:

E�0;�i0 [�v�ii (�0; �i0)] = TE�0;�i0
�
v2i (�0; �i0)

�
: (A5)

36



In order to simplify the notation, we drop the arguments inside the expectation terms when
they are evaluated at true values. We obtain:

A =
E(v�i�i ) + �iE(v

�i�i
i )

E(v�ii )
� 1

2
� 2E(v

�
i vi) + 2�iE(v

�i
i vi)

E(v2i )

=
�1

E(�v�ii )

n
E(v�i�i ) + TE(v�i vi) + �i [E(v

�i�i
i ) + TE(v�ii vi)]

o
=

�1
E(�v�ii )2

n
E(�v�ii )

�
E(v�i�i ) + TE(v�i vi)

�
+ E(v�i ) (E(v

�i�i
i ) + TE(v�i vi))

o
=

�1
E(�v�ii )2

�
E(�v�ii )

@

@�i

���
�0;�i0

E�;�i(v
�
i (�; �i))� E(v�i )

@

@�i

���
�0;�i0

E�;�i(�v�ii (�; �i))

�
;

where

E�;�i(v
�
i (�; �i)) =

Z
v�i (�; �i)fi(y; �; �i)dy; and: E�;�i(v

�i
i (�; �i)) =

Z
v�ii ((�; �i)fi(y; �; �i)dy:

It follows that

A = � @

@�i

���
�0;�i0

�
fE�;�i [�v�ii (�; �i)]g�1 E�;�i

h
v�i (�; �i)

i�
;

and the proposition is proved. Q.E.D.

Proof of Proposition 2: We have:

bi(�0) =
@

@�

���
�0
ln�i(�i(�)j�)� @

@�

���
�0
ln
�
E�0;�i0 [�v�ii (�; �i(�))]

�
E�0;�i0

�
Tv2i (�; �i(�))

�	�1=2�
:

Note that it follows from the invariance property of ML that

 i(�) =  i(�i(�); �):

Moreover it is easily veri�ed that:

E�0;�i0 [�v�ii (�; �i)] =

�
@ i(�i; �)

@�i

�2

E�0;�i0

h
�v ii (�;  i(�i; �))

i
�@

2 i(�i; �)

@�2i
E�0;�i0 [vi(�;  i(�i; �))] ;

and:

E�0;�i0

�
v2i (�; �i)

�
=

�
@ i(�i; �)

@�i

�2

E�0;�i0

�
v2i (�;  i(�i; �))

�
;

where with some abuse of notation we have written vi(�;  i) for the score of the reparameterized
likelihood with respect to the new �xed e�ects. Evaluating these two equalities at (�; �i(�)) and
using that E�0;�i0

�
vi(�;  i(�))

�
= 0 yields:

E�0;�i0 [�v�ii (�; �i(�))] =

�
@ i(�i(�); �)

@�i

�2

E�0;�i0

h
�v ii (�;  i(�))

i
;

and:

E�0;�i0

�
v2i (�; �i(�))

�
=

�
@ i(�i(�); �)

@�i

�2

E�0;�i0

�
v2i (�;  i(�))

�
:

Hence:

bi(�0) =
@

@�

���
�0
ln�i(�i(�)j�)� @

@�

���
�0
ln
�
E�0;�i0

h
�v ii (�;  i(�))

i �
E�0;�i0

�
Tv2i (�;  i(�))

�	�1=2�
� @

@�

���
�0
ln

����@ i(�i(�); �)@�i

����
=

@

@�

���
�0
ln e�i( i(�)j�)� @

@�

���
�0
ln
�
E�0; i0

h
�v ii (�;  i(�))

i �
E�0; i0

�
Tv2i (�;  i(�))

�	�1=2�
:
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The proposition follows. Q.E.D.

Proof of Proposition 3: A stochastic expansion of vi(�; b�i(�)) in the neighborhood of
(�; �i(�)) yields:

b�i(�)� �i(�) = fE�0;�i0 [�v�ii (�; �i(�))]g�1 vi(�; �i(�)) +Op

�
1

T

�
:

This yields:

E�0;�i0 (b�i(�)� �i(�)) = O

�
1

T

�
;

and:

E�0;�i0

h
(b�i(�)� �i(�))

2
i
= fE�0;�i0 [�v�ii (�; �i(�))]g�2 E�0;�i0

�
v2i (�; �i(�))

�
+O

�
1

T 2

�
:

Hence: dVar (b�i(�)) = ��Ri (�i(�)j�)��2 +Op

�
1

T 2

�
:

Thus, as dVar (b�i(�)) = Op(1=T ) we have:

�Ri (�i(�)j�) /
1qdVar (b�i(�))

�
1 +Op

�
1

T

��
:

Equation (15) follows by remarking that

�Ri (b�i(�)j�) = �Ri (�i(�)j�)
�
1 +Op

�
1

T

��
;

by the same arguments as in the proof of Lemma 1.

To show the second part of the Proposition, let �i be a non-dogmatic prior satisfying:

�i(b�i(�)j�) / 1qdVar (b�i(�))
�
1 +Op

�
1

T

��
:

Then the proof of Lemma 1 shows that the only quantity that matters for bias reduction is
ln�i(b�i(�)j�). This result comes directly from the Laplace approximation to the integrated likeli-
hood, and does not require Assumption 2 to hold. As

ln�i(b�i(�)j�) = ln�Ri (b�i(�)j�) +Op

�
1

T

�
;

and as �Ri is robust, it follows that �i is also bias reducing. Q.E.D.

Proof of Lemma 2: The �rst-order conditions of the maximization imply that:

0 =
NX
i=1

@`REi (�;b�(�))
@�

=
NX
i=1

1

T

R
exp [T`i(�; �i)]

n
@�i(�i;b�(�))=@�o d�iR

exp [T`i(�; �i)]�i(�i;b�(�))d�i :
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A Laplace approximation of the two integrals yields, as in the proof of Lemma 1:Z
exp (T`i(�; �i))

@�i(�i;b�(�))
@�

d�i =
p
2� (�Tv�ii (�; b�i(�)))�1=2 exp [T`i(�; b�i(�))]

�@�i(b�i(�);b�(�))
@�

�
1 +Op

�
1

T

��
;Z

exp (T`i(�; �i))�i(�i;b�(�))d�i =
p
2� (�Tv�ii (�; b�i(�)))�1=2 exp [T`i(�; b�i(�))]

��i(b�i(�);b�(�))�1 +Op

�
1

T

��
:

Hence we obtain:

1

N

NX
i=1

@ ln�i(b�i(�);b�(�))
@�

�
1 +Op

�
1

T

��
= 0:

Then taking the probability limit we have:

plim
N!1

1

N

NX
i=1

E�0

�
E�0;�i0

@ ln�i(b�i(�); �(�))
@�

�
= O

�
1

T

�
:

Lastly, using that E�0;�i0(b�i(�)� �i(�)) = O(1=T ) we obtain:

plim
N!1

1

N

NX
i=1

E�0

�
@ ln�i(�i(�); �(�))

@�

�
= O

�
1

T

�
:

Q.E.D.

Proof of Theorem 3: Let �i (�i; �) be a class of random e�ects distributions indexed by �.
Also, let �0G be a population joint density of individual e�ects and exogenous covariates. Lemma
2 implies that the pseudo-true value � (�0) satis�es:

E�0G

 
@ ln�i

�
�i0; � (�0)

�
@�

!
= O

�
1

T

�
: (A6)

Note that � (�0) is population speci�c. Moreover, it follows from the analysis in section 4 that
�i (�i; �) is bias reducing if and only if �i

�
�i; � (�0)

�
is bias reducing, that is:

E�0G

 
@

@�i

���
�i0
�i (�0; �i) + �i (�0; �i0)

@ ln�i
�
�i0; � (�0)

�
@�i

!
= o (1) : (A7)

Here we ask the question: in which case is �i (�i; �) bias reducing for all �0G? Clearly, this
will hold if and only if (A7) holds for all �0G such that (A6) is satis�ed. We now provide a linear
algebra interpretation of this statement, which leads to an explicit solution.

Let us consider the Hilbert space L2, endowed with the inner product

< '; >=

Z
'(�) (�)d�; ('; ) 2 L2 � L2:

We have, for any function  :
E�0G ( (�i0)) =< �0G;  > :
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So (A6) is equivalent to

<
@ ln�i

�
:; � (�0)

�
@�

�AT ; �0G >= 0 (A8)

and (A7) is equivalent to

<
@�i (�0; :)

@�i
+ �i (�0; :)

@ ln�i
�
:; � (�0)

�
@�i

�BT ; �0G >= 0 (A9)

where AT = O
�
1
T

�
and BT = o(1).

So, �i (�i; �) is bias reducing for all �0G if and only if, for all �0G 2 L2 such that (A8) holds,
(A9) holds also.26

Let A? denote the orthogonal complement of A � L2. �i (�i; �) is thus bias reducing for all
�0G if and only if

@�i (�0; :)

@�i
+ �i (�0; :)

@ ln�i
�
:; � (�0)

�
@�i

�BT 2
24 @ ln�i �:; � (�0)�

@�
�AT

!?35? :
Now, as there is a �nite number of �rst-order conditions in (A6), the vector space spanned by
@ ln�i(:;�(�0))

@� �AT is �nite dimensional. So (e.g., Gri�el, 1989, p.66):24 @ ln�i �:; � (�0)�
@�

�AT

!?35? = Vect

 
@ ln�i

�
:; � (�0)

�
@�

�AT

!
;

where Vect(V ) denotes the vector space spanned by V .
So (A7) and (A6) hold for all �0G if and only if there exists a matrix �(�0), with as many

columns as the number of hyperparameters �, such that:

@

@�i

���
�i0
�i (�0; �i) + �i (�0; �i0)

@ ln�i
�
�i0; � (�0)

�
@�i

�BT

��(�0)
 
@ ln�i

�
�i0; � (�0)

�
@�

�AT

!
= 0;

or, equivalently:

@

@�i

���
�i0
�i (�0; �i) + �i (�0; �i0)

@ ln�i
�
�i0; � (�0)

�
@�i

� �(�0)
@ ln�i

�
�i0; � (�0)

�
@�

= o (1) ;

that is:
@

@�i

���
�i0

�
�i (�0; �i)�i

�
�i; � (�0)

��� �(�0)
@�i

�
�i0; � (�0)

�
@�

= o (1) :

This ends the proof. Q.E.D.

Proof of Corollary 1: In the location-scale case we have � (�i) =
1
�f
��i��

�

�
, where f is a

known pdf, and � and �2 are hyperparameters. Then (22) yields:27

�i (�; �i) = �1(�) + �2(�)

�
�i � �(�)

�(�)

�
+ o (1) :

26Strictly speaking, bias reduction holds for any density �0G, so equations (A8) and (A9) hold only for all
�0G 2 L2 that are nonnegative and integrate to one. However, this does not matter for the argument.

27We are only looking at the solutions that satisfy: lim
�!�1

�i(�0; �)�i
�
�; �(�0)

�
= 0.

40



The corollary follows. Q.E.D.

Proof of Corollary 2: In that case �i (�i) =
1
�f
�
�i�x

0

i�
�

�
, and (22) yields:

�i (�; �i) = �1(�)xi + �2(�)

�
�i � x0i�(�)

�(�)

�
+ o (1) :

Q.E.D.
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TABLE I
Various Estimators of � in the Static Logit Modela

T = 5

Mean Median STD bp; :05 bp; :10 MSE MAE

uncorrected 1.33 1.30 .235 .929 1.08 .163 .335
corrected 1.12 1.08 .188 .838 .868 .0489 .170
uniform 1.61 1.62 .260 1.22 1.29 .442 .613
Lancaster 1.06 1.05 .150 .800 .843 .0260 .126
robust, observed 1.11 1.09 .199 .821 .867 .0523 .176
robust, infeasible 1.18 1.17 .146 .950 .963 .0530 .193
robust, iterated 1 1.13 1.14 .184 .878 .914 .0504 .172
robust, iterated 1 1.23 1.22 .195 1.01 1.03 .0907 .236
random e�ects 1.14 1.13 .163 .854 .905 .0418 .178
conditional logit .997 .983 .172 .749 .793 .0283 .138

T = 10

Mean Median STD bp; :05 bp; :10 MSE MAE

uncorrected 1.13 1.13 .117 .950 .994 .0296 .140
corrected 1.06 1.05 .0975 .902 .927 .0136 .0943
uniform 1.26 1.26 .147 1.05 1.06 .0893 .263
Lancaster 1.02 1.03 .0911 .880 .899 .00880 .0790
robust, observed 1.05 1.05 .109 .884 .909 .0145 .0974
robust, infeasible 1.07 1.06 .100 .895 .933 .0142 .0946
robust, iterated 1 1.04 1.04 .0892 .918 .932 .00976 .0785
robust, iterated 1 1.08 1.06 .0896 .939 .970 .0139 .0938
random e�ects 1.03 1.03 .0986 .865 .906 .00848 .0832
conditional logit .997 .998 .0961 .859 .884 .0105 .0754

T = 20

Mean Median STD bp; :05 bp; :10 MSE MAE

uncorrected 1.06 1.06 .0683 .947 .971 .00826 .0757
corrected 1.02 1.03 .0606 .912 .946 .00424 .0530
uniform 1.12 1.11 .0683 .990 1.03 .0184 .119
Lancaster .997 .997 .0548 .900 .921 .00298 .0429
robust, observed 1.01 1.00 .0702 .905 .929 .00500 .0527
robust, infeasible 1.04 1.04 .0613 .923 .955 .00558 .0629
robust, iterated 1 1.01 1.00 .0673 .885 .934 .00459 .0536
robust, iterated 1 1.02 1.02 .0688 .893 .948 .00525 .0567
random e�ects 1.02 1.01 .0664 .920 .940 .00579 .0523
conditional logit 1.01 .995 .0682 .905 .920 .00492 .0535

aEstimates of � in model (38). N = 100, 100 simulations. �0 = 1.
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TABLE II
Various Estimators of �1 in the Dynamic AR(1) Modela

T = 10

Mean Median STD bp; :05 bp; :10 MSE MAE

uncorrected .333 .328 .0320 .288 .300 .0290 .167
corrected, q = 1 .391 .390 .0341 .336 .342 .0131 .109
corrected, q = 2 .402 .402 .0327 .348 .359 .0107 .0984
corrected, q = 3 .384 .384 .0343 .328 .340 .0145 .116
uniform .336 .335 .0330 .277 .296 .0281 .164
Lancaster .504 .506 .0374 .435 .455 .00140 .0302
robust, observed q = 1 .393 .394 .0296 .335 .352 .0123 .107
robust, observed q = 2 .409 .413 .0304 .356 .368 .00920 .0910
robust, observed q = 3 .394 .395 .0345 .332 .342 .0125 .106
robust, infeasible .500 .502 .0302 .449 .455 .000903 .0240
robust, iterated 1 .479 .477 .0299 .429 .436 .00133 .0299
robust, iterated 1 .499 .497 .0323 .445 .455 .00104 .0264
GMM .455 .459 .0608 .340 .373 .00567 .0602
random e�ects (uncorr.) .562 .560 .0501 .448 .498 .00629 .0663
random e�ects (corr.) .500 .498 .0348 .435 .461 .00120 .0274

aEstimates of �1 in model (39). N = 100, 100 simulations. �10 = :5.

TABLE III
Various Estimators of (�1; �2) in the Dynamic AR(2) Modela

T = 10

Mean b�1 MSE b�1 Mean b�2 MSE b�2
uncorrected .385 .0146 -.0774 .00700
corrected, q = 1 .419 .00808 -.101 .0111
corrected, q = 2 .423 .00734 -.0780 .00715
uniform .369 .0189 -.104 .0119
robust, observed q = 1 .451 .00371 -.137 .0198
robust, observed q = 2 .435 .00602 -.0873 .00868
robust, infeasible .451 .00352 -.00801 .00117
robust, iterated 1 .441 .00455 -.0262 .00203
robust, iterated 1 .446 .00405 -.0187 .00175
GMM .440 .00739 -.0278 .00297

aEstimates of �1 and �2 in model (39). N = 100, 100 simulations. �10 = :5, �20 = 0.
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FIGURE 1. Likelihood funtions in the stati logit model (T = 10, N = 100, �0 = 1). The thinline represents the likelihood funtion, the thik line the bias-orreted likelihood using DiCiioand Stern (1993), and the dashed line represents the robust integrated likelihood.

FIGURE 2. Likelihood funtions in the dynami AR(1) model (one simulation, T = 10, N = 100,�10 = :5). The thin line represents the likelihood funtion, and the thik line represents the robustintegrated likelihood. Left: prior based on equation (12). Right: prior based on equation (14).
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