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Abstract

We consider the general problem of estimation and testing from a sequence of

overlapping moment conditions generated by incomplete or rotating panel data. The

crucial idea of our suggested method is to separate the problem of moment choice from

that of estimation of optimal instruments. We propose a cross-sample GMM estimator

that forms direct estimates of individual-specific optimal instruments pooling all the

information available in the sample. We compare cross-sample GMM with the pooled

and expanded GMM estimators discussed in Arellano and Bond (1991) for dynamic

linear models with fixed effects. Cross-sample GMM is asymptotically equivalent to

expanded GMM and asymptotically more efficient than pooled GMM. Moreover, Monte

Carlo experiments and an empirical illustration show that, contrary to expanded GMM,

cross-sample GMM performs well in finite samples, even with severe unbalancedness.
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†Fundamentos del Análisis Económico (FAE), Universidad de Alicante
‡CEMFI, Madrid

1



1 Introduction

Textbook treatments of panel data methods typically focus on a balanced dataset
in which all cross-sectional units are observed for the same time periods. Actual
panels, however, are rarely balanced since for one reason or other different time
spans are observed for different units. More important, unbalancedness is often not
an imperfection but a central feature of the data. This is the case of rotating panels
and overlapping sequences of panels that intend to track cross-sectional populations
over time.

In this paper, we consider the problem of estimation and testing from a sequence
of overlapping moment conditions generated by incomplete or rotating panel data.
The crucial idea of our suggested method is to separate the problem of moment
choice from that of estimation of optimal instruments. In this way, we are able to
form optimal combinations of all the moment conditions generated by incomplete
or rotating panels without experiencing an uncontrolled increase in the number of
first-stage coefficients. Our estimators are only “GMM estimators” in the Sargan–
Hansen sense of setting to zero linear combinations of orthogonality conditions, but
not in the sense of minimizing a quadratic form in all the available moments (Sargan,
1958; Hansen, 1982). Rather, we form direct estimates of individual-specific optimal
instruments pooling all the information available in the sample.

Unbalanced panels in linear models that satisfy sequential moment conditions are
discussed in Arellano and Bond (1991). They considered GMM estimators that can
be obtained by stacking the equations for all units and time periods. The implemen-
tation of their procedure is straightforward since only requires replacing the missing
values of the instruments by zeros (what we call pooled GMM). However, Arellano
and Bond (1991) noted that there exists an alternative estimator that minimizes the
sum of the GMM criteria for each of the balanced sub-panels in the sample (what
we call expanded GMM). They pointed out that the latter is more efficient than the
former when the number of units in all sub-panels tends to infinity, but may have
poorer finite-sample performance when sub-sample sizes are small.

We compare pooled and expanded GMM estimators with the cross-sample GMM
estimator that we suggest in this paper. It turns out that cross-sample GMM is
asymptotically equivalent to expanded GMM, in the sense that both employ con-
sistent estimates of the optimal combination of instruments. This equivalence holds
when all sub-panel sample sizes are asymptotically non-negligible. However, the pair-
wise estimate of the optimal instrument employed by cross-sample GMM remains
consistent under milder conditions on the cross-sample asymptotics.
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We examine the finite-sample properties of pooled, expanded, and cross-sample
GMM estimators in a simple autoregressive model with fixed effects for different
patterns of unbalancedness and sample sizes. It turns out that the finite sample
properties of expanded GMM deteriorate very quickly when there are many small
subpanels, whereas both pooled and cross-sample GMM retain good finite sample
properties in those cases. Another interesting aspect of the comparison is that cross-
sample GMM tends to exhibit less bias than both pooled and expanded GMM.
This behavior is reminiscent of the relative finite-sample bias properties of jackknife
instrumental-variable estimators and two-stage least squares in cross-sectional set-
tings.

There is a well-established literature on the econometrics of unbalanced and ro-
tating panels in error component models to which this paper is related. Biørn (1981)
is an early contribution, and Davis (2002) provides a matrix algebra that unifies
much of the earlier work on multi-way error components models. In a different
vein, Wooldridge (2010) suggests extensions of correlated random effects models to
unbalanced panels.

The estimators that we consider combine moment conditions from different, pos-
sibly overlapping, subsamples. Thus, they are also related to the vast literature on
methods for missing data (Tsiatis 2006) and to the literature on data combination
(Ridder and Moffitt 2007). Method of moment approaches to missing data in econo-
metric applications include Abowd, Crépon and Kramarz (2001), Graham, Pinto and
Egel (2012), and Abrevaya and Donald (2017), amongst others. Our construction
of optimal instruments is also related to traditional pairwise deletion methods in
the estimation of covariance structures with missing data entries (Little and Rubin
2002).

The outline of the paper is as follows. In Section 2 we describe the general esti-
mation problem and present our estimator together with its asymptotic properties.
Section 3 particularizes the results to the case of linear models with fixed effects and
predetermined variables. In Section 4 we compare the asymptotic properties of our
cross-sample GMM estimator with those of pooled and expanded GMM. In Sections
5 and 6 we present Monte Carlo experiments and an empirical illustration. Finally,
Section 7 concludes.
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2 Model and estimator

Assumptions and notation Consider a vector stochastic process {wt}∞t=−∞ such
that the joint distribution of a given time series wj =

(
w(t0+1), ..., w(t0+T )

)
satisfies

rj moment conditions
Eψj

(
wj, θ

)
= 0, (1)

where j is an index for the pair (t0, T ) and θ is a vector of unknown coefficients of or-
der k. Moreover, let V j = E

[
ψj (wj, θ)ψj (wj, θ)

′]
, Dj = E [Υj (wj, θ)], Υj (wj, θ) =

∂ψj (wj, θ) /∂θ′, and Πj = Dj′ (V j)
−1

.
The vector of moments for a given j may effectively depend on only some of the

components of θ. We regard θ as the full parameter vector for all relevant j. For
example, θ may be partitioned into parameters that are common to the full sequence
of subpanels and parameters that are specific to a subset of periods.

The data consists of independent observations onN cross-sectional units
{
w

j(1)
1 , ..., w

j(N)
N

}
where j (i) is the value of j for the i-th unit, which is independent of {wit}∞t=−∞.1

Thus, two units with the same value of j have identical initial periods and time
series length. The index j takes on values in the set {1, 2, ..., J}.2 In a missing data
formulation j (i) is a random variable, whereas in a multi-sample formulation the
subsample sizes are fixed quantities. In our context identification and inference are
unaffected by this difference.

While in the current formulation j indexes individual time series without gaps,
our framework can be extended to situations where j is an index for more general
time patterns, beyond those characterized by a (t0, T ) segment.

Let (t0i, Ti) be the pair that corresponds to j (i). The observed variables for
individual i are therefore wi(t0i+1), ..., wi(t0i+Ti). Any wit with t ≤ t0i or t > t0i + Ti is
well defined but regarded as a missing or latent variable.

Let ψj
` be the `-th component of ψj (wj, θ) and let ιj`i be an indicator of whether

ψj
` is observed for individual i (for given θ). Moreover, let Iji be a diagonal matrix

of order rj whose `-th element is given by ιj`i. Note that ψj (wj, θ) is observed for

individual i when j = j (i) (i.e. I
j(i)
i is an identity matrix), but some of its elements

1There is a literature on endogenous attrition in panels, which deals with various forms of dependence

between observability and outcomes. Unbalancedness and selection are, however, different issues (a balanced

panel could be a highly self-selected dataset). Here the data we have are the data we wish to have; our

concern being with ways of taking into account the data structure in setting up the estimation problem.
2The index j provides a one-to-one mapping between {1, 2, ..., J} and the set of all possible values of

(t0, T ).
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may still be observable even if j 6= j (i).
If ιj`i = 1 for j 6= j (i), then Eψj

` (wj, θ) = 0 is a redundant moment given those in
Eψj(i)

(
wj(i), θ

)
= 0. For example, the entire vector ψj (wj, θ) could just be a subset

of ψj(i)
(
wj(i), θ

)
. This assumption is just a coherency requirement, because in its

absence the distribution of wj would satisfy more moment conditions than those
stated in (1).

We assume that the regularity conditions of standard GMM identification and
distribution theory (Hansen, 1982) hold for the k optimal moment conditions:

E
[
Πj(i)ψj(i)

(
w

j(i)
i , θ

)]
= 0. (2)

The moment conditions in (2) may have a closed form or may be implicit functions
that can be calculated by simulation as in a simulated method of moments.

Example 1 A common unbalanced structure appears as a result of a rotating-
panel sample design. For example, in the 30-quarter-long rotating panel of the
Spanish Labour Force Survey in Bover et al (2002), one sixth of the sample is renewed
quarterly, so that the labour market situation of any given individual is only observed
for up to six quarters. Thus, a stylized version of this dataset featuring Ti = 6 for
all i would have 25 different starting points t0i and also J = 25.

To illustrate the notation, take a scalar wit and consider the following exponential
autoregressive conditional-mean model with individual effects E (wit | wi1, ..., wi,t−1, ηi) =
exp (θwi,t−1 + ηi).

3 This model implies moment conditions of the form E (wi,t−kvit) =
0 for k ≥ 1 where vit = wit−wi,t+1 exp (−θ∆wit).

4 Letting j = 1 and j = 2 represent
(t0, T ) = (1, 6) and (t0, T ) = (2, 6), respectively, in this case we have:

ψj
(
wj, θ

)
=

{ (
w1v2 (w1, w2) v3 (w1, w2, w3) v4 (w1, w2, w3, w4) v5

)′
if j = 1(

w2v3 (w2, w3) v4 (w2, w3, w4) v5 (w2, w3, w4, w5) v6

)′
if j = 2

so that rj = 10 for j = 1, 2. If individual i has j (i) = 1, we observe the full
vector ψ1 (w1

i , θ) but also the first six entries of ψ2 (w2
i , θ). Thus, in our notation the

diagonal elements of I2
i for such individual are given by (1, 1, 1, 1, 1, 1, 0, 0, 0, 0) while

I1
i is an identity matrix.

3For example, wit could be a worker’s number of sick leave days per quarter.
4See for example Arellano and Honoré (2001).
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Estimation We consider cross-sample (or multisample) estimators θ̂ that solve

N∑
i=1

Π̃j(i)ψj(i)
(
w

j(i)
i , θ̂

)
= 0 (3)

where Π̃j is a pairwise projection estimator of Πj based on a preliminary consistent
estimate θ̃ as follows:

Π̃j = D̃j′
(
Ṽ j
)+

. (4)

The building blocks of Π̃j are

D̃j =

(
N∑
i=1

Iji

)−1 N∑
i=1

Iji Υ̃j
i

and

vec
(
Ṽ j
)

=

(
N∑
i=1

Iji ⊗ I
j
i

)−1

vec

(
N∑
i=1

Iji ψ̃
j
i ψ̃

j′
i I

j
i

)

with ψ̃j
i = ψj

(
wj

i , θ̃
)

and Υ̃j
i = Υj

(
wj

i , θ̃
)

. Note that in these expressions j need

not coincide with j (i), so that some or all of the components in ψ̃j
i or Υ̃j

i may be
latent variables.5

The matrix Ṽ j of pairwise sample covariances is a consistent estimate of V j but it
is not guaranteed to be positive semidefinite by construction.6 To address this issue,(
Ṽ j
)+

in (4) is calculated as a rearranged pseudo inverse of Ṽ j that enforces the

constraint that
(
Ṽ j
)+

is a positive semidefinite matrix (see for example Rousseeuw

and Molenberghs 1993).
A computationally convenient form of extremum estimator for this problem is

θ̂ = arg min
c∈Θ

N∑
i=1

ψj(i)
(
w

j(i)
i , c

)′
Π̃j(i)′

[
N∑
i=1

Π̃j(i)ψ̃
j(i)
i ψ̃

j(i)′
i Π̃j(i)′

]−1 N∑
i=1

Π̃j(i)ψj(i)
(
w

j(i)
i , c

)
where c is the argument in the objective function and Θ denotes the parameter space.

5A consistent preliminary one-step estimate θ̃ can be obtained as the solution of (3) with Π̃j(i) evaluated

at an arbitrary initial value θ1.
6Specifically, Ṽ j =

{
ṽj`k
}

is a symmetric matrix whose diagonal elements satisfy ṽj`` > 0 but the off-

diagonal elements may fail to satisfy ṽj2`k ≤ ṽ
j
``ṽ

j
kk.
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Example 1 (continued) In this case the Jacobian for j = 1 is given by:

Υ1
(
w1, θ

)
=
(
w1ξ2 (w1, w2) ξ3 (w1, w2, w3) ξ4 (w1, w2, w3, w4) ξ5

)′
where ξt = dvt/dθ = wt+1∆wt exp (−θ∆wt). As for the average Jacobian, the ro-
tating structure of the data implies that the number of observations available to
calculate the averages changes from one element of the vector to another. For exam-
ple, the first two entries of D̃j for j = 1 are sample averages over the observations in
the first subpanel, the third entry is an average over the first two subpanels, the sixth
entry is an average over the first three subpanels, etc. We proceed analogously in the
calculation of the sample covariance matrices of the moments Ṽ j and projections Π̃j

for j = 1, ..., 25. Given those quantities, one can form an estimating equation for θ

as an average of individual-specific optimal moments Π̃j(i)ψj(i)
(
w

j(i)
i , θ

)
.

Asymptotic normality We consider the large-sample properties of the cross-
sample GMM estimator in an asymptotic where J is kept fixed as N tends to infinity
and Ti is bounded. An asymptotic where J and possibly dim (θ) also tend to infinity
is of interest but is outside the scope of this paper. The process {wit}∞t=−∞ and
the discrete random variable j (i) are independent of each other and independently

distributed across i. The value of j (i) determines the observability of w
j(i)
i .

Taking a first-order expansion of (3) scaled by N−1/2 around the true value we
have

0 =
1√
N

N∑
i=1

Π̃j(i)ψj(i)
(
w

j(i)
i , θ

)
+

 1

N

N∑
i=1

Π̃j(i)
∂ψj(i)

(
w

j(i)
i , θ

)
∂c′

√N (θ̂ − θ)+op (1) .

Moreover, under the assumption that for all j Π̃j p→ Πj as N →∞,

−E
(
Πj(i)Dj(i)

)√
N
(
θ̂ − θ

)
=

1√
N

N∑
i=1

Πj(i)ψj(i)
(
w

j(i)
i , θ

)
+ op (1)

d→ N
[
0, E

(
Πj(i)V j(i)Πj(i)′)] .

Finally, since Πj = Dj′ (V j)
−1

, we have

√
N
(
θ̂ − θ

)
d→ N (0,W ) (5)

where

W =
[
E
(
Dj(i)′ (V j(i)

)−1
Dj(i)

)]−1

, (6)
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which can be consistently estimated as

Ŵ =

(
1

N

N∑
i=1

Π̃j(i)Ṽ j(i)Π̃j(i)′

)−1

. (7)

Note that an alternative, equivalent expression for W is

W =

[
J∑

j=1

Dj′ (V j
)−1

Dj Pr (j)

]−1

(8)

where Pr (j) is the probability of mass point j (i) in the missing data formulation
we adopted. In a multi-sample formulation Pr (j) would be replaced by the design
relative frequencies of each subpanel configuration, but either way equation (7) can
be used as the estimated large-sample variance.

3 Linear models with fixed effects and predetermined vari-

ables

A leading situation in the panel context is one in which moments are obtained as
orthogonality conditions between a transformed disturbance and lagged values of a
vector of conditioning variables. In a linear model, we have

yit = x′itθ + ηi + vit E (zisvit) = 0 (s ≤ t)

where ηi is a fixed effect and zis is a vector of predetermined instruments.
Letting wt = (yt, x

′
t, z
′
t)
′, the time series wj =

(
w(t0+1), ..., w(t0+T )

)
implies the

moment conditions

E

 z(t0+1)
...

z(t0+t−1)

(∆y(t0+t) −∆x′(t0+t)θ
)

= 0 (t = 2, ..., T )

where ∆v(t0+t) = v(t0+t) − v(t0+t−1).
In a more compact notation, we can write

ψj
(
wj, θ

)
= Zj′ (yj∗ −Xj∗θ

)
≡ Zj′vj∗

Dj = −E
(
Zj′Xj∗)

V j = E
(
Zj′vj∗vj∗

′
Zj
)

Πj = −E
(
Zj′Xj∗) [E (Zj′vj∗vj∗

′
Zj
)]−1

8



where yj∗ =
(
∆y(t0+2), ...,∆y(t0+T )

)′
, etc.

Since ψj (wj, θ) is linear in θ, the cross-sample estimator has a closed-form ex-
pression given by

θ̂ =

(
N∑
i=1

Π̃j(i)Z
j(i)′
i X

j(i)∗
i

)−1 N∑
i=1

Π̃j(i)Z
j(i)′
i y

j(i)∗
i

where Π̃j = D̃j′
(
Ṽ j
)−1

and

D̃j =

(
N∑
i=1

Iji

)−1 N∑
i=1

Iji Z
j(i)′
i X

j(i)∗
i .

A one-step choice of Ṽ j is

vec
(
Ṽ j
I

)
=

(
N∑
i=1

Iji ⊗ I
j
i

)−1

vec

(
N∑
i=1

Iji Z
j(i)′
i Z

j(i)
i Iji

)
,

and a two-step choice

vec
(
Ṽ j
II

)
=

(
N∑
i=1

Iji ⊗ I
j
i

)−1

vec

(
N∑
i=1

Iji Z
j(i)′
i v̂

j(i)∗
i v̂

j(i)∗′
i Z

j(i)
i Iji

)

where v̂j∗i denotes one-step residuals.

4 Comparisons with alternative estimators

In this section we compare the previous cross-sample GMM estimator θ̂ with two
alternative estimators. The first one is a pooled GMM estimator based on the union
of the available sample moments. The second is an expanded GMM estimator that
minimizes the sum of GMM criteria for each balanced subpanel. We find that pooled
(or stacked) GMM is generally inefficient relative to θ̂, and that expanded GMM,
while asymptotically equivalent to θ̂, is based on a much larger number of first-stage
coefficients than θ̂. The implication is that expanded GMM is less robust than θ̂ to
alternative asymptotic plans, and is likely to exhibit poor finite sample properties.
A precise sense in which expanded GMM is less robust than cross-sample GMM is
spelled out in Section 4.3.
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4.1 Nonredundant moments

Let ψ (w, θ) be a vector of dimension r containing the total number of nonredundant
moments spanned by the J different time series available:

ψ (w, θ) =
⋃
j∈J

ψj
(
wj, θ

)
.

Note that ψ (w, θ) need not correspond to the moment implications from the distri-
bution of any single time series (e.g. the moment implications from a rotating panel
of overlapping time series of four periods each, covering twenty periods in total, will
differ from those of a complete twenty year-period panel).

The construction of ψ (w, θ) can be approached as follows. Let j1 be an index

for
(
t
1
0, T

1
)

corresponding to the longest time series among those with the earliest

start, so that

t
1
0 = min (t0i)

T
1

= max
(
Ti | t0i = t

1
0

)
,

and let ψj1

(
wj1 , θ

)
be the moments associated with such time series. Next, let t

2
0

be the earliest start for a time series going beyond t
1
0 + T

1
:

t
2
0 = min

(
t0i | t0i + Ti > t

1
0 + T

1
)

and
T

2
= max

(
Ti | t0i = t

2
0

)
.

Form j2 ≡
(
t
2
0, T

2
)

and ψj2

(
wj2 , θ

)
, and consider the partition

ψj2

(
wj2 , θ

)
=

 ψ
j2
a

(
wj2 , θ

)
ψ

j2
b

(
wj2 , θ

)  ,

such that ψ
j2
a

(
wj2 , θ

)
is observable to j1 individuals but ψ

j2
b

(
wj2 , θ

)
is not. Then

form

ψ[2] (w, θ) =

 ψj1

(
wj1 , θ

)
ψ

j2
b

(
wj2 , θ

)  .
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Next, consider

t
3
0 = min

(
t0i | t0i + Ti > t

2
0 + T

2
)

T
3

= max
(
Ti | t0i = t

3
0

)
get j3 ≡

(
t
3
0, T

3
)

and form

ψ[3] (w, θ) =


ψj1

(
wj1 , θ

)
ψ

j2
b

(
wj2 , θ

)
ψ

j3
b

(
wj3 , θ

)


where ψ
j3
b

(
wj3 , θ

)
is the subset of ψj3

(
wj3 , θ

)
that is not observed by the j1 or j2

individuals. Moments are accumulated in this way until we get a ψ[`] (w, θ) such that

t
`
0 + T

`
= max (t0i + Ti), which then coincides with the full vector of nonredundant

moments ψ (w, θ).

4.2 Pooled GMM

We can form ψi (c) = ψ (wi, c) for each i, despite the fact that there could be no single
individual in the sample for whom the entire vector ψi (c) is observable. Define an
r × r diagonal matrix Ii of indicators of observability of the components of ψ (w, θ)
for individual i. A pooled GMM estimator is given by

θ̂p = arg min
c∈Θ

[
N∑
i=1

Iiψ (wi, c)

]′ [ N∑
i=1

Iiψ
(
wi, θ̃

)
ψ
(
wi, θ̃

)′
Ii

]−1 [ N∑
i=1

Iiψ (wi, c)

]
.

An example of this method is the unbalanced panel estimator for dynamic linear
models proposed in Arellano and Bond (1991).

Following standard GMM theory, the asymptotic variance matrix of the estima-

tion error
√
N
(
θ̂p − θ

)
is

Avar
(
θ̂p

)
=
(
D′V −1D

)−1

where

D = E

[
Ii
∂ψ (wi, θ)

∂c′

]
= E (Ii)E

[
∂ψ (wi, θ)

∂c′

]
V = E

[
Iiψ (wi, θ)ψ (wi, θ)

′ Ii
]
.
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4.3 Expanded GMM: Minimizing the sum of GMM criteria for each

balanced subpanel

On the other hand, letting dki = 1 [j (i) = k], we can consider GMM estimation based
on the list of moments:

ψ† (wi, θ) =

 d1iψ
1 (w1

i , θ)
...

dJiψ
J
(
wJ

i , θ
)
 ,

which leads to the estimator

θ̂s = arg min
c∈Θ

J∑
j=1


[

N∑
i=1

djiψ
j
(
wj

i , c
)]′ [ N∑

i=1

djiψ
j
(
wj

i , θ̃
)
ψj
(
wj

i , θ̃
)′]−1 [ N∑

i=1

djiψ
j
(
wj

i , c
)]

with first-order conditions

J∑
j=1

N∑
i=1

dji
˜̃
Π (c)j ψj

(
wj

i , c
)

= 0

where

˜̃
Π (c)j =

[
N∑
i=1

dji
∂ψj

(
wj

i , c
)

∂c

]′ [ N∑
i=1

djiψ
j
(
wj

i , θ̃
)
ψj
(
wj

i , θ̃
)′]−1

or
N∑
i=1

˜̃
Π (c)j(i) ψj(i)

(
w

j(i)
i , c

)
= 0 (9)

Note that (9) differs in two ways from (3). Firstly the estimate of Π in (3) is kept

fixed, but more importantly,
˜̃
Π (c)j is estimated using only observations with dji = 1,

whereas the component matrices of Π̃j are estimated element-by-element using all
the observations available in each case.

As long as plimN→∞N
−1
∑N

i=1 dji > 0 for all j, θ̂s and θ̂ are asymptotically
equivalent, although their finite sample properties may be very different, specially if
J is large and some N−1

∑N
i=1 dji are small, but there is considerable overlap among

individual time series for different values of j.
Let N j =

∑N
i=1 dji be the number of individuals for which we observe a time

series with the length and origin specified by j. Let N j
`k =

∑N
i=1 ι

j
`iι

j
ki be the number

12



of individuals for which moments ψj
` and ψj

k are observable. Note that N j
`k ≥ N j.

Standard asymptotic analysis for (9) requires that for all j plimN→∞N
j/N > 0,

whereas for (3) the requirement is the milder condition plimN→∞N
j
`k/N > 0.

The minimum distance perspective of enforcing restrictions on a covariance ma-
trix, which we describe in the Appendix, provides additional insight into the dif-
ferences between pooled and expanded method-of-moments estimators with linear
moment conditions.

Example 2 As a simple example, suppose that for j = 1, 2 we observe w1
i =

{wi1, wi2, wi3} and w2
i = {wi2, wi3}, respectively, with associated moments

ψ1
(
w1

i , θ
)

=



zi1vi1
zi1vi2
zi2vi2
zi1vi3
zi2vi3
zi3vi3

 , ψ2
(
w2

i , θ
)

=

 zi2vi2
zi2vi3
zi3vi3

 .

Moreover, suppose that plimN→∞N
1/N > 0 but N2/N → 0, so that the condition

for (9) does not hold. However, since ψ2 (w2
i , θ) is also observed for individuals with

j = 1 the requirement for (3) is still satisfied.

Asymptotic efficiency Let us write the asymptotic variance of θ̂s and θ̂ as

Avar
(
θ̂s

)
=
(
D†′V †−1D†

)−1
(10)

where D† = E
[
∂ψ† (wi, c) /∂c

′] and V † = E
[
ψ† (wi, c)ψ

† (wi, c)
′]. Equation (10)

is just an alternative expression for (6) or (8). Let the dimension of ψ† (wi, c) be
r† =

∑J
j=1 rj. We can write

Iiψ (wi, c) = Hψ† (wi, c)

where H is an r × r† selection matrix (r ≤ r†). Therefore, D = HD†, V = HV †H ′,
and [

Avar
(
θ̂s

)]−1

−
[
Avar

(
θ̂p

)]−1

= D†′V †−1D† −D†′H ′
(
HV †H ′

)−1
HD†

= G
′
[
I −H ′

(
HH

′
)−1

H

]
G ≥ 0

where G = V †−1/2D† and H = HV †1/2. This shows that θ̂p is dominated by θ̂s in
terms of asymptotic efficiency.
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Example 3 Suppose that for j = 1, 2 we observe w1
i = {wi1, wi2} and w2

i =
{wi2, wi3}, respectively, with associated moments

ψ1
(
w1

i , θ
)

=

 zi1vi1
zi1vi2
zi2vi2

 , ψ2
(
w2

i , θ
)

=

 zi2vi2
zi2vi3
zi3vi3


where vit = yit − x′itθ, xit is k × 1, zit is q × 1, and wit = (yit, x

′
it, z

′
it)
′. Thus, pooled

GMM is based on the following sample moments:

N∑
i=1

Iiψ (wi, θ) =
N∑
i=1


d1izi1vi1
d1izi1vi2
zi2vi2
d2izi2vi3
d2izi3vi3


with7

D′N =

[
N∑
i=1

Ii
∂ψ (wi, θ)

∂θ′

]′
= −

N∑
i=1

(
d1ixi1z

′
i1 d1ixi2z

′
i1 xi2z

′
i2 d2ixi3z

′
i2 d2ixi3z

′
i3

)
.

Let us consider a one-step pooled GMM estimator with weight matrix

AN =


N∑
i=1


d1izi1z

′
i1 0 0 0 0

0 d1izi1z
′
i1 d1izi1z

′
i2 0 0

0 d1izi2z
′
i1 zi2z

′
i2 0 0

0 0 0 d2izi2z
′
i2 d2izi2z

′
i3

0 0 0 d2izi3z
′
i2 d2izi3z

′
i3



−1

,

7In terms of the notation used in Arellano and Bond (1991), we have

N∑
i=1


d1izi1vi1

d1izi1vi2

zi2vi2

d2izi2vi3

d2izi3vi3

 =

N∑
i=1


d1i


zi1 0

0 zi1

0 zi2

0 0

0 0


(

vi1

vi2

)
+ d2i


0 0

0 0

zi2 0

0 zi2

0 zi3


(

vi2

vi3

)


where (
vi1

vi2

)
=

(
yi1

yi2

)
−

(
x′i1

x′i2

)
θ.
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so that

−D′NAN =

(
Π̂1

...Π̂†2
...Π̂3

)
where

Π̂1 =
N∑
i=1

d1ixi1z
′
i1

(
N∑
i=1

d1izi1z
′
i1

)−1

Π̂†2 =

(
Π̂†21

...Π̂†22

)
=
( ∑N

i=1 d1ixi2z
′
i1

∑N
i=1 xi2z

′
i2

)( N∑
i=1

d1izi1z
′
i1 d1izi1z

′
i2

d1izi2z
′
i1 zi2z

′
i2

)−1

Π̂3 =

(
Π̂31

...Π̂32

)
=
( ∑N

i=1 d2ixi3z
′
i2

∑N
i=1 d2ixi3z

′
i3

)( N∑
i=1

d2izi2z
′
i2 d2izi2z

′
i3

d2izi3z
′
i2 d2izi3z

′
i3

)−1

.

Notice that Π̂1 is the regression coefficient of xi1 on zi1 in the d1i = 1 sub-
sample. As long as plimN−1

∑N
i=1 d1i > 0, it is a consistent estimate of Π1 =

E (xi1z
′
i1) [E (zi1z

′
i1)]−1. Π̂†2 is the regression coefficient of xi2 on (d1iz

′
i1, z

′
i2) in the

full sample. It is therefore a consistent estimate of

Π†2 =

(
Π†21

...Π†22

)
=
(
p1E (xi2z

′
i1) E (xi2z

′
i2)
)( p1E (zi1z

′
i1) p1E (zi1z

′
i2)

p1E (zi2z
′
i1) E (zi2z

′
i2)

)−1

where p1 = E (d1i). Finally, Π̂3 is the regression coefficient of xi3 on (z′i2, z
′
i3) in the

d2i = 1 subsample.
First-order conditions are

D′NAN

N∑
i=1

d1i


zi1 0
0 zi1
0 zi2
0 0
0 0


(
vi1
vi2

)
+ d2i


0 0
0 0
zi2 0
0 zi2
0 zi3


(
vi2
vi3

) = 0

or
N∑
i=1

[
d1i

(
x̂i1

...x̂i2

)(
vi1
vi2

)
+ d2i

(
x̂i2

...x̂i3

)(
vi2
vi3

)]
= 0

where

x̂i1 = Π̂1zi1

x̂i2 = x̂pi2 ≡ Π̂†21d1izi1 + Π̂†22zi2 (11)

x̂i3 = Π̂31zi2 + Π̂32zi3.
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The estimator can be written in the general form

θ̂ =

{
N∑
i=1

[d1i (x̂i1x
′
i1 + x̂i2x

′
i2) + d2i (x̂i2x

′
i2 + x̂i3x

′
i3)]

}−1

N∑
i=1

[d1i (x̂i1yi1 + x̂′i2yi2) + d2i (x̂i2yi2 + x̂i3yi3)] . (12)

Expanded GMM is based on the moments:

N∑
i=1

ψ† (wi, c) =
N∑
i=1



d1izi1vi1
d1izi1vi2
d1izi2vi2
d2izi2vi2
d2izi2vi3
d2izi3vi3


leading to an estimator of the same form as (12) but which uses:

x̂i1 = Π̂1zi1

x̂i2 = x̂ei2 ≡ Π̂21d1izi1 + Π̂22d1izi2 + Π̂∗2d2izi2 (13)

x̂i3 = Π̂31zi2 + Π̂32zi3.

where

Π̂2 =

(
Π̂21

...Π̂22

)
=
( ∑N

i=1 d1ixi2z
′
i1

∑N
i=1 d1ixi2z

′
i2

)( N∑
i=1

d1izi1z
′
i1 d1izi1z

′
i2

d1izi2z
′
i1 d1izi2z

′
i2

)−1

Π̂∗2 =
N∑
i=1

d2ixi2z
′
i2

(
N∑
i=1

d2izi2z
′
i2

)−1

Π̂2 and Π̂∗2 are, respectively, consistent estimators of

Π2 =

(
Π21

...Π22

)
=
(
E (xi2z

′
i1) E (xi2z

′
i2)
)( E (zi1z

′
i1) E (zi1z

′
i2)

E (zi2z
′
i1) E (zi2z

′
i2)

)−1

and
Π∗2 = E (xi2z

′
i2) [E (zi2z

′
i2)]
−1
.

16



Cross-sample GMM uses the same form of instruments as expanded GMM, but
different estimates of the first-stage coefficients:

x̂i1 = Π̂1zi1

x̂i2 = x̂ci2 ≡ Π̃21d1izi1 + Π̃22d1izi2 + Π̃∗2d2izi2 (14)

x̂i3 = Π̂31zi2 + Π̂32zi3.

where

Π̃2 =

(
Π̃21

...Π̃22

)
=
( ∑

i d1ixi2z
′
i1∑

i d1i

∑
i xi2z

′
i2

N

)( ∑
i d1izi1z

′
i1∑

i d1i

∑
i d1izi1z

′
i2∑

i d1i∑
i d1izi2z

′
i1∑

i d1i

∑
i zi2z

′
i2

N

)−1

=
N∑
i=1

(
d1ixi2z

′
i1 d1xi2z

′
i2

)( N∑
i=1

d1izi1z
′
i1 d1izi1z

′
i2

d1izi2z
′
i1 d1zi2z

′
i2

)−1

,

Π̃∗2 =
N∑
i=1

xi2z
′
i2

(
N∑
i=1

zi2z
′
i2

)−1

,

and d1 = N−1
∑N

i=1 d1i.

Note that Π̂∗2 and Π̃∗2 are both consistent for Π∗2, but Π̃∗2 is obtained from
the whole sample whereas Π̂∗2 is only based in the d2i = 1 subsample. Similarly,
Π̂2 and Π̃2 are both consistent for Π2, but Π̂2 only uses the d1i = 1 subsample,
whereas Π̃2 also uses the information from the d2i = 1 observations when available.
Thus, contrary to expanded GMM, cross-sample GMM imposes the cross-subsample
restrictions on first-stage coefficients implied by the model.

Pooled GMM can be regarded as imposing the restriction

Π22 = Π∗2

in its specification of the instruments. That is, it imposes the constraint that the
simple regression coefficient of xi2 on zi2 (in the d2i = 1 sample) coincides with the
zi2 coefficient in the multiple regression of xi2 on zi1 and zi2 (in the d1i = 1 sample).
Since this restriction will only hold in special cases (if Π21 = 0 or if E (zi1z

′
i2) = 0),

in general pooled GMM will be asymptotically less efficient than expanded GMM or
cross-sample GMM.

To summarize, the common general form of pooled, expanded, and cross-sample
GMM is as in equation (12). They only differ in the construction of the period-2
optimal instrument x̂i2, given by (11), (13) and (14), respectively. The other two
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instruments, x̂i1 and x̂i3, are OLS fitted values exclusively calculated on the first and
second subpanels, respectively.

A final comment is that in the context of Example 3 it is possible to consider a
tighter cross-sample GMM estimator based on optimal instruments that enforce the
stationarity restrictions:

Π1 = Π∗2(
Π21

...Π22

)
=

(
Π31

...Π32

)
.

5 Monte Carlo experiments

This section presents Monte Carlo simulations to examine the finite-sample proper-
ties of the cross-sample GMM estimator in relation with pooled and expanded GMM
for an autoregressive model with individual effects. In particular, we are interested
in the performance of the estimators under different degrees of unbalancedness.

Model, moment conditions, and unbalanced designs We simulate the follow-
ing model:

yit = αyi,t−1 + (1− α)ηi + vit (15)

where vit and ηi are zero-mean i.i.d. normally distributed and mutually independent
variates. We set the variance of vit to one, and considered three values for the variance
of ηi: 0, 0.2 and 1. Since they produced similar conclusions, we report results for
the first case and the others are available upon request. Initial conditions are drawn
from the stationary distributions. We simulated three values for the autoregressive
parameter α = {0.2, 0.5, 0.8}.

The estimators that we simulate only exploit the moment conditions arising from
the orthogonality between errors in first-differences and values of y lagged two periods
or more (Arellano and Bond 1991). Namely,

E


 yi1

...
yi,t−2

 (∆yit − α∆yi,t−1)

 = 0 (16)

where ∆vit = vit − vi,t−1.
Next we must consider how to generate the unbalancedness structure of the data.

There are many ways in which a panel can be unbalanced. We have devised two
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schemes that mimic realistic patterns of unbalancedness and allow us to carry out a
systematic analysis of how the extent of unbalancedness along different dimensions
affect the small-sample properties of the estimators.

In the first scheme we consider an increasing number of different time series
segments for a given total time span. In this case segments differ in their starting
point, their length or both. The second scheme is a rotating panel design in which
we vary the extent of overlap between subpanels of equal length.

Increasing unbalancedness within a time span In our first set of simulations,
starting from a balanced panel of T periods and N units, we create designs with
varying degrees of unbalancedness by randomly removing as missing an increasing
number of observations at each end of the original panel. We do so in such a way that
the total number of units is equally divided among each of the resulting balanced
subpanels.

For example, to obtain an unbalanced panel with J = 4 different time patterns,
units are first randomly distributed into four groups of size N/4. Then we delete the
first observation from the first group, the first two observations from the second, the
last observation from the third, and the last two observations from the fourth. The
result is two balanced subpanels with T − 1 periods each and two others with T − 2
periods. Table A.1 illustrates the sample designs that can be obtained in this way
when T = 6, subject to having a minimum of three observations per unit, which are
needed to evaluate the autoregressive moments (16).8

This scheme cannot generate any combination of time patterns, but it produces
patterns that are commonly found in firm-level or cross-country panels. We adopt
it as a simple, systematic way to determine the incompleteness of the panel. As
J increases, the degree of unbalancedness also does. By looking at how different
estimators perform as J varies, we can conclude how unbalancedness affects their
finite sample properties.

A popular measure of the degree of unbalancedness is the Ahrens and Pincus
(1981) ratio of the harmonic mean to the arithmetic mean of time periods in the
panel:

r =

(
1

N

∑N
i=1 T

−1
i

)−1

/

(
1

N

∑N
i=1 Ti

)
,

which satisfies 0 ≤ r ≤ 1 and equals 1 when Ti is constant. However, this is an index

8The maximum number of different time patterns we can have increases with T and is given by J =

2 (T − 3).
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designed for static settings, which does not distinguish between a balanced panel
and a collection of unbalanced subpanels of the same length that cover different time
intervals. Such distinctions matter in the nonstationary and dynamic settings that
motivate the estimators we consider. For example, when J = 2 the Ahrens-Pincus
index is r = 1, yet the three estimators that we compare display different behavior
in the Monte Carlo results.

A complement to the r index is a measure of the degree of overlap in a panel,
such as the average fraction of units that are observed in a particular period; that

is, ρ = 1
T

(
1
N

∑N
i=1 Ti

)
, where T is the total time span. For example, with T = 6 we

get ρ = 0.83 when J = 2 and ρ = 0.75 when J = 4.
We work with nine combinations of sample sizes: the total number of units takes

the values N = 100, 250, 500 while the total time span takes the values T = 6, 8, 10.
For each combination of the autocorrelation parameter α, N , T and J , we obtain
1, 000 simulated samples of model (15). Relying on the moments (16), the coefficient
α is estimated using three different estimators: pooled GMM (Pool), expanded GMM
(Expd) and cross-sample GMM (CSmp). We report results for one-step estimates,
although similar conclusions can be drawn for two-step estimates.9 We compute the
Monte Carlo median, interquartile range (IQR) and median absolute error (MAE)
for each experiment. Results are presented in Tables 1 to 3.

Note that the three estimators are numerically identical for balanced panels
(J = 1) in linear models. We reproduce the same quantities in the columns for
each estimator to serve as a benchmark. We are mainly interested in the relative
finite sample performance of the estimators as J increases. Therefore, we pay little
attention to well-known facts that affect similarly all the estimators. Since the esti-
mators are consistent as N →∞, all of them perform much better for N = 500 than
for smaller N . Moreover, since the time-series length T is small, problems of many
moment conditions related to T itself are absent (Alvarez and Arellano 2003). The
main conclusions remain unchanged for different values of α.

A first clear-cut fact that emerges from these Monte Carlo results is the poor finite
sample performance of expanded GMM. This estimator quickly becomes severely
biased when the unbalancedness increases, even mildly. For example, when J = 6,
the bias is around 40% for α = 0.2 in Table 1 and more than 30% for α = 0.5
and α = 0.8 in Tables 2 and 3, respectively. When N increases, the bias becomes
smaller but it is still around 10% in the same cases when N = 500. In general,

9These results are available upon request. The only noticeable difference is related to computational

issues with expanded GMM when some balanced subpanels are very small.
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expanded GMM systematically performs worse than the other two estimators when
using incomplete panels for any setting in our experiments. This result confirms the
concerns in Arellano and Bond (1991), which led them to recommend pooled GMM
despite acknowledging its asymptotic inefficiency. Actually, expanded GMM tends to
have the lowest variability (measured by the IQR), but this is always outperformed in
MAE terms for both pooled and cross-sample GMM when the panel is unbalanced.
In contrast, cross-sample GMM does not suffer from the same problem of bias as
expanded GMM, although it is also using an optimal moment function implied by
the unbalanced structure.

We now turn to consider the relative performance of pooled and cross-sample
GMM. Although both estimators become more biased when J increases, cross-sample
GMM is clearly less biased. The difference is particularly noticeable for moderate
degrees of unbalancedness and moderate sample size (N = 100 and N = 250).
However, the dispersion of cross-sample GMM is similar or slightly larger than the
dispersion of pooled GMM. Overall, cross-sample GMM outperforms pooled GMM
in MAE terms, except in a few cases where the unbalancedness is low.

Asymptotically, cross-sample GMM is more efficient than pooled GMM, but in
our simulation results this difference is of minor consequence relative to the differ-
ent finite-sample bias properties that the two estimators exhibit. The properties
of cross-sample GMM resemble those of LIML-like and other symmetrically nor-
malized estimators in balanced panels (Alonso-Borrego and Arellano, 1999), which
are known to have better performance in terms of bias but a higher probability of
outliers. They are also reminiscent of the comparison between Jackknife instrumen-
tal variables estimation and two-stage-least-squares (2SLS) in cross-sectional models
(Angrist, Imbens and Krueger, 1999). As in Jackknife IV, the pairwise estimate of
the optimal instrument weakens the finite-sample dependence between the optimal
instrument for the i-th unit and the error term that is responsible for the bias in
2SLS-like estimators. However, the mechanism is not that the optimal instrument is
recalculated for each unit in a leave-one-out approach, but that the increase in the
effective sample size used in the cross-sample estimation of the optimal instrument
weakens its finite sample correlation with the error term.

Example 3 can be used to illustrate the previous point. We focus on the correla-
tion between the optimal instrument and the error term in the second period, since in
this case expanded and cross-sample GMM only differ in the way the period-2 optimal
instrument is estimated. Specifically, assuming for simplicity that

∑
d1i=1 zi1z

′
i2 = 0

and E (d1i) = d1, we show in the Appendix that the cross-sample covariance be-
tween the optimal instrument and the error is 2/3 of the corresponding covariance
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for extended GMM:

E (x̂ci2vi2) =
2

3
E (x̂ei2vi2) .

We have also calculated finite sample coverage rates of normal-distribution-based
confidence intervals using one-step robust asymptotic standard errors. Table 4 re-
ports the results for α = 0.5, while the results for α = 0.2 and α = 0.8 are contained
in Tables A.3 and A.4 in the Appendix. The cross-sample GMM 95% asymptotic
confidence intervals have very good coverage across our range of simulations. We only
observe slightly liberal rates for the larger values of J when T = 10 and N = 500.
Pooled GMM exhibits reasonable coverage overall, although it tends to substantially
undercover the truth for the larger values of J . The asymptotic coverage of expanded
GMM is poor, even catastrophically so in some cases.

Rotating panel design with varying overlap among subpanels In our second
set of simulations, we consider a sequence of J subpanels of equal length T0 and
cross-sectional size N/J . The first subpanel in the sequence starts in period 1,
the second in period 1 + R, the third in 1 + 2R, and so on. The value R is the
number of periods between consecutive subpanels. Thus, R is a refreshment factor
that produces rotating designs with varying overlap. The larger the value of R the
smaller the overlap between subpanels. Table A.2 illustrates the sample designs that
can be obtained using the rotating scheme when T0 = 6.

This setting allows us to examine how the extent of moment overlap, as deter-
mined by R, affects the properties of the estimators, keeping the sample size and
the degree of unbalancedness J constant. Two comments are in order here. First,
expanded GMM does not vary with R for a given J , since it exploits the information
in each balanced subpanel separately. Second, in the absence of moment overlap
the three estimators coincide because they are based on the same nonredundant
moments.10

Since the evaluation of moments (16) requires a minimum of three observations,
R = T0 − 3 is the maximal value of the refreshment factor such that more than
one subpanel contributes observations to the same moments. For R > T0 − 3 there

10Consider for instance a variant of Example 3 where we observe w1
i = {wi1, wi2} and w2

i = {wi3, wi4},
respectively, with associated moments

ψ1 (w1
i , θ
)

=

 zi1vi1

zi1vi2

zi2vi2

 , ψ2 (w2
i , θ
)

=

 zi3vi3

zi3vi4

zi4vi4

 .
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is no difference between pooled, expanded and cross-sample GMM estimates of the
autoregressive model.

In this case we consider N = 100, 250 and T0 = 5, 6. As for the number of
refreshment samples, although any value can be chosen in this design, we consider
values that are similar to those in the previous exercise J = 2, 4, 6, 8, 10. Table 5
shows the results for α = 0.5. The results for α = 0.2 and α = 0.8 are fairly similar,
and are contained in Tables A.5 and A.6, respectively. Although the expanded GMM
results do not vary with R for given J , we list them all for reference. The value R = 3
is the smallest overlap we consider and therefore the worst-case for the pooled and
cross-sample estimators. When T0 = 6 we expect the smallest differences between
expanded GMM and the other two estimators to occur, and when T0 = 5 the three
estimators actually coincide (not reported to avoid further redundancy).

In this exercise, we find again that cross-sample GMM outperforms pooled GMM
in terms of MAE. In fact, the comparison is more clear-cut here, since cross-sample
GMM always performs better in terms of bias, while the differences in IQRs are very
small. Note that both estimators are obviously affected by the degree of moment
overlap. When R increases, both estimators are unambiguously worse in terms of
bias (but cross-sample GMM is still in a relatively better situation). On the other
hand, it is not evident how the decrease in moment overlap affects the IQRs of these
estimators, as there is no clear pattern of relation with the value of R across sample
sizes and values of J .

Turning to coverage rates, Table 6 shows the results for α = 0.5, while Tables A.7
and A.8 report those for α = 0.2 and α = 0.8. Cross-sample GMM almost always
exhibits the best coverage rates, even if it tends to undercover the truth in some of
the large J cases. The coverage rates for pooled GMM and particularly for expanded
GMM are often poor with sizeable differences compared to cross-sample GMM.

So, pooled, expanded and cross-sample estimates are based on the same set of moments:

N∑
i=1

ψ† (wi, c) =

N∑
i=1



d1izi1vi1

d1izi1vi2

d1izi2vi2

d2izi3vi3

d2izi3vi4

d2izi4vi4


.

23



6 Empirical illustration

Here we revisit the empirical analysis in Arellano and Bond (1991) using the new
cross-sample estimator proposed in this paper. Arellano and Bond estimated a firm-
level dynamic labour demand equation in which employment depends on lagged
employment, wages, capital, industry demand shocks, aggregate demand shocks,
and firm fixed effects. We use their dataset, which is an unbalanced panel of 140
listed companies with main operations in the UK. Estimation results for one-step
and two-step GMM estimators are shown in Table 7.

In the first column of each type of estimates, we reproduce the original results
in Table 4 of Arellano and Bond (1991); these are the pooled GMM estimates in
our terminology. The expanded GMM estimates are very similar, probably because
the unbalancedness is not very severe in this case. In contrast, cross-sample GMM
provides substantially different point estimates. The new estimates are in line with
the symmetrically normalized LIML-like estimates reported in Alonso-Borrego and
Arellano (1999) using the same model and dataset. Lastly, we report system GMM
estimates (Arellano and Bover, 1995). This is a pooled GMM estimator that exploits
additional moment conditions implied by mean stationarity around aggregate time
effects. Intriguingly, a pooled GMM estimate that uses additional information in
levels offers similar results to cross-sample GMM without further restrictions.

The dominant feature of this comparative is the marked difference between the
cross-sample GMM point estimates and those produced by pooled and expanded
GMM, even under mild unbalancedness. The simulation experiments would sug-
gest that these differences can be attributed to differences in the finite-sample bias
properties of the estimators.

7 Conclusions

In this paper we have discussed the problem of estimation from a sequence of over-
lapping nonlinear moment conditions, as those generated by unbalanced and rotating
panel data. Our method separates the problem of moment choice from that of esti-
mation of optimal instruments. We have proposed a cross-sample GMM estimator
that forms direct estimates of individual-specific optimal instruments pooling all the
information available in the data. We compare cross-sample GMM with the pooled
and expanded GMM estimators discussed in Arellano and Bond (1991) for linear
dynamic panel data models. Cross-sample GMM is asymptotically equivalent to
expanded GMM and asymptotically more efficient than pooled GMM. Moreover,
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Monte Carlo experiments and an empirical illustration show that, contrary to ex-
panded GMM, cross-sample GMM performs well in finite samples, even with severe
unbalancedness. Future extensions should address the estimation problem when the
sequence of subpanels tends to infinity and the consequences of non-random attrition.
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Table 1: Monte Carlo Simulation Results. Parameter value α = 0.2.
Increasing unbalancedness within a time span.

T=6 N=100 N=250 N=500
Pool. Expd. CSmp. Pool. Expd. CSmp. Pool. Expd. CSmp.

J=
1 Median 0.1891 0.1891 0.1891 0.1953 0.1953 0.1953 0.1955 0.1955 0.1955

IQR 0.1054 0.1054 0.1054 0.0649 0.0649 0.0649 0.0500 0.0500 0.0500
MAE 0.0556 0.0556 0.0556 0.0330 0.0330 0.0330 0.0243 0.0243 0.0243

2 Median 0.1596 0.1559 0.1654 0.1892 0.1854 0.1900 0.1887 0.1877 0.1891
IQR 0.1380 0.1381 0.1345 0.0955 0.0968 0.0948 0.0624 0.0624 0.0624
MAE 0.0757 0.0758 0.0731 0.0496 0.0474 0.0488 0.0330 0.0319 0.0322

4 Median 0.1419 0.1102 0.1491 0.1803 0.1647 0.1845 0.1875 0.1780 0.1876
IQR 0.1680 0.1566 0.1669 0.1128 0.1074 0.1102 0.0763 0.0758 0.0748
MAE 0.0973 0.1076 0.0912 0.0581 0.0596 0.0557 0.0404 0.0404 0.0385

T=8 N=100 N=250 N=500
Pool. Expd. CSmp. Pool. Expd. CSmp. Pool. Expd. CSmp.

J=
1 Median 0.1839 0.1839 0.1839 0.1951 0.1951 0.1951 0.1979 0.1979 0.1979

IQR 0.0751 0.0751 0.0751 0.0476 0.0476 0.0476 0.0360 0.0360 0.0360
MAE 0.0401 0.0401 0.0401 0.0242 0.0242 0.0242 0.0174 0.0174 0.0174

2 Median 0.1751 0.1643 0.1789 0.1913 0.1883 0.1941 0.1952 0.1946 0.1968
IQR 0.0903 0.0909 0.0918 0.0583 0.0557 0.0559 0.0393 0.0398 0.0406
MAE 0.0507 0.0531 0.0474 0.0297 0.0287 0.0289 0.0204 0.0207 0.0202

4 Median 0.1701 0.1367 0.1817 0.1864 0.1735 0.1908 0.195 0.1859 0.1966
IQR 0.0967 0.0944 0.0969 0.0591 0.0584 0.0586 0.0419 0.0428 0.0436
MAE 0.0533 0.0677 0.0528 0.0317 0.0351 0.0305 0.0223 0.0230 0.0229

6 Median 0.1564 0.0999 0.1747 0.1809 0.1573 0.1862 0.1951 0.1811 0.1964
IQR 0.1093 0.0979 0.1090 0.0684 0.0619 0.0665 0.0497 0.0459 0.0493
MAE 0.0629 0.1002 0.0592 0.0365 0.0476 0.035 0.0247 0.0266 0.0248

8 Median 0.1467 0.0705 0.1716 0.1770 0.1411 0.1840 0.1910 0.1726 0.1953
IQR 0.1157 0.1083 0.1189 0.0748 0.0678 0.0714 0.0560 0.0510 0.0545
MAE 0.0694 0.1296 0.0613 0.0428 0.0611 0.0384 0.0274 0.0331 0.0274

T=10 N=100 N=250 N=500
Pool. Expd. CSmp. Pool. Expd. CSmp. Pool. Expd. CSmp.

J=
1 Median 0.1872 0.1872 0.1872 0.1955 0.1955 0.1955 0.1974 0.1974 0.1974

IQR 0.0594 0.0594 0.0594 0.0393 0.0393 0.0393 0.0285 0.0285 0.0285
MAE 0.0311 0.0311 0.0311 0.0202 0.0202 0.0202 0.0139 0.0139 0.0139

2 Median 0.1788 0.1708 0.1899 0.1922 0.1885 0.1959 0.1947 0.1933 0.1973
IQR 0.0636 0.0607 0.0658 0.0458 0.0443 0.0463 0.0307 0.0299 0.0313
MAE 0.0355 0.0386 0.0331 0.0237 0.0229 0.0236 0.0159 0.0160 0.0157

4 Median 0.1720 0.1410 0.1869 0.1888 0.1755 0.1953 0.1943 0.1881 0.1976
IQR 0.0699 0.0644 0.0723 0.0501 0.0451 0.0487 0.0346 0.0331 0.0339
MAE 0.0426 0.0603 0.0381 0.0256 0.0291 0.0249 0.0176 0.0185 0.0171

6 Median 0.1666 0.1134 0.1915 0.1861 0.1634 0.1967 0.1925 0.1814 0.1972
IQR 0.0735 0.0631 0.0842 0.0491 0.0447 0.0485 0.0383 0.0366 0.0370
MAE 0.0462 0.0867 0.0424 0.0264 0.0384 0.0241 0.0202 0.0220 0.0184

8 Median 0.1603 0.0865 0.192 0.1831 0.1513 0.1954 0.1924 0.1755 0.1974
IQR 0.0764 0.0699 0.0911 0.0528 0.0486 0.0526 0.0412 0.0393 0.0412
MAE 0.0504 0.1135 0.0467 0.0299 0.0492 0.0264 0.0221 0.0267 0.0202

10 Median 0.1551 0.0637 0.1939 0.1829 0.1373 0.1976 0.1909 0.1674 0.1961
IQR 0.0841 0.0750 0.1034 0.0585 0.0505 0.0595 0.0418 0.0401 0.0414
MAE 0.0539 0.1363 0.0520 0.0310 0.0627 0.0297 0.0228 0.0332 0.0211

12 Median 0.1443 0.0392 0.1956 0.1799 0.1262 0.1953 0.1870 0.1610 0.1952
IQR 0.0895 0.0782 0.1175 0.0628 0.0577 0.0667 0.0452 0.0395 0.0435
MAE 0.0630 0.1608 0.0605 0.0350 0.0738 0.034 0.0246 0.0393 0.0222

Note: We run 1,000 replications for each sample size, unbalancedness pattern and estimator. T = total time span;
J = number of different time patterns; IQR is the interquartile range; MAE is the median absolute error; “Pool.”,
“Expd.” and “CSmp.” are the pooled, expanded and cross-sample GMM estimators, respectively.



Table 2: Monte Carlo Simulation Results. Parameter value α = 0.5.
Increasing unbalancedness within a time span.

T=6 N=100 N=250 N=500
Pool. Expd. CSmp. Pool. Expd. CSmp. Pool. Expd. CSmp.

J=
1 Median 0.4740 0.4740 0.4740 0.4890 0.4890 0.4890 0.4902 0.4902 0.4902

IQR 0.1374 0.1374 0.1374 0.0802 0.0802 0.0802 0.0634 0.0634 0.0634
MAE 0.0687 0.0687 0.0687 0.0398 0.0398 0.0398 0.0322 0.0322 0.0322

2 Median 0.4372 0.425 0.4394 0.479 0.4717 0.4788 0.4806 0.4802 0.4837
IQR 0.1799 0.1818 0.1835 0.1214 0.1189 0.1238 0.0818 0.0806 0.0877
MAE 0.1051 0.1054 0.1012 0.0621 0.061 0.0625 0.0451 0.0445 0.0451

4 Median 0.3958 0.3483 0.4031 0.4665 0.4361 0.4687 0.4755 0.4620 0.4774
IQR 0.2147 0.1939 0.2116 0.1411 0.1324 0.1465 0.1021 0.0987 0.1013
MAE 0.1433 0.163 0.1367 0.0773 0.0823 0.0763 0.0548 0.0554 0.0540

T=8 N=100 N=250 N=500
Pool. Expd. CSmp. Pool. Expd. CSmp. Pool. Expd. CSmp.

J=
1 Median 0.4750 0.4750 0.4750 0.4918 0.4918 0.4918 0.4958 0.4958 0.4958

IQR 0.0853 0.0853 0.0853 0.0550 0.0550 0.0550 0.0393 0.0393 0.0393
MAE 0.0459 0.0459 0.0459 0.0278 0.0278 0.0278 0.0200 0.0200 0.0200

2 Median 0.4588 0.4460 0.4679 0.4843 0.4780 0.4872 0.4917 0.4896 0.4945
IQR 0.1029 0.1015 0.1021 0.0668 0.0635 0.0671 0.0461 0.0459 0.0465
MAE 0.0638 0.0664 0.0594 0.0356 0.0366 0.0347 0.0241 0.0247 0.0235

4 Median 0.4475 0.3969 0.4593 0.4779 0.4541 0.4822 0.4896 0.4766 0.4929
IQR 0.1150 0.1070 0.1152 0.0720 0.0703 0.0720 0.0502 0.0491 0.0507
MAE 0.0685 0.1034 0.0668 0.0413 0.0508 0.0398 0.0267 0.0298 0.0273

6 Median 0.4319 0.3483 0.4557 0.465 0.4261 0.4737 0.4884 0.4656 0.4917
IQR 0.1218 0.1116 0.1381 0.0804 0.0722 0.0786 0.0614 0.0553 0.0627
MAE 0.0823 0.1517 0.0735 0.0482 0.0753 0.0459 0.0298 0.0383 0.0305

8 Median 0.4160 0.3009 0.4441 0.4586 0.4025 0.4705 0.4835 0.4517 0.4883
IQR 0.1428 0.1240 0.1544 0.0987 0.0830 0.0958 0.0680 0.0628 0.0714
MAE 0.0965 0.1991 0.0843 0.0565 0.0975 0.0522 0.0363 0.0497 0.0355

T=10 N=100 N=250 N=500
Pool. Expd. CSmp. Pool. Expd. CSmp. Pool. Expd. CSmp.

J=
1 Median 0.4763 0.4763 0.4763 0.4905 0.4905 0.4905 0.4950 0.4950 0.4950

IQR 0.0619 0.0619 0.0619 0.0417 0.0417 0.0417 0.0310 0.0310 0.0310
MAE 0.0357 0.0357 0.0357 0.0220 0.0220 0.0220 0.0162 0.0162 0.0162

2 Median 0.4661 0.4535 0.4832 0.4874 0.4821 0.4923 0.4923 0.4902 0.4945
IQR 0.0725 0.0652 0.0960 0.0511 0.0472 0.0658 0.0351 0.0337 0.0447
MAE 0.0446 0.0498 0.0499 0.0256 0.0269 0.0326 0.0186 0.0188 0.0220

4 Median 0.4550 0.4110 0.4801 0.4821 0.4613 0.4917 0.4906 0.4805 0.4943
IQR 0.0797 0.0701 0.0904 0.0562 0.0487 0.0601 0.0393 0.0375 0.0423
MAE 0.0533 0.0890 0.0482 0.0304 0.0399 0.0307 0.0213 0.0238 0.0218

6 Median 0.4492 0.3709 0.4791 0.4787 0.4442 0.4934 0.4879 0.4699 0.4939
IQR 0.0850 0.0739 0.1108 0.0552 0.0519 0.0649 0.0432 0.0390 0.0450
MAE 0.0566 0.1291 0.0586 0.0317 0.0558 0.0331 0.0235 0.0312 0.0228

8 Median 0.4372 0.3370 0.4729 0.4739 0.4247 0.4896 0.4869 0.4598 0.4942
IQR 0.0883 0.0788 0.1209 0.0604 0.0547 0.0754 0.0481 0.0435 0.0494
MAE 0.0672 0.1631 0.0666 0.0364 0.0753 0.0376 0.0256 0.0404 0.0252

10 Median 0.4267 0.3035 0.4773 0.4712 0.4039 0.4878 0.4843 0.4486 0.4930
IQR 0.0973 0.0813 0.1325 0.0666 0.0571 0.0812 0.0525 0.0463 0.0522
MAE 0.0766 0.1965 0.0691 0.0376 0.0961 0.0413 0.0281 0.0514 0.0266

12 Median 0.4147 0.2711 0.4672 0.4647 0.3855 0.4858 0.4806 0.4381 0.4946
IQR 0.1015 0.0873 0.1442 0.0710 0.0612 0.0896 0.0545 0.0454 0.0557
MAE 0.0893 0.2289 0.0780 0.0429 0.1145 0.0468 0.0303 0.0619 0.0295

Note: We run 1,000 replications for each sample size, unbalancedness pattern and estimator. T = total time span;
J = number of different time patterns; IQR is the interquartile range; MAE is the median absolute error; “Pool.”,
“Expd.” and “CSmp.” are the pooled, expanded and cross-sample GMM estimators, respectively.



Table 3: Monte Carlo Simulation Results. Parameter value α = 0.8.
Increasing unbalancedness within a time span.

T=6 N=100 N=250 N=500
Pool. Expd. CSmp. Pool. Expd. CSmp. Pool. Expd. CSmp.

J=
1 Median 0.7290 0.7290 0.7290 0.7734 0.7734 0.7734 0.7772 0.7772 0.7772

IQR 0.1940 0.1940 0.1940 0.1239 0.1239 0.1239 0.0927 0.0927 0.0927
MAE 0.1067 0.1067 0.1067 0.0644 0.0644 0.0644 0.0493 0.0493 0.0493

2 Median 0.6449 0.6163 0.6454 0.7425 0.7288 0.7463 0.7585 0.7504 0.7627
IQR 0.2675 0.2508 0.2728 0.1734 0.1705 0.1829 0.1303 0.1260 0.1329
MAE 0.1807 0.1966 0.1837 0.1033 0.1051 0.0996 0.0720 0.0731 0.0737

4 Median 0.5639 0.4788 0.5924 0.7065 0.6440 0.7192 0.7372 0.7013 0.7421
IQR 0.3130 0.2558 0.3095 0.2116 0.1805 0.2218 0.1617 0.1455 0.1564
MAE 0.2511 0.3240 0.2337 0.1296 0.1619 0.1256 0.0935 0.1081 0.0944

T=8 N=100 N=250 N=500
Pool. Expd. CSmp. Pool. Expd. CSmp. Pool. Expd. CSmp.

J=
1 Median 0.7494 0.7494 0.7494 0.7767 0.7767 0.7767 0.7902 0.7902 0.7902

IQR 0.1147 0.1147 0.1147 0.0706 0.0706 0.0706 0.0491 0.0491 0.0491
MAE 0.0657 0.0657 0.0657 0.0387 0.0387 0.0387 0.0270 0.0270 0.0270

2 Median 0.7102 0.6811 0.7391 0.7611 0.7456 0.7710 0.7814 0.7736 0.7873
IQR 0.1330 0.1257 0.1534 0.0928 0.0902 0.0977 0.0679 0.0625 0.0724
MAE 0.0999 0.1226 0.0896 0.0553 0.0600 0.0531 0.0354 0.0377 0.0353

4 Median 0.6872 0.5917 0.7243 0.7442 0.6944 0.7633 0.7753 0.7443 0.7849
IQR 0.1633 0.1307 0.1791 0.1057 0.0960 0.1103 0.0807 0.0693 0.0806
MAE 0.1193 0.2083 0.1048 0.0670 0.1060 0.0603 0.0440 0.0578 0.0426

6 Median 0.6556 0.5110 0.7125 0.7257 0.6444 0.7575 0.7662 0.7149 0.7806
IQR 0.1773 0.1449 0.2080 0.1171 0.0997 0.1333 0.0883 0.0746 0.0992
MAE 0.1499 0.2890 0.1263 0.0832 0.1556 0.0688 0.0514 0.0855 0.0501

8 Median 0.6192 0.4526 0.6912 0.7081 0.5984 0.7455 0.7584 0.6889 0.7750
IQR 0.1951 0.1556 0.2382 0.1401 0.1147 0.1483 0.1007 0.0876 0.1092
MAE 0.1833 0.3474 0.1525 0.0990 0.2016 0.0834 0.0581 0.1111 0.0579

T=10 N=100 N=250 N=500
Pool. Expd. CSmp. Pool. Expd. CSmp. Pool. Expd. CSmp.

J=
1 Median 0.7520 0.7520 0.7520 0.7800 0.7800 0.7800 0.7904 0.7904 0.7904

IQR 0.0758 0.0758 0.0758 0.0500 0.0500 0.0500 0.0393 0.0393 0.0393
MAE 0.0528 0.0528 0.0528 0.0308 0.0308 0.0308 0.0200 0.0200 0.0200

2 Median 0.7334 0.7067 0.7438 0.7726 0.7605 0.7773 0.7849 0.7785 0.7879
IQR 0.0884 0.0876 0.1007 0.0608 0.0569 0.0635 0.0438 0.0430 0.0445
MAE 0.0700 0.0934 0.0661 0.0374 0.0431 0.0362 0.0249 0.0272 0.0239

4 Median 0.7155 0.6345 0.7672 0.7636 0.7207 0.7886 0.7799 0.7574 0.7927
IQR 0.1036 0.0862 0.1561 0.0673 0.0608 0.1093 0.0487 0.0468 0.0740
MAE 0.0879 0.1655 0.0847 0.0441 0.0794 0.0540 0.0301 0.0428 0.0371

6 Median 0.6979 0.5744 0.7535 0.7569 0.6839 0.7819 0.7760 0.7364 0.7901
IQR 0.1053 0.0966 0.1725 0.0741 0.0648 0.1143 0.0550 0.0467 0.0814
MAE 0.1027 0.2256 0.0966 0.0505 0.1161 0.0575 0.0335 0.0636 0.0417

8 Median 0.6723 0.5235 0.7418 0.7435 0.6487 0.7748 0.7708 0.7135 0.7891
IQR 0.1246 0.1005 0.1939 0.0834 0.0721 0.1193 0.0638 0.0524 0.0936
MAE 0.1282 0.2765 0.1146 0.0616 0.1513 0.0635 0.0378 0.0865 0.0480

10 Median 0.6488 0.4850 0.7391 0.7346 0.6178 0.7685 0.7661 0.6927 0.7876
IQR 0.1319 0.0963 0.2059 0.0893 0.0747 0.1364 0.0687 0.0534 0.1038
MAE 0.1512 0.3150 0.1127 0.0672 0.1822 0.0723 0.0424 0.1073 0.0545

12 Median 0.6296 0.4554 0.7337 0.7226 0.5920 0.7679 0.7596 0.6752 0.7818
IQR 0.1404 0.1039 0.2191 0.1013 0.0800 0.1516 0.0751 0.0555 0.1147
MAE 0.1704 0.3446 0.1276 0.0789 0.2080 0.0825 0.0465 0.1248 0.0603

Note: We run 1,000 replications for each sample size, unbalancedness pattern and estimator. T = total time span;
J = number of different time patterns; IQR is the interquartile range; MAE is the median absolute error; “Pool.”,
“Expd.” and “CSmp.” are the pooled, expanded and cross-sample GMM estimators, respectively.



Table 4: Coverage Rate for 95% confidence interval. Parameter value α = 0.5.
Increasing unbalancedness within a time span.

T = 6
N=100 N=250 N=500

Pool. Expd. CSmp. Pool. Expd. CSmp. Pool. Expd. CSmp.
J=
1 0.918 0.918 0.918 0.936 0.936 0.936 0.946 0.946 0.946

2 0.886 0.879 0.915 0.942 0.942 0.956 0.946 0.939 0.951

4 0.876 0.792 0.901 0.931 0.895 0.952 0.939 0.916 0.950

T = 8
N=100 N=250 N=500

Pool. Expd. CSmp. Pool. Expd. CSmp. Pool. Expd. CSmp.
J=
1 0.916 0.916 0.916 0.941 0.941 0.941 0.945 0.945 0.945

2 0.907 0.877 0.924 0.930 0.913 0.939 0.951 0.945 0.961

4 0.898 0.716 0.948 0.927 0.855 0.948 0.940 0.900 0.969

6 0.883 0.541 0.936 0.909 0.756 0.955 0.932 0.857 0.973

8 0.835 0.409 0.930 0.905 0.656 0.957 0.932 0.816 0.972

T = 10
N=100 N=250 N=500

Pool. Expd. CSmp. Pool. Expd. CSmp. Pool. Expd. CSmp.
J=
1 0.928 0.928 0.928 0.941 0.941 0.941 0.943 0.943 0.943

2 0.915 0.865 0.947 0.928 0.906 0.935 0.942 0.935 0.952

4 0.884 0.639 0.955 0.919 0.818 0.957 0.930 0.877 0.960

6 0.871 0.401 0.957 0.904 0.695 0.970 0.922 0.790 0.964

8 0.846 0.225 0.961 0.904 0.544 0.971 0.921 0.725 0.981

10 0.834 0.107 0.960 0.914 0.407 0.972 0.924 0.633 0.978

12 0.824 0.068 0.960 0.882 0.318 0.970 0.913 0.573 0.974

Note: We run 1,000 replications for each sample size, unbalancedness pattern and estimator. “Pool.”, “Expd.”
and “CSmp.” are the pooled, expanded and cross-sample GMM estimators, respectively. Confidence intervals use
one-step robust standard errors.



Table 5: Monte Carlo Simulation Results. Parameter value α = 0.5.
Rotating panel with varying overlap.

T0 = 5 T0 = 6
N=100 N=250 N=100 N=250

Pool. Expd. CSmp. Pool. Expd. CSmp. Pool. Expd. CSmp. Pool. Expd. CSmp.

J = 2
R=1 Median 0.4584 0.4442 0.4565 0.4978 0.4929 0.4991 0.4718 0.4562 0.4908 0.5020 0.4993 0.5007

IQR 0.1316 0.1333 0.1354 0.0902 0.0927 0.0845 0.1036 0.1157 0.1147 0.0576 0.0605 0.0666
MAE 0.0770 0.0813 0.0824 0.0419 0.0452 0.0424 0.0565 0.0644 0.0602 0.0297 0.0307 0.0331

R=2 Median 0.4489 0.4442 0.4540 0.499 0.4929 0.4963 0.4637 0.4562 0.4801 0.4943 0.4993 0.5019
IQR 0.1300 0.1333 0.1329 0.0913 0.0927 0.0944 0.1173 0.1157 0.1215 0.0554 0.0605 0.0640
MAE 0.0864 0.0813 0.0784 0.0423 0.0452 0.0462 0.0545 0.0644 0.0613 0.0255 0.0307 0.0304

R=3 Median 0.4582 0.4562 0.4619 0.4975 0.4993 0.4989
IQR 0.1149 0.1157 0.1124 0.0629 0.0605 0.0599
MAE 0.0581 0.0644 0.061 0.0297 0.0307 0.0298

J = 4
R=1 Median 0.4333 0.4114 0.4493 0.4824 0.4703 0.4931 0.4490 0.4238 0.4753 0.4912 0.4817 0.5008

IQR 0.1307 0.1340 0.1250 0.1049 0.0911 0.0919 0.0983 0.1093 0.1204 0.0579 0.0620 0.0672
MAE 0.0902 0.0927 0.0838 0.0430 0.0440 0.0460 0.0661 0.0773 0.0657 0.0308 0.0332 0.0324

R=2 Median 0.4195 0.4114 0.4273 0.4733 0.4703 0.4779 0.4405 0.4238 0.4560 0.4819 0.4817 0.491
IQR 0.1413 0.1340 0.1270 0.0938 0.0911 0.0949 0.1075 0.1093 0.1023 0.0533 0.0620 0.0639
MAE 0.0938 0.0927 0.0896 0.0456 0.044 0.0478 0.0723 0.0773 0.0617 0.0329 0.0332 0.0307

R=3 Median 0.4293 0.4238 0.4396 0.4756 0.4817 0.4883
IQR 0.1030 0.1093 0.1152 0.0647 0.0620 0.0576
MAE 0.0831 0.0773 0.0672 0.0332 0.0332 0.0336

J = 6
R=1 Median 0.4130 0.3795 0.4521 0.4724 0.4559 0.4901 0.4405 0.3907 0.4702 0.4824 0.4696 0.4973

IQR 0.1398 0.1381 0.1501 0.0948 0.0845 0.0908 0.1093 0.1079 0.1218 0.0542 0.0576 0.0605
MAE 0.0896 0.1229 0.0881 0.0492 0.0505 0.0511 0.0741 0.1093 0.0721 0.0342 0.0365 0.0305

R=2 Median 0.3854 0.3795 0.4079 0.4630 0.4559 0.4643 0.4103 0.3907 0.4471 0.4685 0.4696 0.4824
IQR 0.1311 0.1381 0.1150 0.0929 0.0845 0.0880 0.1066 0.1079 0.1048 0.0510 0.0576 0.0632
MAE 0.1191 0.1229 0.0972 0.0558 0.0505 0.0472 0.0997 0.1093 0.0722 0.0370 0.0365 0.0286

R=3 Median 0.3948 0.3907 0.4104 0.4625 0.4696 0.4737
IQR 0.1106 0.1079 0.1019 0.0647 0.0576 0.0575
MAE 0.1052 0.1093 0.0896 0.0414 0.0365 0.0354

J = 8
R=1 Median 0.3808 0.3461 0.4278 0.4573 0.4397 0.4902 0.4276 0.3703 0.4727 0.4739 0.4483 0.4907

IQR 0.1306 0.1266 0.1208 0.0955 0.0950 0.0986 0.0922 0.0975 0.1147 0.0485 0.0617 0.0634
MAE 0.1217 0.1539 0.0869 0.0529 0.0638 0.0509 0.0796 0.1297 0.0648 0.0332 0.0523 0.0311

R=2 Median 0.3610 0.3461 0.3888 0.4422 0.4397 0.4523 0.3839 0.3703 0.4465 0.4566 0.4483 0.4793
IQR 0.1135 0.1266 0.1191 0.0887 0.0950 0.0959 0.0916 0.0975 0.1039 0.0617 0.0617 0.0647
MAE 0.1390 0.1539 0.1145 0.0583 0.0638 0.0555 0.1161 0.1297 0.0645 0.0444 0.0523 0.0339

R=3 Median 0.3709 0.3703 0.3937 0.4440 0.4483 0.4636
IQR 0.1026 0.0975 0.0976 0.0612 0.0617 0.0595
MAE 0.1291 0.1297 0.1063 0.0572 0.0523 0.0380

J = 10
R=1 Median 0.3707 0.3120 0.4199 0.4550 0.4202 0.4803 0.4048 0.3330 0.4645 0.4659 0.4403 0.4956

IQR 0.1153 0.1067 0.1359 0.0929 0.0852 0.0997 0.1161 0.0984 0.1273 0.0571 0.0655 0.0639
MAE 0.1295 0.1880 0.0910 0.0552 0.0798 0.0458 0.0952 0.1670 0.0654 0.0401 0.0604 0.0335

R=2 Median 0.3310 0.3120 0.3675 0.4277 0.4202 0.4434 0.3621 0.3330 0.4375 0.4482 0.4403 0.4764
IQR 0.1167 0.1067 0.1271 0.0864 0.0852 0.0945 0.1119 0.0984 0.1183 0.0681 0.0655 0.0646
MAE 0.1690 0.1880 0.1325 0.0743 0.0798 0.0598 0.1379 0.1670 0.0662 0.0538 0.0604 0.0383

R=3 Median 0.3400 0.3330 0.3668 0.4364 0.4403 0.4536
IQR 0.1014 0.0984 0.0946 0.0670 0.0655 0.0648
MAE 0.1600 0.1670 0.1332 0.0640 0.0604 0.0475

Note: We run 1,000 replications for each sample size, unbalancedness pattern and estimator. T0 = subpanel length;
R = number of periods between subpanels; J = degree of unbalancedness; “Pool.”, “Expd.” and “CSmp.” are the
pooled, expanded and cross-sample GMM estimators, respectively.



Table 6: Coverage Rate for 95% confidence interval. Parameter value α = 0.5.
Rotating panel with varying overlap.

T0 = 5 T0 = 6
N=100 N=250 N=100 N=250

Pool. Expd. CSmp. Pool. Expd. CSmp. Pool. Expd. CSmp. Pool. Expd. CSmp.

J = 2
R=1 0.928 0.925 0.934 0.937 0.931 0.946 0.946 0.926 0.947 0.950 0.953 0.974

R=2 0.936 0.926 0.943 0.938 0.922 0.944 0.932 0.935 0.936 0.956 0.947 0.944

R=3 0.928 0.933 0.932 0.952 0.958 0.975

J = 4
R=1 0.888 0.793 0.920 0.927 0.915 0.939 0.911 0.876 0.948 0.937 0.896 0.979

R=2 0.814 0.784 0.863 0.915 0.906 0.938 0.879 0.871 0.937 0.919 0.906 0.982

R=3 0.854 0.876 0.914 0.904 0.903 0.963

J = 6
R=1 0.816 0.712 0.913 0.929 0.893 0.957 0.874 0.635 0.960 0.896 0.858 0.963

R=2 0.756 0.711 0.846 0.883 0.894 0.911 0.750 0.637 0.931 0.866 0.856 0.991

R=3 0.683 0.629 0.869 0.856 0.843 0.886

J = 8
R=1 0.747 0.614 0.909 0.856 0.737 0.933 0.826 0.513 0.954 0.892 0.790 0.964

R=2 0.654 0.614 0.768 0.779 0.748 0.888 0.636 0.526 0.928 0.832 0.786 0.965

R=3 0.583 0.513 0.690 0.792 0.787 0.886

J = 10
R=1 0.661 0.402 0.865 0.859 0.706 0.943 0.751 0.370 0.955 0.853 0.645 0.985

R=2 0.496 0.403 0.644 0.719 0.704 0.857 0.487 0.379 0.874 0.749 0.640 0.921

R=3 0.374 0.379 0.585 0.687 0.642 0.813

Note: We run 1,000 replications for each sample size, unbalancedness pattern and estimator. “Pool.”, “Expd.”
and “CSmp.” are the pooled, expanded and cross-sample GMM estimators, respectively. Confidence intervals use
one-step robust standard errors.



Table 7: Firm-level Employment equations. Estimation results with Arellano-Bond sample.

One-step GMM with robust SE Two-step GMM

Pool. Expd. CSmp. Pool.-SYS Pool. Expanded CSmp. Pool.-SYS

Coef. SE Coef. SE Coef. SE Coef. SE Coef. SE Coef. SE Coef. SE Coef. SE

Emp(-1) 0.686 (0.145) 0.663 (0.086) 0.966 (0.072) 0.942 (0.120) 0.629 (0.090) 0.642 (0.021) 1.141 (0.086) 0.986 (0.054)

Emp(-2) -0.085 (0.056) -0.141 (0.079) -0.245 (0.054) -0.090 (0.054) -0.065 (0.027) -0.125 (0.011) -0.206 (0.034) -0.094 (0.025)

Wage -0.608 (0.178) -0.569 (0.165) -0.597 (0.207) -0.625 (0.184) -0.526 (0.054) -0.538 (0.019) -0.949 (0.077) -0.540 (0.052)

Wage(-1) 0.393 (0.168) 0.339 (0.144) 0.535 (0.254) 0.561 (0.177) 0.311 (0.094) 0.281 (0.029) 1.014 (0.119) 0.544 (0.076)

Capital 0.357 (0.059) 0.374 (0.056) 0.336 (0.064) 0.341 (0.062) 0.278 (0.045) 0.347 (0.014) 0.256 (0.050) 0.304 (0.041)

Capital(-1) -0.058 (0.073) -0.059 (0.062) -0.129 (0.081) -0.157 (0.076) 0.014 (0.053) -0.048 (0.011) -0.177 (0.062) -0.112 (0.044)

Capital(-2) -0.020 (0.033) 0.004 (0.053) 0.000 (0.047) -0.051 (0.042) -0.040 (0.026) 0.007 (0.008) -0.072 (0.032) -0.091 (0.025)

YS 0.609 (0.173) 0.506 (0.191) 0.720 (0.171) 0.751 (0.184) 0.592 (0.116) 0.491 (0.030) 1.078 (0.132) 0.641 (0.116)

YS(-1) -0.711 (0.232) -0.598 (0.198) -0.948 (0.304) -0.846 (0.244) -0.566 (0.140) -0.382 (0.089) -1.407 (0.176) -0.745 (0.145)

YS(-2) 0.106 (0.141) 0.069 (0.147) 0.208 (0.203) 0.181 (0.158) 0.101 (0.113) 0.005 (0.054) 0.414 (0.145) 0.132 (0.113)

Note: Dependent variable: log(Employment) = Emp. Wage: log real product wage. Capital: log gross capital. Y S: log industry output. N = 140

companies. Sample period: 1979-1984. “Pool.”, “Expd.” and “CSmp.” are the pooled, expanded and cross-sample GMM estimators, respectively.
“Pool.-SYS” is the pooled system GMM estimator.



A Appendix

A.1 Minimum distance estimation

If the moment conditions are linear, the estimation problem can be formulated as
one of enforcing restrictions on a covariance matrix. Suppose that we have

E [zs (yt − x′tβ)] = 0 s ≤ t.

Let us define ωst = E (zsyt), Ωst = E (zsx
′
t), dit is an indicator of whether period t

variables are observed for individual i, and for
∑N

i=1 disdit > 0:

ω̂st =
1∑N

i=1 disdit

N∑
i=1

disditzisyit

Ω̂st =
1∑N

i=1 disdit

N∑
i=1

disditzisx
′
it.

Next, form

bstN =

(
ω̂st − Ωstβ

vecΩ̂st − vecΩst

)
≡
(
ω̂st − (I ⊗ β′) vecΩst

vecΩ̂st − vecΩst

)
and let bN be a vector containing the bstN for all s, t such that

∑N
i=1 disdit > 0, and let

θ contain β and the corresponding vecΩst. A pooled minimum distance estimator of
θ is

θ̂PMD = arg min b′N V̂
−1bN

where V̂ is a consistent estimator of the variance of bN . Moreover, under the trans-
formation (

I − (I ⊗ β′)
0 I

)
bstN =

(
ω̂st − Ω̂stβ

vecΩ̂st − vecΩst

)
,

the second block is seen to consist of unrestricted moments. Thus, letting b∗N be a
vector containing all the available ω̂st − Ω̂stβ, from standard properties of minimum
distance estimation it turns out that β̂PMD (which is part of the θ̂PMD vector) is
asymptotically equivalent to

β̃ = arg min b∗′N V̂
∗−1b∗N



where V̂ ∗ is a consistent estimator of the variance of b∗N . Since

ω̂st − Ω̂stβ =
1∑N

i=1 disdit

N∑
i=1

disditzis (yit − x′itβ) ,

it should be clear that β̃ coincides with the pooled GMM estimator.
Similarly, an extended minimum distance estimator can be constructed as follows.

Let (s, t) be an observable pair for the j-th subpanel. Form

b
st[j]
N =

(
ω̂j
st − Ωstβ

vecΩ̂j
st − vecΩst

)
where ω̂j

st and Ω̂j
st are j-th subpanel sample averages. Form a vector b

[j]
N for all (s, t)

that are observable for the j-th subpanel. Thus, letting b†N =
(
b

[1]′
N , ..., b

[J ]′
N

)′
, an

extended minimum distance estimator is

θ̂EMD = arg min b†′N

(
V̂ †
)−1

b†N

where V̂ † is a consistent estimator of the variance of b†N . Using a similar argument

as before, β̂EMD can be seen to be asymptotically equivalent to the extended GMM
estimator of β.

Suppose an (s, t) pair that is observable in subpanels j and j′. Pooled MD merges

b
st[j]
N and b

st[j′]
N into a single average, whereas extended MD treats them as separate

moments. Now consider another (s′, t′) pair that is observable in j but not in j′, so

that b
s′t′[j]
N is correlated to b

st[j]
N but not to b

st[j′]
N . The efficiency of EMD relative to

PMD comes from the fact that extended MD takes into account these patterns of
correlations across subpanels in imposing the constraints. In contrast, pooled MD
cannot allow for these differences in correlations because subpanel-specific moments
have been pooled into a single aggregate moment.



A.2 Further results for the model in Example 3

In matrix notation X2 = (X ′a2, X
′
b2)′, y2 = (y′a2, y

′
b2)′, and Z2 = (Z ′a2, Z

′
b2)′ are N × k,

N × 1 and N × q-dimensional matrices with typical row x′i2, yi2 and z′i2 respectively.
The partitions denote Na- and Nb-rowed matrices of observations in the d1i = 1 and
the d2i = 1 subpanels, respectively. Similarly, Za1 is the Na×q matrix of observations
on zi1 in the d1i = 1 subpanel.

Assuming for simplicity that Z ′a1Za2 = 0, the period-2 optimal instruments for
expanded and cross-sample GMM are, respectively, given by:11

x̂ei2 =

{
X ′a2Za1 (Z ′a1Za1)−1 zi1 +X ′a2Za2 (Z ′a2Za2)−1 zi2 if d1i = 1

X ′b2Zb2 (Z ′b2Zb2)−1 zi2 if d2i = 1

x̂ci2 =

{
X ′a2Za1 (Z ′a1Za1)−1 zi1 +X ′2Z2 (Z ′2Z2)−1 zi2 if d1i = 1

X ′2Z2 (Z ′2Z2)−1 zi2 if d2i = 1

Let us now consider the covariances between the error term and each of the
optimal instruments. For example, letting σx2v2 = E (xi2vi2) we have12

E (x̂ci2vi2 | d2i = 1) = E
[
E (vi2xi2 | Z2) z′i2 (Z ′2Z2)

−1
zi2

]
= σx2v2E

[
z′i2 (Z ′2Z2)

−1
zi2

]
=

q

N
σx2v2

and also,

E (x̂ci2vi2 | d1i = 1) =
q

Na

σx2v2 +
q

N
σx2v2 .

Therefore,

E (x̂ci2vi2) =

(
p1

(
1

Na

+
1

N

)
+ (1− p1)

1

N

)
qσx2v2 .

In a similar vein we obtain:

E (x̂ei2vi2) =

(
p1

(
1

Na

+
1

Na

)
+ (1− p1)

1

Nb

)
qσx2v2 .

where Na and Nb are the first and second subpanel sample sizes, N = Na +Nb.
Finally, setting p1 = Na/N we get:

E (x̂ci2vi2) =
2

N
qσx2v2 , E (x̂ei2vi2) =

3

N
qσx2v2 ,

so that E (x̂ci2vi2) = 2
3
E (x̂ei2vi2).

11Under Z′a1Za2 = 0 the pooled and cross-sample optimal instruments coincide.
12Note that

∑N
i=1E

[
z′i2 (Z′2Z2)

−1
zi2
]

= E
[
Tr
(

(Z′2Z2)
−1∑N

i=1 zi2z
′
i2

)]
= q.



A.3 Additional tables

Table A.1: Unbalanced patterns when the total time span is T = 6.

t= 1 2 3 4 5 6

J=1
N 1 1 1 1 1 1

J=2
N/2 0 1 1 1 1 1
N/2 1 1 1 1 1 0

J=4
N/4 0 1 1 1 1 1
N/4 0 0 1 1 1 1
N/4 1 1 1 1 1 0
N/4 1 1 1 1 0 0

J=6
N/6 0 1 1 1 1 1
N/6 0 0 1 1 1 1
N/6 0 0 0 1 1 1
N/6 1 1 1 1 1 0
N/6 1 1 1 1 0 0
N/6 1 1 1 0 0 0

Note: The value 1 denotes that the individuals in that group are observed in the corresponding
period t and the value 0 that they are not.



Table A.2: Unbalanced “rotating” patterns when the individual time span is T0 = 6.

t= 1 2 3 4 5 6 7 8 9 ...

J = 2
R=1 N/2 1 1 1 1 1 1 0

N/2 0 1 1 1 1 1 1

R=2 N/2 1 1 1 1 1 1 0 0
N/2 0 0 1 1 1 1 1 1

R=3 N/2 1 1 1 1 1 1 0 0 0
N/2 0 0 0 1 1 1 1 1 1

J = 4
R=1 N/4 1 1 1 1 1 1 0 0 0

N/4 0 1 1 1 1 1 1 0 0
N/4 0 0 1 1 1 1 1 1 0
N/4 0 0 0 1 1 1 1 1 1

R=2 N/4 1 1 1 1 1 1 0 0 0 0 0 0
N/4 0 0 1 1 1 1 1 1 0 0 0 0
N/4 0 0 0 0 1 1 1 1 1 1 0 0
N/4 0 0 0 0 0 0 1 1 1 1 1 1

R=3 N/4 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
N/4 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
N/4 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0
N/4 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

J = 6
R=1 N/6 1 1 1 1 1 1 0 0 0 0 0

N/6 0 1 1 1 1 1 1 0 0 0 0
N/6 0 0 1 1 1 1 1 1 0 0 0
N/6 0 0 0 1 1 1 1 1 1 0 0
N/6 0 0 0 0 1 1 1 1 1 1 0
N/6 0 0 0 0 0 1 1 1 1 1 1

R=2 N/6 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
N/6 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0
N/6 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
N/6 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0
N/6 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0
N/6 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

R=3 N/6 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N/6 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
N/6 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
N/6 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
N/6 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0
N/6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

Note: The value 1 denotes that the individuals in that group are observed in the corresponding
period t and the value 0 that they are not.



Table A.3: Coverage Rate for 95% confidence interval. Parameter value α = 0.2.
Increasing unbalancedness within a time span.

T = 6
N=100 N=250 N=500

Pool. Expd. CSmp. Pool. Expd. CSmp. Pool. Expd. CSmp.
J=
1 0.925 0.925 0.925 0.933 0.933 0.933 0.955 0.955 0.955

2 0.901 0.891 0.918 0.947 0.942 0.957 0.946 0.947 0.955

4 0.901 0.874 0.918 0.941 0.923 0.949 0.951 0.934 0.965

T = 8
N=100 N=250 N=500

Pool. Expd. CSmp. Pool. Expd. CSmp. Pool. Expd. CSmp.
J=
1 0.932 0.932 0.932 0.940 0.940 0.940 0.944 0.944 0.944

2 0.915 0.905 0.931 0.940 0.934 0.950 0.946 0.951 0.962

4 0.921 0.821 0.952 0.938 0.907 0.964 0.945 0.924 0.963

6 0.917 0.710 0.946 0.931 0.858 0.956 0.941 0.904 0.958

8 0.874 0.602 0.928 0.934 0.813 0.964 0.928 0.877 0.949

T = 10
N=100 N=250 N=500

Pool. Expd. CSmp. Pool. Expd. CSmp. Pool. Expd. CSmp.
J=
1 0.933 0.933 0.933 0.948 0.948 0.948 0.935 0.935 0.935

2 0.928 0.903 0.951 0.944 0.927 0.956 0.934 0.933 0.945

4 0.905 0.793 0.948 0.939 0.879 0.963 0.932 0.905 0.951

6 0.908 0.622 0.949 0.935 0.815 0.964 0.937 0.852 0.960

8 0.897 0.438 0.958 0.928 0.733 0.965 0.922 0.814 0.960

10 0.878 0.332 0.950 0.931 0.647 0.961 0.929 0.778 0.964

12 0.879 0.232 0.955 0.913 0.570 0.959 0.935 0.751 0.963

Note: We run 1,000 replications for each sample size, unbalancedness pattern and estimator. “Pool.”, “Expd.”
and “CSmp.” are the pooled, expanded and cross-sample GMM estimators, respectively. Confidence intervals use
one-step robust standard errors.



Table A.4: Coverage Rate for 95% confidence interval. Parameter value α = 0.8.
Increasing unbalancedness within a time span.

T = 6
N=100 N=250 N=500

Pool. Expd. CSmp. Pool. Expd. CSmp. Pool. Expd. CSmp.
J=
1 0.896 0.896 0.896 0.942 0.942 0.942 0.933 0.933 0.933

2 0.830 0.806 0.863 0.918 0.900 0.932 0.928 0.921 0.937

4 0.769 0.599 0.837 0.894 0.814 0.915 0.910 0.851 0.931

T = 8
N=100 N=250 N=500

Pool. Expd. CSmp. Pool. Expd. CSmp. Pool. Expd. CSmp.
J=
1 0.887 0.887 0.887 0.919 0.919 0.919 0.955 0.955 0.955

2 0.848 0.763 0.913 0.908 0.869 0.932 0.949 0.928 0.951

4 0.812 0.444 0.917 0.887 0.664 0.944 0.926 0.800 0.966

6 0.762 0.219 0.922 0.851 0.463 0.948 0.906 0.696 0.974

8 0.721 0.127 0.918 0.821 0.327 0.938 0.896 0.576 0.973

T = 10
N=100 N=250 N=500

Pool. Expd. CSmp. Pool. Expd. CSmp. Pool. Expd. CSmp.
J=
1 0.878 0.878 0.878 0.910 0.910 0.910 0.941 0.941 0.941

2 0.827 0.710 0.888 0.881 0.827 0.913 0.927 0.890 0.947

4 0.810 0.272 0.947 0.879 0.590 0.959 0.919 0.738 0.976

6 0.755 0.083 0.959 0.855 0.332 0.976 0.898 0.573 0.979

8 0.692 0.020 0.950 0.830 0.171 0.977 0.890 0.394 0.987

10 0.660 0.008 0.954 0.832 0.074 0.973 0.886 0.263 0.989

12 0.611 0.004 0.949 0.781 0.039 0.975 0.860 0.184 0.990

Note: We run 1,000 replications for each sample size, unbalancedness pattern and estimator. “Pool.”, “Expd.”
and “CSmp.” are the pooled, expanded and cross-sample GMM estimators, respectively. Confidence intervals use
one-step robust standard errors.



Table A.5: Monte Carlo Simulation Results. Parameter value α = 0.2.
Rotating panel with varying overlap.

T0 = 5 T0 = 6
N=100 N=250 N=100 N=250

Pool. Expd. CSmp. Pool. Expd. CSmp. Pool. Expd. CSmp. Pool. Expd. CSmp.

J = 2
R=1 Median 0.1635 0.1575 0.1614 0.1998 0.1941 0.1993 0.1800 0.1787 0.1873 0.2016 0.1998 0.2051

IQR 0.0959 0.0883 0.0912 0.0723 0.0719 0.0634 0.0956 0.1035 0.0928 0.0480 0.0451 0.0499
MAE 0.0558 0.0581 0.0564 0.0353 0.0315 0.0312 0.0467 0.0490 0.0473 0.0218 0.0235 0.0250

R=2 Median 0.1599 0.1575 0.1611 0.1990 0.1941 0.1934 0.1846 0.1787 0.1825 0.2008 0.1998 0.2042
IQR 0.0851 0.0883 0.0862 0.0689 0.0719 0.0717 0.0973 0.1035 0.1060 0.0430 0.0451 0.0471
MAE 0.0593 0.0581 0.0548 0.0336 0.0315 0.0316 0.0512 0.0490 0.0536 0.0214 0.0235 0.0233

R=3 Median 0.1788 0.1787 0.1786 0.2003 0.1998 0.2020
IQR 0.1037 0.1035 0.1045 0.0473 0.0451 0.0469
MAE 0.0521 0.0490 0.0492 0.0231 0.0235 0.0237

J = 4
R=1 Median 0.1494 0.1365 0.1730 0.1931 0.1838 0.1915 0.1750 0.1567 0.1847 0.1954 0.1889 0.2049

IQR 0.1018 0.0983 0.0976 0.0681 0.0682 0.0708 0.0828 0.0951 0.0926 0.0487 0.0491 0.0514
MAE 0.0629 0.0718 0.0583 0.0347 0.0368 0.0351 0.0512 0.0536 0.0467 0.0242 0.0232 0.0265

R=2 Median 0.1348 0.1365 0.1465 0.1896 0.1838 0.1895 0.1667 0.1567 0.1819 0.1904 0.1889 0.1976
IQR 0.0995 0.0983 0.0883 0.0659 0.0682 0.0675 0.0935 0.0951 0.0991 0.0411 0.0491 0.0429
MAE 0.0720 0.0718 0.0630 0.0336 0.0368 0.0347 0.0539 0.0536 0.0499 0.0227 0.0232 0.0207

R=3 Median 0.1591 0.1567 0.1678 0.1876 0.1889 0.1912
IQR 0.0889 0.0951 0.095 0.0523 0.0491 0.0474
MAE 0.0551 0.0536 0.0525 0.0247 0.0232 0.0239

J = 6
R=1 Median 0.1357 0.1200 0.1627 0.1875 0.1715 0.1900 0.1651 0.1332 0.1879 0.1886 0.1771 0.2027

IQR 0.1024 0.1060 0.0941 0.0702 0.0669 0.0685 0.0927 0.0922 0.1043 0.0497 0.0532 0.0481
MAE 0.0688 0.0834 0.0629 0.0328 0.0386 0.0318 0.0549 0.0676 0.0526 0.0253 0.0271 0.0247

R=2 Median 0.1245 0.1200 0.1407 0.1765 0.1715 0.1784 0.1433 0.1332 0.1740 0.1818 0.1771 0.1938
IQR 0.0979 0.106 0.093 0.0696 0.0669 0.0673 0.0881 0.0922 0.0931 0.0461 0.0532 0.0459
MAE 0.0785 0.0834 0.0749 0.0405 0.0386 0.0339 0.0614 0.0676 0.0503 0.0263 0.0271 0.0249

R=3 Median 0.1364 0.1332 0.1440 0.1766 0.1771 0.1845
IQR 0.0905 0.0922 0.0866 0.0471 0.0532 0.0520
MAE 0.0660 0.0676 0.0596 0.0287 0.0271 0.0241

J = 8
R=1 Median 0.1256 0.0943 0.1533 0.1779 0.1649 0.1866 0.1581 0.1142 0.1919 0.1834 0.1704 0.2041

IQR 0.0952 0.1044 0.1004 0.0670 0.0620 0.0652 0.0943 0.0876 0.0938 0.0496 0.0487 0.0474
MAE 0.0812 0.1074 0.0686 0.0359 0.0425 0.0367 0.0503 0.0858 0.0445 0.0251 0.0318 0.0237

R=2 Median 0.1048 0.0943 0.1303 0.1664 0.1649 0.1753 0.1317 0.1142 0.1767 0.1733 0.1704 0.1924
IQR 0.0941 0.1044 0.1006 0.0665 0.0620 0.0645 0.0854 0.0876 0.0928 0.0471 0.0487 0.0556
MAE 0.0968 0.1074 0.0790 0.0414 0.0425 0.041 0.0706 0.0858 0.0476 0.0294 0.0318 0.0259

R=3 Median 0.1215 0.1142 0.1367 0.1696 0.1704 0.1786
IQR 0.0903 0.0876 0.0872 0.0497 0.0487 0.0503
MAE 0.0785 0.0858 0.0648 0.0346 0.0318 0.0261

J = 10
R=1 Median 0.1092 0.0733 0.1443 0.1719 0.1498 0.1884 0.1429 0.0949 0.1910 0.1773 0.1599 0.2024

IQR 0.1029 0.0909 0.1036 0.0674 0.0645 0.0643 0.0925 0.0900 0.1020 0.0512 0.0494 0.0473
MAE 0.0963 0.1267 0.069 0.0385 0.0513 0.0397 0.0629 0.1051 0.0511 0.0286 0.0417 0.0233

R=2 Median 0.0938 0.0733 0.1144 0.1570 0.1498 0.1665 0.1143 0.0949 0.1663 0.1680 0.1599 0.1864
IQR 0.0981 0.0909 0.0949 0.0661 0.0645 0.0696 0.0890 0.0900 0.1090 0.0456 0.0494 0.0524
MAE 0.1065 0.1267 0.0862 0.0482 0.0513 0.0423 0.0919 0.1051 0.0491 0.0334 0.0417 0.0273

R=3 Median 0.1012 0.0949 0.1219 0.1614 0.1599 0.1678
IQR 0.0860 0.0900 0.0875 0.0465 0.0494 0.0522
MAE 0.0988 0.1051 0.0781 0.0390 0.0417 0.0336

Note: We run 1,000 replications for each sample size, unbalancedness pattern and estimator. T0 = subpanel length;
R = number of periods between subpanels; J = degree of unbalancedness; “Pool.”, “Expd.” and “CSmp.” are the
pooled, expanded and cross-sample GMM estimators, respectively.



Table A.6: Monte Carlo Simulation Results. Parameter value α = 0.8.
Rotating panel with varying overlap.

T0 = 5 T0 = 6
N=100 N=250 N=100 N=250

Pool. Expd. CSmp. Pool. Expd. CSmp. Pool. Expd. CSmp. Pool. Expd. CSmp.

J = 2
R=1 Median 0.7311 0.7091 0.7386 0.7878 0.7668 0.7955 0.7413 0.7240 0.7692 0.7901 0.7772 0.7971

IQR 0.1749 0.1783 0.1980 0.1369 0.1422 0.1379 0.1228 0.1439 0.1522 0.0899 0.0939 0.0995
MAE 0.1072 0.1357 0.1106 0.0694 0.0721 0.0729 0.0839 0.0898 0.0670 0.0415 0.0462 0.0465

R=2 Median 0.7047 0.7091 0.7181 0.7764 0.7668 0.7779 0.7348 0.7240 0.7486 0.7835 0.7772 0.7904
IQR 0.1751 0.1783 0.1913 0.1323 0.1422 0.1406 0.1368 0.1439 0.1305 0.0915 0.0939 0.0940
MAE 0.1297 0.1357 0.1314 0.0661 0.0721 0.0733 0.0848 0.0898 0.0826 0.0397 0.0462 0.0439

R=3 Median 0.7229 0.7240 0.7291 0.7713 0.7772 0.7812
IQR 0.1590 0.1439 0.1449 0.0934 0.0939 0.0857
MAE 0.0838 0.0898 0.0844 0.0463 0.0462 0.0476

J = 4
R=1 Median 0.6755 0.6151 0.7116 0.7576 0.7273 0.7786 0.7004 0.6459 0.7585 0.7665 0.7378 0.7926

IQR 0.1788 0.1731 0.1929 0.1308 0.1229 0.1312 0.1478 0.1348 0.1371 0.0855 0.0810 0.1022
MAE 0.1392 0.1849 0.1219 0.0683 0.0810 0.0770 0.1101 0.1541 0.0919 0.0492 0.0642 0.0497

R=2 Median 0.6272 0.6151 0.6590 0.7328 0.7273 0.7424 0.6747 0.6459 0.7208 0.7525 0.7378 0.7748
IQR 0.1754 0.1731 0.1781 0.1282 0.1229 0.1282 0.1371 0.1348 0.1523 0.0822 0.0810 0.0910
MAE 0.1785 0.1849 0.1666 0.0781 0.0810 0.0798 0.1281 0.1541 0.0960 0.0559 0.0642 0.0413

R=3 Median 0.6434 0.6459 0.6699 0.7393 0.7378 0.7458
IQR 0.1470 0.1348 0.1475 0.0969 0.0810 0.0794
MAE 0.1566 0.1541 0.1301 0.0676 0.0642 0.0572

J = 6
R=1 Median 0.6282 0.5540 0.693 0.7306 0.6931 0.7696 0.6742 0.5993 0.7574 0.7462 0.7081 0.7801

IQR 0.1775 0.1589 0.1815 0.1260 0.1149 0.1373 0.1239 0.1128 0.1573 0.0851 0.0746 0.0955
MAE 0.1718 0.2460 0.1355 0.0759 0.1069 0.0683 0.1293 0.2007 0.0868 0.0567 0.0919 0.0442

R=2 Median 0.5715 0.5540 0.6123 0.6967 0.6931 0.721 0.6230 0.5993 0.6923 0.7214 0.7081 0.7473
IQR 0.1585 0.1589 0.1493 0.1275 0.1149 0.1239 0.1255 0.1128 0.1443 0.0795 0.0746 0.0823
MAE 0.2285 0.2460 0.1892 0.1050 0.1069 0.0857 0.1770 0.2007 0.1100 0.0786 0.0919 0.0590

R=3 Median 0.5996 0.5993 0.6228 0.7079 0.7081 0.7255
IQR 0.1248 0.1128 0.1416 0.0821 0.0746 0.0794
MAE 0.2004 0.2007 0.1772 0.0921 0.0919 0.0745

J = 8
R=1 Median 0.5816 0.5033 0.6757 0.7048 0.6430 0.7503 0.6350 0.5498 0.7600 0.7361 0.6775 0.7810

IQR 0.1778 0.1514 0.1613 0.1293 0.1093 0.1361 0.1249 0.1161 0.1488 0.0839 0.0758 0.1037
MAE 0.2184 0.2967 0.1387 0.0976 0.1570 0.0745 0.1650 0.2502 0.0892 0.0645 0.1225 0.0500

R=2 Median 0.5377 0.5033 0.5818 0.6610 0.6430 0.6852 0.5768 0.5498 0.6777 0.6958 0.6775 0.7345
IQR 0.1627 0.1514 0.1671 0.1090 0.1093 0.1212 0.1126 0.1161 0.1324 0.0692 0.0758 0.0871
MAE 0.2623 0.2967 0.2182 0.1390 0.1570 0.1148 0.2232 0.2502 0.1223 0.1042 0.1225 0.0670

R=3 Median 0.5481 0.5498 0.5968 0.6770 0.6775 0.6987
IQR 0.1362 0.1161 0.1348 0.0874 0.0758 0.0811
MAE 0.2519 0.2502 0.2032 0.1230 0.1225 0.1013

J = 10
R=1 Median 0.5554 0.4737 0.6700 0.6903 0.6228 0.7488 0.6206 0.5188 0.7448 0.7148 0.6581 0.7855

IQR 0.1456 0.1231 0.1711 0.1161 0.1114 0.1477 0.1178 0.1067 0.1637 0.0782 0.0762 0.0949
MAE 0.2446 0.3263 0.1445 0.1097 0.1772 0.0774 0.1794 0.2812 0.0894 0.0852 0.1419 0.0456

R=2 Median 0.4919 0.4737 0.5340 0.6282 0.6228 0.6633 0.5531 0.5188 0.6557 0.6805 0.6581 0.7279
IQR 0.1298 0.1231 0.1499 0.1040 0.1114 0.1200 0.1181 0.1067 0.1371 0.0680 0.0762 0.0759
MAE 0.3081 0.3263 0.266 0.1718 0.1772 0.1367 0.2469 0.2812 0.1443 0.1195 0.1419 0.0721

R=3 Median 0.5208 0.5188 0.5582 0.6558 0.6581 0.6849
IQR 0.1084 0.1067 0.1063 0.0863 0.0762 0.0773
MAE 0.2792 0.2812 0.2418 0.1442 0.1419 0.1151

Note: We run 1,000 replications for each sample size, unbalancedness pattern and estimator. T0 = subpanel length;
R = number of periods between subpanels; J = degree of unbalancedness; “Pool.”, “Expd.” and “CSmp.” are the
pooled, expanded and cross-sample GMM estimators, respectively.



Table A.7: Coverage Rate for 95% confidence interval. Parameter value α = 0.2.
Rotating panel with varying overlap.

T0 = 5 T0 = 6
N=100 N=250 N=100 N=250

Pool. Expd. CSmp. Pool. Expd. CSmp. Pool. Expd. CSmp. Pool. Expd. CSmp.

J = 2
R=1 0.932 0.931 0.947 0.932 0.937 0.941 0.958 0.933 0.956 0.925 0.934 0.945

R=2 0.944 0.930 0.945 0.939 0.942 0.945 0.924 0.922 0.950 0.929 0.931 0.933

R=3 0.912 0.936 0.931 0.909 0.930 0.941

J = 4
R=1 0.911 0.908 0.924 0.939 0.941 0.947 0.918 0.927 0.963 0.914 0.913 0.924

R=2 0.901 0.900 0.914 0.932 0.938 0.945 0.921 0.921 0.933 0.917 0.914 0.971

R=3 0.881 0.927 0.924 0.921 0.915 0.924

J = 6
R=1 0.899 0.825 0.913 0.948 0.918 0.949 0.864 0.796 0.926 0.903 0.908 0.942

R=2 0.848 0.823 0.914 0.913 0.913 0.941 0.847 0.783 0.935 0.886 0.898 0.935

R=3 0.807 0.792 0.868 0.891 0.895 0.917

J = 8
R=1 0.865 0.717 0.931 0.922 0.853 0.934 0.868 0.706 0.928 0.897 0.870 0.951

R=2 0.746 0.727 0.837 0.873 0.860 0.956 0.805 0.716 0.923 0.883 0.864 0.928

R=3 0.738 0.705 0.812 0.871 0.865 0.897

J = 10
R=1 0.789 0.574 0.914 0.907 0.842 0.919 0.811 0.556 0.955 0.879 0.826 0.955

R=2 0.636 0.571 0.777 0.828 0.842 0.907 0.654 0.542 0.913 0.838 0.837 0.925

R=3 0.604 0.549 0.756 0.796 0.824 0.892

Note: We run 1,000 replications for each sample size, unbalancedness pattern and estimator. “Pool.”, “Expd.”
and “CSmp.” are the pooled, expanded and cross-sample GMM estimators, respectively. Confidence intervals use
one-step robust standard errors.



Table A.8: Coverage Rate for 95% confidence interval. Parameter value α = 0.8.
Rotating panel with varying overlap.

T0 = 5 T0 = 6
N=100 N=250 N=100 N=250

Pool. Expd. CSmp. Pool. Expd. CSmp. Pool. Expd. CSmp. Pool. Expd. CSmp.

J = 2
R=1 0.887 0.883 0.915 0.937 0.921 0.925 0.926 0.869 0.958 0.971 0.942 0.939

R=2 0.895 0.886 0.913 0.945 0.923 0.936 0.896 0.863 0.951 0.960 0.953 0.973

R=3 0.863 0.867 0.915 0.946 0.952 0.976

J = 4
R=1 0.852 0.647 0.938 0.907 0.812 0.935 0.841 0.609 0.955 0.945 0.823 0.968

R=2 0.737 0.645 0.815 0.864 0.814 0.902 0.739 0.601 0.913 0.898 0.836 0.970

R=3 0.636 0.607 0.747 0.814 0.826 0.937

J = 6
R=1 0.717 0.478 0.884 0.837 0.696 0.946 0.763 0.395 0.950 0.861 0.684 0.967

R=2 0.514 0.468 0.663 0.694 0.698 0.853 0.516 0.399 0.817 0.793 0.687 0.932

R=3 0.402 0.388 0.544 0.730 0.696 0.822

J = 8
R=1 0.554 0.237 0.887 0.794 0.495 0.937 0.650 0.196 0.974 0.804 0.449 0.965

R=2 0.352 0.248 0.533 0.576 0.492 0.734 0.328 0.206 0.785 0.638 0.445 0.918

R=3 0.231 0.199 0.377 0.493 0.444 0.679

J = 10
R=1 0.432 0.108 0.823 0.671 0.368 0.917 0.526 0.016 0.938 0.743 0.243 0.968

R=2 0.185 0.104 0.400 0.455 0.369 0.613 0.223 0.015 0.629 0.503 0.245 0.864

R=3 0.055 0.019 0.233 0.328 0.231 0.566

Note: We run 1,000 replications for each sample size, unbalancedness pattern and estimator. “Pool.”, “Expd.”
and “CSmp.” are the pooled, expanded and cross-sample GMM estimators, respectively. Confidence intervals use
one-step robust standard errors.


