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Introduction

• In this lecture I provide an introduction to quantile regression and discuss three
empirical applications of quantile techniques to panel data.

• Quantile regression is a useful tool for studying conditional distributions.

• The application of quantile techniques to panel data is interesting because it offers
opportunities for identifying nonlinear models with unobserved heterogeneity and
relaxing exogeneity assumptions.

• Importantly it also offers the opportunity to consider conceptual experiments richer
than a static cross-sectional treatment, such as dynamic responses.
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Introduction (continued)

• The first application looks at the effect of child maturity on academic achievement
using group data on students and their schools.

• The second application examines the effect of smoking during pregnancy on the
birthweight of children.

• The third application examines the persistence of permanent income shocks in a
nonlinear model of household income dynamics.

• The applications are based on the results of joint research:

—Arellano and Weidner (2015)

—Arellano and Bonhomme (2015)

—Arellano, Blundell, and Bonhomme (2015).
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Part 1

Quantile regression
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Conditional quantile function

• Econometrics deals with relationships between variables involving unobservables.

• Consider an empirical relationship between two variables Y and X .

• Suppose that X takes on K different values x1, x2, ..., xK and that for each of those
values we have Mk observations of Y : yk1, ..., ykMk .

• If the relationship between Y and X is exact, the values of Y for a given value of X
will all coincide, so that we could write

Y = q(X ).

• However, in general units having the same value of X will have different values of Y .

• Suppose that yk1 ≤ yk2 ≤ ... ≤ ykMk , so the fraction of observations that are less
than or equal to ykm is ukm = m/Mk .

• It can then be said that a value of Y does not only depend on the value of X but also
on the rank ukm of the observation in the distribution of Y given X = xk .

• Generalizing the argument:
Y = q (X ,U)
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Conditional quantile function (continued)

• The distribution of the ranks U is always the same regardless of the value of X , so
that X and U are statistically independent.

• Also note that q (x , u) is an increasing function in u for every value of x .

• An example is a growth chart where Y is body weight and X is age (Figure 1).

• In this example U is a normalized unobservable scalar variable that captures the
determinants of body weight other than age, such as diet or genes.

• The function q (x , u) is called a conditional quantile function.

• It contains the same information as the conditional cdf (it is its inverse), but is in the
form of a statistical equation for outcomes that may be related to economic models.

• Y = q (X ,U) is just a statistical statement: e.g. for X = 15 and U = 0.5, Y is the
weight of the median girl aged 15, but one that can be given substantive content.
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Quantile function of normal linear regression

• If the distribution of Y conditioned on X is the normal linear regression model of
elementary econometrics:

Y = α+ βX + V with V | X ∼ N
(
0, σ2

)
,

the variable U is the rank of V and it is easily seen that

q (x , u) = α+ βx + σΦ−1 (u)

where Φ (.) is the standard normal cdf.

• In this case all quantiles are linear and parallel, a situation that is at odds with the
growth chart example.
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Linear quantile regression (QR)

• The linear QR model postulates linear dependence on X but allows for a different
slope and intercept at each quantile u ∈ (0, 1)

q (x , u) = α (u) + β (u) x (1)

• In the normal linear regression β (u) = β and α (u) = α+ σΦ−1 (u).

• In linear regression one estimates α and β by minimizing the sum of squares of the
residuals Yi − a− bXi (i = 1, ..., n).

• In QR one estimates α (u) and β (u) for fixed u by minimizing a sum of absolute
residuals where (+) residuals are weighted by u and (-) residuals by 1− u.

• Its rationale is that a quantile minimizes expected asymmetric absolute value loss.

• For the median u = 0.5, so estimates of α (0.5), β (0.5) are least absolute deviations.

• All observations are involved in determining the estimates of α (u), β (u) for each u.

• Under random sampling and standard regularity conditions, sample QR coeffi cients
are
√
n-consistent and asymptotically normal.

• Standard errors can be easily obtained via analytic or bootstrap calculations.

• The popularity of linear QR is due to its computational simplicity: computing a QR is
a linear programming problem (Koenker 2005).
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Linear quantile regression (QR) (continued)

• One use of QR is as a technique for describing a conditional distribution. For
example, QR is a popular tool in wage decomposition studies.

• However, a linear QR can also be seen as a semiparametric random coeffi cient model
with a single unobserved factor:

Yi = α (Ui ) + β (Ui )Xi

where Ui ∼ U (0, 1) independent of Xi .
• For example, this model determines log earnings Yi as a function of years of schooling
Xi and ability Ui , where β (Ui ) represents an ability-specific return to schooling.

• This is a model that can capture interactions between observables and unobservables.

• A special case of model with an interaction between Xi and Ui is the heteroskedastic
regression Y | X ∼ N

[
α+ βX , (σ+ γX )2

]
.

— In this case α (u) = α+ σΦ−1 (u) and β (u) = β+ γΦ−1 (u).

• As a model for causal analysis, linear QR faces similar challenges as ordinary linear
regression. Namely, linearity, exogeneity and rank invariance.

• Let us discuss each of these aspects in turn.
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Flexible QR

• Linearity is restrictive. It may also be at odds with the monotonicity requirement of
q (x , u) in u for every value of x .

• Linear QR may be interpreted as an approximation to the true quantile function
(Angrist, Chernozhukov, and Fernández-Val 2006).

• An approach to nonparametric QR is to use series methods:

q (x , u) = θ0 (u) + θ1 (u) g1 (x) + ...+ θP (u) gP (x) .

• The g’s are anonymous functions without an economic interpretation. Objects of
interest are derivative effects and summary measures of them.

• In practice one may use orthogonal polynomials, wavelets or splines (Chen 2007).

• This type of specification may be seen as an approximating model that becomes more
accurate as P increases, or simply as a parametric flexible model of the quantile
function.

• From the point of view of computation the model is still a linear QR, but the
regressors are now functions of X instead of the X s themselves.
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Exogeneity and rank invariance

• To discuss causality it is convenient to use a single 0− 1 binary treatment Xi and a
potential outcome notation Y0i and Y1i .

• Let U0i ,U1i be ranks of potential outcomes and q0 (u), q1 (u) the quantile functions.

• Note that unit i may be ranked differently in the distributions of the two potential
outcomes, so that U0i 6= U1i . The causal effect for unit i is given by

Y1i − Y0i = q1 (U1i )− q0 (U0i ) .
• Under exogeneity Xi is independent of (Y0i ,Y1i ).
• The implication is that the quantile function of Yi | Xi = 0 coincides with q0 (u) and
the quantile function of Yi | Xi = 1 coincides with q1 (u), so that

β (u) = q1 (u)− q0 (u) .
• This quantity is often called a quantile treatment effect (QTE). In general it is just
the difference between the quantiles of two different distributions.

• It will only represent the gain or loss from treatment of a particular unit under a rank
invariance condition. i.e. that the ranks of potential outcomes are equal to each other.

• Under rank invariance treatment gains may still be heterogeneous but a single
unobservable variable determines the variation in the two potential outcomes.

• Next we introduce IV endogeneity in a quantile model with rank invariance.
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Instrumental variable QR

• The linear instrumental variable (IV) model of elementary econometrics assumes

Yi = α+ βXi + Vi

where Xi and Vi are correlated, but there is an instrumental variable Zi that is
independent of Vi and a predictor of Xi .

• Potential outcomes are of the form Yx ,i = α+ βx + Vi so that rank invariance holds.

• If x is a 0− 1 binary variable, Y0,i = α+ Vi and Y1,i = α+ β+ Vi .

• A QR generalization subject to rank invariance is to consider

Yx ,i = q (x ,Ui ) .

• A linear version of which is

Yx ,i = α (Ui ) + β (Ui ) x .
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Instrumental variable QR (continued)

• Chernozhukov and Hansen (2006) propose to estimate α (u) and β (u) for given u by
directly exploiting the IV exclusion restriction.

• Specifically, if we write the model as

Yi = α (Ui ) + β (Ui )Xi + γ (Ui )Zi ,

the IV assumption asserts that Zi only affects Yi via Xi so that γ (u) = 0 for each u.

• Now let γ̂u (b) be the estimated slope coeffi cient in a u-quantile regression of
(Yi − bXi ) on Zi and a constant term.

• The idea, which mimics the operation of 2SLS, is to choose as estimate of β (u) the
value of b that minimizes |γ̂u (b)|, hence enforcing the exclusion restriction.

• In the absence of rank invariance the treatment effects literature (e.g. Abadie 2003)
has focused on QTEs for compliers in the context of a binary treatment that satisfies
a monotonicity assumption.

14



Part 2

QR with fixed effects in large panels
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Basics

• The most popular tool in panel data analysis is a linear regression model with
common slope parameters and individual specific intercepts:

Yit = βXit + αi + Vit (i = 1, ...,N ; t = 1, ...,T ) ,

in which Xi = (Xi1, ...,XiT ) is independent of Vit but possibly correlated with αi .

• This is seen as a way of allowing for a special form of non-exogeneity (fixed-effect
endogeneity) but also a way of introducing heterogeneity and persistence.

• The estimator of β is OLS including individual dummies, or equivalently OLS of Y on
X in deviations from individual-specific means (within-group estimation).

• Observations may be from actual panel data, in which units are followed over time, or
from data with a group structure, in which case i denotes groups and T is group size.

• In practice group size will be group specific (Ti ) and techniques will be adapted
accordingly.
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QR with fixed effects

• A QR version of the within-group model specifies

Yit = β (Uit )Xit + αi (Uit )

where Uit ∼ U (0, 1) independent of Xi and αi (.).

• The term αi (Uit ) can be regarded as a function of Uit and a vector Wi of unobserved
individual effects of unspecified dimension: αi (Uit ) = r (Wi ,Uit ).

• Thus, the model allows for multiple individual characteristics that affect differently
individuals with different error rank Uit .

• For example, there may be a multiplicity of school characteristics, some of which are
only relevant determinants of academic achievement for high ability students while
others are only relevant for low ability students.

• In QR one estimates β (u) and α1 (u) , ..., αN (u) for fixed u.

• The large sample properties of these estimates are those of standard QR if T is large
in absolute terms and relative to N .

• However, if T is small relative to N or if T and N are of similar size, estimates of the
common parameter β (u) may be biased or even underidentified.

• The reason is too much sample noise due to estimating too many parameters relative
to sample size. This situation is known as the incidental parameter problem.
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Dealing with incidental parameters: fixed T and large T approaches

• In the static linear model, within-group estimates of the slope parameter are free from
incidental parameter biases, but in nonlinear models the opposite is true in general.

• In situations where T is very small relative to N one reaction is to consider models
and estimators of those models that are fixed-T consistent for large N .

• An example is the second application on the effect of smoking on birthweight, which
uses a sample of N = 12360 women with T = 3 children each.

• There are also panels in which T is not negligible and not negligible relative to N ,
even if N still is much larger than T .

• An example, is the dataset in our first application that contains N = 389 schools with
an average of T = 40 students per school.

• An alternative approach in those situations has been to approximate the sampling
distribution of the fixed effects estimator as T/N tends to a constant.

• For smooth objective functions this approach leads to a bias correction that can be
easily implemented by analytical or numerical methods.

• A simple implementation is Jackknife bias correction (delete-one Jackknife in Hahn
and Newey 2004; split-panel Jackknife in Dhaene and Jochmans 2015).
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Bias reduction in QR

• The existing techniques are not applicable to QR due to the non-smoothness of the
sample moment conditions of quantile models.

• Arellano and Weidner (2015) characterize the incidental parameter bias of QR and
instrumental-variable QR estimators.

• They also find bias correcting moment functions that are first-order unbiased, that is,
whose expected value is of order 1/T 2.

• Moment functions within their class depend on the choice of a weight sequence.
Some weight sequences are bias reducing while others are not.

• They uncover a bias-variance trade-off when attempting to correct bias, and provide
bias corrected estimators that balance this trade-off.

• Interestingly their discussion of bias correction around choice of weight sequence is
similar to bias reduction in nonparametric Kernel regression.

• Arellano and Weidner show that delete-one Jackknife is not first-order bias correcting
in QR due to the fact that the second-order bias has a non-standard structure.

• They find that a permutation-invariant version of split-panel Jackknife is
bias-correcting and exhibits good variance properties.
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Interpreting the incidental parameter bias

• Arellano and Weidner (2015) find that the leading-order bias term vanishes in the
special case where β (u) = β is constant over u.

• This result is of limited interest if the goal is to estimate nonlinear models, although
it may be useful in testing for linearity.

• They also provide an approximation to the leading order bias in the case where β (u)
is almost constant, so that β (u)− β is small.

• Under this approximation the leading order bias can be interpreted as resulting from
measuring β (u) at the wrong quantile u + ∆u and from smoothing out β (u) around
this wrong quantile with a density whose standard deviation shrinks at the rate T−1/2.

• The implication is that the incidental parameter bias would tend to average effects
across quantiles.
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The effect of child maturity on academic achievement

• Arellano and Weidner study the effect of age on academic achievement of school
children following Bedard and Dhuey (2006).

• Bedard and Dhuey consider multiple countries and students of different age groups.
Their question is whether initial maturity differences in kindergarten and primary
school have long-lasting effects.

• Here we only consider data from Canada for third and fourth graders (9 year old in
1995) from the Trends in International Mathematics and Science Study (TIMSS).

• There are 389 schools with an average of 40 students per school. Therefore, it is an
unbalanced pseudo-panel or dataset with a group structure.

• The outcome variable is the math test score of student t in school i normalized to
haven mean 50 and standard deviation 10 over the whole sample.

• The main regressor is observed age measured in months.
• Age is potentially endogenous because of grade retention and early or late school
enrolment (which are not observed).
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The effect of child maturity on academic achievement (continued)

• Following Bedard and Dhuey we use age relative to the school cutoff date to
instrument for age.

• The school cutoff date in Canada is January 1. So we define relative or assigned age
as z = 0 for children born in December and z = 11 for children born in January.

• Relative age is a strong instrument.
• We only require exogeneity of relative age conditional on school effects, which for
example will capture the age distribution at school level.

• Quantile analysis is interesting, because age effects might be different for low- and
high-performing students.

• Whether maturity and academic ability are substitutes or complements is an empirical
question that may have implications for school policy.

• Controlling for school fixed effects turns out to be important for the results. Age
composition may vary across schools, so age is likely fixed-effect endogenous.
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Table 1
Effect of Age on Math Test Scores at 3rd & 4th Grade
Canadian TIMSS 15549 students N = 394 schools

OLS IV OLS+FE IV+FE
0.017 0.184 -0.0332 0.178
(0.010) (0.026) (0.009) (0.0241)

Number in brackets are standard errors
IV uses assigned age to instrument for observed age

Controls: sex, grade, rural, mother native, father-native
both parents, calculator, computer, +100books, hh size
std(Y)=10, i.e. age effect of 0.18 is a 1.8% st dev
per month effect or 22% st deviations per year

• Table 1 reproduces results in Bedard and Dhuey (2006).

• IV estimates with and without school fixed effects are very similar, i.e. the instrument
appears to be uncorrelated with school effects.
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Table 2
Effect of Age on Math Test Scores at 3rd & 4th Grade

Quantile IV, no fixed effects

u = 0.1 u = 0.3 u = 0.5 u = 0.7 u = 0.9
0.14 0.16 0.18 0.24 0.19
(0.01) (0.01) (0.01) (0.07) (0.03)

IV uses assigned age to instrument for observed age
Controls: sex, grade, rural, mother native, father-native
both parents, calculator, computer, +100books, hh size

• Without controlling for school fixed effects, one finds a significant difference in age
effects across quantiles.

• Age effects are increasing.

• The results in Table 2 would point to maturity and ability as complements in the
production of test scores.

24



Table 3
Effect of Age on Math Test Scores at 3rd & 4th Grade
Quantile IV with fixed effects, no bias correction

u = 0.1 u = 0.3 u = 0.5 u = 0.7 u = 0.9
0.18 0.15 0.18 0.19 0.16
(0.05) (0.03) (0.03) (0.04) (0.04)

IV uses assigned age to instrument for observed age
Controls: sex, grade, rural, mother native, father-native
both parents, calculator, computer, +100books, hh size

• Table 3: Once we control for school fixed effects, we do not find a significant
difference in age effects across quantiles.

• Age effects are relatively constant in u. But is this because there is really no effect, or
because the incidental parameter bias tends to average effects across quantiles?
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Table 4
Effect of Age on Math Test Scores at 3rd & 4th Grade

Quantile IV with fixed effects, bias correction

u = 0.1 u = 0.3 u = 0.5 u = 0.7 u = 0.9
0.21 0.15 0.18 0.18 0.09
(0.05) (0.03) (0.04) (0.04) (0.05)

IV uses assigned age to instrument for observed age
Controls: sex, grade, rural, mother native, father-native
both parents, calculator, computer, +100books, hh size

• Table 4: After bias correction age effects are decreasing in u.

• There seems to be evidence that maturity and ability are substitutes in academic
achievement.
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Part 3

QR with random effects in short panels

27



Dimensionality reduction of fixed effects

• Application of QR with fixed effects is straightforward as it proceeds in a
quantile-by-quantile fashion allowing for a different fixed effect at each quantile.

• However, in short panels the incidental parameter problem is a challenge.

• Moreover, while being agnostic about the number of the unobserved group factors
affecting outcomes is attractive, sometimes substantive reasons suggest that only a
small number of underlying factors play a role.

• Whether one uses a quantile model with a different individual effect at each quantile
or a model with a small number of unobserved effects also has implications for
identification.

• Rosen (2010) shows that a fixed-effects model for a single quantile may not be point
identified.

• Arellano and Bonhomme (2015) show that a QR model with a scalar fixed effect is
nonparametrically identified in panel data with T = 3 subject to completeness
assumptions (Newey and Powell 2003; Hu and Schennach 2008).
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Flexible quantile modelling with random effects

• Arellano and Bonhomme aim to estimate models of the form:

Yit = β (Uit )Xit + γ (Uit ) ηi + α (Uit ) (2)

where Uit ∼ U (0, 1) independent of Xi and ηi , but Xi and ηi may be correlated.

• Model (2) is a special case of a series-based specification that allows for nonlinearities
and interactions between Xit and ηi :

Yit =
K1

∑
k=1

θk (Uit ) gk (Xit , ηi ) (3)

• The dependence of ηi on Xi is also specified as a flexible quantile model:

ηi =
K2

∑
k=1

δk (Vi ) hk (Xi ) (4)

where Vi is a uniform random variable independent of Uit and Xit for all t.

• This is a correlated random effects approach in the sense that a model for the
dependence between ηi and Xi is specified.

• However, it is more flexible than alternative specifications in the literature and can be
seen as an approximation to the conditional quantile function as K2 increases.

• If ηi is a vector of individual effects a triangular structure is assumed in place of (4).
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Simulation-based estimation

Basic intuition behind the Arellano and Bonhomme method

• If ηi were observed, one would simply run an ordinary QR of Yit on Xit and ηi .

• But since ηi is not observed they construct some imputations, say M imputed values

η
(m)
i , m = 1, ...,M for each individual in the panel. Having got those, one can get
estimates by computing a QR averaged over imputed values.

• For the imputed values to be valid they have to be draws from the distribution of ηi
conditioned on the data, which depends on the parameters to be estimated (θ’s and
δ’s in the flexible model).

• This is therefore an iterative approach.

• They start by selecting initial values for a grid of conditional quantiles of Yit and ηi ,
which then allows them to generate imputes of ηi , which can be used to update the
quantile parameter estimates and so on.

• To deal with the complication that θk (u) and δk (v ) are functions, they use a
finite-dimensional approximation to those functions based on interpolating splines
with L knots (similar to Wei and Carroll 2009).

• The resulting method is a stochastic EM algorithm.
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Simulation-based estimation (continued)

Stochastic EM algorithm

• A difference with most applications of EM algorithms is that parameters are not
updated in each iteration using maximum likelihood but QR.

• This is important because once imputes for ηi are available, QR estimates can be
calculated in a quantile-by-quantile fashion, which together with the convexity of QR
minimization make each parameter update fast and reliable.

• Arellano and Bonhomme obtain the asymptotic properties of the estimator based on
the stochastic EM algorithm for a fixed number of draws M in the case where the
parametric model is assumed correctly specified (extending results in Nielsen 2000).

• That, is K1, K2 and L are held fixed as N tends to infinity for fixed T .

• They also establish consistency as K1, K2 and L tend to infinity with N in the
large-M limit.

Other approaches

• Other recent approaches to quantile panel data models include Chernozhukov,
Fernández-Val, Hahn & Newey (2013), and Graham, Hahn, Poirier & Powell (2015).

• These approaches are non-nested with the previous model and will recover different
quantile effects.
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The effect of smoking on birth weight

• We revisit the effect of maternal inputs on children’s birth outcomes. Specifically, we
study the effect of smoking during pregnancy on children’s birthweights.

• Abrevaya (2006) uses a mother-FE approach to address endogeneity of smoking.

• We use QR with mother-specific effects to allow for both unobserved heterogeneity
and nonlinearities in the relationship between smoking and birthweight.

• We use a balanced subsample from the US natality data used in Abrevaya (2006),
which comprises 12360 women with 3 children each. Our outcome is log-birthweight.

• The main covariate is a binary smoking indicator. Age of the mother and gender of
the child are used as additional controls.

• An OLS regression yields a negative point estimate of the smoking coeffi cient: −.095.
The fixed-effects estimate is also negative, but it is twice as small: −.050 (significant).

• Moreover, running a standard (pooled) QR suggests that the effect of smoking is
more negative at lower quantiles of birthweights.

• However, these results might be subject to an endogeneity bias, which may not be
constant along the distribution.
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The effect of smoking on birth weight (continued)

• The left graph of Figure 2 shows the smoking coeffi cient in a pooled QR (solid line),
and the REQR estimate of the smoking effect (dashed line).

• REQR estimates use L = 21 knots. The stochastic EM algorithm is run for 100
iterations, with 100 random walk Metropolis-Hastings draws within each iteration.

• Parameter estimates are averages of the 50 last iterations of the algorithm.

• The smoking effect becomes less negative when correcting for time-invariant
endogeneity through the introduction of mother-specific fixed-effects.

• At the same time, the effect remains sizable, and is increasing along the distribution.

• The right graph shows the QTE of smoking as the difference in log-birthweight
between a sample of smoking women, and a sample of non-smoking women, keeping
all other characteristics (observed, Xi , and unobserved, ηi ) constant.

• This calculation illustrates the usefulness of estimating a complete model of the joint
distribution of outcomes and unobservables, to compute counterfactual distributions
that take unobserved heterogeneity into account.

• The solid line shows the empirical difference between unconditional quantiles, while
the dashed line shows the QTE that accounts for both observables and unobservables.

• The results are broadly in line with those reported on the left graph of Figure 2.
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Figure 2: QR coeffi cient of smoking and QTE (difference in potential outcomes)

0 0.2 0.4 0.6 0.8 1
0.25

0.2

0.15

0.1

0.05

0

percentile τ

sm
ok

in
g 

ef
fe

ct

0 0.2 0.4 0.6 0.8 1
0.25

0.2

0.15

0.1

0.05

0

percentile τ

qu
an

til
e 

tre
at

m
en

t e
ffe

ct
 o

f s
m

ok
in

g

• Data from Abrevaya (2006).

• Left: Solid line is the pooled QR smoking coeffi cient; dashed line is the panel QR
smoking coeffi cient.

• Right: Solid line is the raw QTE of smoking; dashed line is the QTE estimate based
on panel QR.
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QR with smoking interacted with mother heterogeneity and baby heterogeneity

• Lastly, we report the results of an interacted quantile model, where the specification
allows for all first-order interactions between covariates and the unobserved
mother-specific effect.

• In this model the quantile effect of smoking is mother-specific.

• The results on the right graph in Figure 3 show the unconditional QTE of smoking.
Results are similar to the ones obtained for the linear specification.

• However, on the left graph we see substantial mother-specific heterogeneity in the
conditional quantile treatment effect of smoking.

• For some mothers smoking appears particularly detrimental to children’s birthweight,
whereas for other mothers the smoking effect, while consistently negative, is much
smaller.

• This evidence is in line with the results of a linear random coeffi cients model reported
in Arellano and Bonhomme (2012).
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Figure 3: Quantile effects of smoking and QTE (interacted specification)
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• Data from Abrevaya (2006).

• Left: lines represent the percentiles .05, .25, .50, .75, and .95 of the heterogeneous
smoking effect across mothers, at various percentiles u.

• Right: Solid line is the raw QTE of smoking; dashed line is the QTE estimate based
on panel QR with interactions.
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Part 4

Dynamic quantile models
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Autoregressive models and predetermined variables

• The Arellano-Bonhomme approach covers dynamic autoregressive models and models
with general predetermined variables of the form:

Yit = QY (Yi ,t−1,Xit , ηi ,Uit )

• If the X s are strictly exogenous variables, the quantile model for the individual effect
is as before except for the inclusion of the initial outcome variable:

ηi = Qη (Yi1,Xi ,Vi )

• In the case of general predetermined variables the model is incomplete.

• To complete the specification a Markov feedback process is assumed:

Xit = QX (Yi ,t−1,Xi ,t−1, ηi ,Ait )

and the quantile model of the effects is conditioned only on initial values:

ηi = Qη (Yi1,Xi1,Vi )
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Models with time-varying unobservables

• The framework also extends to models with time-varying unobservables, such as the
following nonlinear permanent-transitory model:

Yit = ηit + Vit (5)

ηit = QY
(
ηi ,t−1,Uit

)
(6)

where Vit and Uit are i.i.d. distributed.

• Arellano, Blundell and Bonhomme (2014) use a quantile-based approach to document
nonlinear relationships between earnings shocks to households and their lifetime
profiles of earnings and consumption.

• They estimate model (5)-(6) using PSID household labor income data for the years
1998—2008.
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Persistence of permanent income shocks

• Evidence of nonlinearity in the persistence of earnings can be seen from Figure 4.

• This figure plots estimates of the average derivative of the conditional quantile
function of current income with respect to lagged income.

• The graphs show strong similarity in the patterns of the nonlinearity of household
earnings in the PSID survey data and in the population register data from Norway.

• They also show a clear difference in the impact of past shocks according to the
percentile of the shock and the percentile of the past level of income.

• A large positive shock for a low income family or a large negative shock for a high
income family appears to reduce the persistence of past shocks.
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Figure 4: Quantile autoregressions of log-earnings

∂Qyt |yt−1 (yi ,t−1 ,τ)
∂y

PSID data Norwegian administrative data

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

1.2

percentile τs hoc k
percentile τin i t

pe
rs

is
te

nc
e

0
0.2

0 .4
0 .6

0 .8
1

0

0.2

0 .4

0 .6

0 .8

1
0

0.2

0 .4

0 .6

0 .8

1

1.2

perc enti leτshock
perc enti leτ

init

p
e

rs
is

te
nc

e

Note: Residuals of log pre-tax household labor earnings, Age 35-65 1999-2009 (US),
Age 25-60 2005-2006 (Norway). Estimates of the average derivative of the conditional
quantile function of yit given yi ,t−1 with respect to yi ,t−1.
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Persistence of permanent income shocks (continued)

• Arellano, Blundell, and Bonhomme find that in the central range of the distribution,
measured persistence of ηi ,t−1 is of similar magnitude and close to unity, so that the
unit root model would be an acceptable description for this part of the distribution.

• However, a very negative shock reduces the persistence of a “positive history” (a
positive lagged level of η) but preserves the persistence of a negative history.

• At the other end, a very positive shock reduces the persistence of a negative history
but preserves the persistence of a good history.

• These results suggest a richer view of persistence, away from the conventional unit
root versus mean reversion dichotomy, and help explain household consumption
behavior.
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