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1 Introduction

So far we have studied regression models. That is, models for the conditional expectation of one

variable given the values of other variables, or linear approximations to those expectations. Now we

wish to study relations between random variables that are not regressions. We have already seen some

examples: the relationship between yt and yt−1 in an ARMA(1,1) model, or the geometric distributed

lag model.

A linear regression model can be seen as a linear relationship between observable and unobservable

variables with the property that the regressors are orthogonal to the unobservable term. For example,

given two variables (yi, xi), the regression of y on x is

yi = α+ βxi + ui (1)

where β = Cov (yi, xi) /V ar(xi), therefore Cov (xi, ui) = 0.

Similarly, the regression of x on y is:

xi = γ + δyi + εi

where δ = Cov (yi, xi) /V ar(yi), and Cov (yi, εi) = 0. Solving the latter for yi we can also write:

yi = α† + β†xi + u†i (2)

with α† = −γ/δ, β† = 1/δ, u†i = −εi/δ.
Both (1) and (2) are statistical linear relationships between y and x. If we are interested in some

economic relation between y and x, how should we choose between (1) and (2) or none of the two?

If the goal is to describe means, clearly we would opt for (1) if interested in the mean of y for given

values of x, and we would opt for (2) if interested in the mean of x for given values of y.

In equation (2) Cov
(
x, u†

)
6= 0 but Cov

(
y, u†

)
= 0 whereas in equation (1) the opposite is true.

However, in the ARMA(1,1) model (referred to in the time series class notes) both the left-hand side

and the right-hand side variables are correlated with the error term.

To respond a question of this kind we need a prior idea about the nature of the unobservables in

the relationship. We first illustrate this situation by considering measurement error models.
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2 Measurement error

Consider an exact relationship between the variables y∗i and x
∗
i :

y∗i = α+ βx∗i

Suppose that we observe x∗i without error but we observe an error-ridden measure of y
∗
i :

yi = y∗i + vi

where vi is a zero-mean measurement error independent of x∗i . Therefore,

yi = α+ βx∗i + vi.

In this case β coincides with the slope coeffi cient in the regression of yi on x∗i :

β =
Cov (x∗i , yi)

V ar (x∗i )

Now suppose that we observe y∗i without error but x
∗
i is measured with an error εi independent of

(y∗i , x
∗
i ):

xi = x∗i + εi.

The relation between the observed variables is

y∗i = α+ βxi + ζi (3)

where ζi = −βεi. In this case the error is independent of y∗i but is correlated with xi. Thus, β

coincides with the inverse slope coeffi cient in the regression of xi on y∗i :

β =
V ar (y∗i )

Cov (xi, y∗i )
. (4)

In general, inverse regression may make sense if one suspects that the error term in the relationship

between y and x is essentially driven by measurement error in x. As it will become clear later (4) can

be interpreted as an instrumental-variable parameter in the sense that y∗i is used as an instrument for

xi in (3). Next, we consider measurement error in regression models as opposed to exact relationships.

2.1 Regression model with measurement error

Measurement error may be the result of conceptual differences between the variable of economic interest

and the one available in data, but it could also be the result of rounding errors or misreporting in

survey data or administrative records.

Let us consider the regression model

y∗i = α+ βx∗i + u∗i

where u∗i is independent of x
∗
i . Below we distinguish two cases: one in wish there is only measurement

error in y∗i and another in which there is only measurement error in x
∗
i .

2



Measurement error in y∗i We observe yi = y∗i + vi such that vi ⊥ (x∗i , u
∗
i ). In this case,

yi = α+ βx∗i + (u∗i + vi) ,

so that

β =
Cov (x∗i , y

∗
i )

V ar (x∗i )
=
Cov (x∗i , yi)

V ar (x∗i )
.

The only difference with the original regression model is that the variance of the error term is larger

due to the measurement error component, which means that the R2 will be smaller:

R2
∗ =

β2V ar (x∗i )

β2V ar (x∗i ) + σ2
u

, R2 =
β2V ar (x∗i )

β2V ar (x∗i ) + σ2
u + σ2

v

,

so that the larger σ2
v the smaller R

2 will be relative to R2
∗:

R2 =
R2
∗

1 + σ2v
β2V ar(x∗i )+σ2u

.

Measurement error in x∗i Now xi = x∗i + εi such that εi ⊥ (x∗i , u
∗
i ). In this case,

y∗i = α+ βxi + (u∗i − βεi) .

Then

β =
Cov (xi, y

∗
i )

V ar (xi)
=

Cov (x∗i , y
∗
i )

V ar (x∗i ) + σ2
ε

=
β

1 + σ2ε
V ar(x∗i )

= β − β
(

λ

1 + λ

)

where λ = σ2
ε/V ar (x∗i ). Thus, OLS estimates will be biased for β with a bias that depends on the

noise to signal ratio λ. For example, if λ = 1 the regression coeffi cient will be half the size of the effect

of interest.

An example: y∗i = consumption, x∗i = permanent income, u∗i = transitory consumption, εi =

transitory income.

Identification using λ If we have measurements of λ or σ2
ε then consistent estimation may be

based on the following expressions:

β = (1 + λ)
Cov (xi, y

∗
i )

V ar (xi)
=

Cov (xi, y
∗
i )

V ar (xi)− σ2
ε

. (5)

More generally, if xi is a vector of variables measured with error, so that

yi = x′iβ +
(
ui − ε′iβ

)
xi = x∗i + εi, E

(
εiε
′
i

)
= Ω,

a vector-valued generalization of (5) takes the form:

β =
[
E
(
xix
′
i

)
− Ω

]−1
E (xiyi) .
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3 Instrumental-variable model

3.1 Identification

The set-up is as follows. We observe {yi, xi, zi}ni=1 with dim (xi) = k, dim (zi) = r such that

yi = x′iβ + ui E (ziui) = 0.

Typically there will be overlap between variables contained in xi and zi, for example a constant term

(“control” variables). Variables in xi that are absent from zi are endogenous explanatory variables.

Variables in zi that are absent from xi are external instruments.

The assumption E (ziui) = 0 implies that β solves the system of r equations:

E
[
zi
(
yi − x′iβ

)]
= 0

or

E
(
zix
′
i

)
β = E (ziyi) . (6)

If r < k, system (6) will have a multiplicity of solutions for β, so that β is not point identified. If r ≥ k
and rankE (zix

′
i) = k then β is identified. In estimation we will distinguish between the just-identified

case (r = k) and the over-identified case (r > k).

If r = k and the rank condition holds we have

β =
[
E
(
zix
′
i

)]−1
E (ziyi) . (7)

In the simple case where xi = (1, xoi)
′, zi = (1, zoi)

′ and β = (β1, β2)′ we get

β2 =
Cov (zoi, yi)

Cov (zoi, xoi)

and

β1 = E (yi)− β2E (xoi) .

In general, the OLS parameters will differ from the parameters in the instrumental-variable model.

In the previous simple example we have:

Cov (xi, yi)

V ar (xi)
= β2 +

Cov (xi, ui)

V ar (xi)
. (8)

Sometimes the orthogonality between instruments and error term is expressed in the form of a

stronger mean independence assumption instead of lack of correlation:

E (ui | zi) = 0.
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3.2 Examples

Demand equation In this example the units are markets across space or over time, yi is quantity,

the endogenous explanatory variable is price and the external instrument is a supply shifter, such

as weather variation in the case of an agricultural product. This is the classic example from the

simultaneous equations literature.1

Evaluation of a training program Here the units are workers, the endogenous explanatory

variable is an indicator of participation in a training program and yi is some subsequent labor mar-

ket outcome, such as wages or employment status. The external instrument is an indicator of ran-

dom assignment to access to the program. In this example we would expect the coeffi cient in the

instrumental-variable line to be positive, whereas the coeffi cient in the OLS line could be negative.

Measurement error Consider the measurement error regression model:

yi = β1 + β2x
∗
i + vi

where we observe two measurements of x∗i with independent errors:

x1i = x∗i + ε1i

x2i = x∗i + ε2i.

All unobservables {x∗i , vi, ε1i, ε2i} are mutually independent. In this example, we could have xi =

(1, x1i)
′, zi = (1, x2i)

′ and ui = vi−β2ε1i; or alternatively xi = (1, x2i)
′, zi = (1, x1i)

′ and ui = vi−β2ε2i.

Time series regression with dynamics and serial correlation A simple example is the

ARMA(1,1) model:

yt = β1 + β2yt−1 + ut

ut = εt + θεt−1

where εt is a white noise error term. Here xt = (1, yt−1)′ and zt = (1, yt−2)′.

3.3 Estimation

Simple IV estimator When r = k a simple instrumental-variable estimator is the sample

counterpart of (7):

β̂ =

(
n∑
i=1

zix
′
i

)−1 n∑
i=1

ziyi.

1Haavelmo, T. (1943): “The statistical implications of a system of simultaneous equations,”Econometrica, 11, 1—12.
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The estimation error is given by

β̂ − β =

(
1

n

n∑
i=1

zix
′
i

)−1 1

n

n∑
i=1

ziui.

Thus, plimn→∞ β̂ = β if plim 1
n

∑n
i=1 zix

′
i = E (zix

′
i) = H, rankH = k, and plim 1

n

∑n
i=1 ziui =

E (ziui) = 0.

Also,

√
n
(
β̂ − β

)
d→ N

(
0, H−1WH ′−1

)
if n−1/2

∑n
i=1 ziui

d→ N (0,W ). When {yi, xi, zi}ni=1 is a random sample then W = E
(
u2
i ziz

′
i

)
.

Overidentified IV If r > k the system (6) contains more equations than unknowns. To de-

termine the population value of β we could solve any rank-preserving k linear combinations for some

k × r matrix G:

GE
(
zix
′
i

)
β = GE (ziyi)

so that

β =
[
E
(
Gzix

′
i

)]−1
E (Gziyi) , (9)

leading to consistent estimators of the form

β̂G =

(
n∑
i=1

Gzix
′
i

)−1 n∑
i=1

Gziyi. (10)

Note that while (9) should be invariant to the choice of G if the model is correctly specified, the

estimated quantity (10) will differ due to sample error. For example, if xi = (1, xoi)
′ and zi =

(1, z1i, z2i)
′ we will have

Cov (z1i, yi)

Cov (z1i, xoi)
=

Cov (z2i, yi)

Cov (z2i, xoi)

but

Ĉov (z1i, yi)

Ĉov (z1i, xoi)
6= Ĉov (z2i, yi)

Ĉov (z2i, xoi)
.

Asymptotic normality Turning to large sample properties, repeating the previous asymptotic

normality argument for (10), under iid sampling we get:

√
n
(
β̂G − β

)
d→ N (0, VG)

with

VG =
[
GE

(
zix
′
i

)]−1
GE

(
u2
i ziz

′
i

)
G′
[
E
(
xiz
′
i

)
G′
]−1

. (11)

Thus, the large sample variance depends on the choice of G.
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Optimality Let us now consider optimality following Sargan (1958).2 ForG = E (xiz
′
i)
[
E
(
u2
i ziz

′
i

)]−1

the matrix VG equals

V0 =
[
E
(
xiz
′
i

) [
E
(
u2
i ziz

′
i

)]−1
E
(
zix
′
i

)]−1
.

Moreover, it can be shown that for any other choice of G we have:3

VG − V0 ≥ 0.

Therefore, estimators of the form

β̂Gn =

(
n∑
i=1

Gnzix
′
i

)−1 n∑
i=1

Gnziyi (12)

with a possibly stochastic Gn such that Gn
p→ E (xiz

′
i)
[
E
(
u2
i ziz

′
i

)]−1 (up to a multiplicative constant)

are optimal in the sense of being minimum asymptotic variance within the class of linear instrumental-

variable estimators, which use zi as instruments.

Under homoskedasticity E
(
u2
i ziz

′
i

)
= σ2E (ziz

′
i), therefore a choice of Gn such that

Gn
p→ E

(
xiz
′
i

) [
E
(
ziz
′
i

)]−1
= Π

is optimal. The matrix Π contains the OLS population coeffi cients in linear regressions of the xi

variables on zi.

Two-stage least squares Letting Π̂ = (
∑n

i=1 xiz
′
i) (
∑n

i=1 ziz
′
i)
−1 be the sample counterpart of

Π, the two-stage least squares estimator is

β̂2SLS =

(
n∑
i=1

Π̂zix
′
i

)−1 n∑
i=1

Π̂ziyi (13)

or in short

β̂2SLS =

(
n∑
i=1

x̂ix
′
i

)−1 n∑
i=1

x̂iyi (14)

where x̂i = Π̂zi is the vector of fitted values in the (“first-stage”) regressions of the xi variables on zi:

xi = Πzi + vi (15)

2Sargan, J. D. (1958): “The Estimation of Economic Relationships Using Instrumental Variables,”Econometrica, 26,

393—415.
3To see this, let W−1 = C′C, H = CH, D = (GH)−1GC−1, and note that:

VG − V0 = (GH)−1GWG′
(
H ′G′

)−1 − (H ′W−1H)−1 = D [I −H (H ′H)−1H ′]D′.
This is a positive semi-definite matrix because

[
I −H

(
H
′
H
)−1

H
′
]
is idempotent. This optimality result also applies

to clustered and serially dependent data since it does not require that W equals E
(
u2i ziz

′
i

)
.
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If a variable in xi is also contained in zi its fitted value will coincide with the variable itself and the

corresponding element of vi will be equal to zero.

Sometimes it is convenient to use matrix notation as follows:

Π̂ =
(
X ′Z

) (
Z ′Z

)−1

so that

β̂2SLS =
[(
X ′Z

) (
Z ′Z

)−1 (
Z ′X

)]−1 (
X ′Z

) (
Z ′Z

)−1 (
Z ′y
)

and

β̂2SLS =
(
X̂ ′X

)−1
X̂ ′y

where X̂ = Z (Z ′Z)−1 (Z ′X).

Note that β̂2SLS is also the OLS regression of y on X̂:

β̂2SLS =
(
X̂ ′X̂

)−1
X̂ ′y.

This interpretation of the 2SLS estimator is the one that originated its traditional name.

Two-stage least squares estimation relies on a powerful intuition: we use as instrument the linear

combination of the instrumental variables that best predicts the endogenous explanatory variables in

the linear projection sense.

Consistency of β̂2SLS relies on n → ∞ for fixed r. Note that if r = n then X̂ = X so that 2SLS

and OLS coincide. If r is less than n but close to it, one would expect 2SLS to be close to OLS.

Robust standard errors Although its optimality requires homoskedasticity, 2SLS (like OLS)

remains a popular estimator under more general conditions. Particularizing expression (11) to G = Π

we obtain the asymptotic variance of the 2SLS estimator

VΠ =
[
ΠE

(
ziz
′
i

)
Π′
]−1

ΠE
(
u2
i ziz

′
i

)
Π′
[
ΠE

(
ziz
′
i

)
Π′
]−1

. (16)

Heteroskedasticity-robust standard errors and confidence intervals can be obtained from the esti-

mated variance:

V̂Π =
[
Π̂Ê

(
ziz
′
i

)
Π̂′
]−1

Π̂Ê
(
û2
i ziz

′
i

)
Π̂′
[
Π̂Ê

(
ziz
′
i

)
Π̂′
]−1

= n
(
X̂ ′X̂

)−1
(

n∑
i=1

û2
i x̂ix̂

′
i

)(
X̂ ′X̂

)−1

where the ûi are 2SLS residuals ûi = yi − x′iβ̂2SLS .

With homoskedastic errors, (16) boils down to

VΠ = σ2
[
ΠE

(
ziz
′
i

)
Π′
]−1 (17)
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where σ2 = E
(
u2
i

)
. In this case a consistent estimator of VΠ is simply

ṼΠ = nσ̂2
(
X̂ ′X̂

)−1
(18)

where σ̂2 = n−1
∑n

i=1 û
2
i .

Note that if the residual variance is calculated from fitted-value residuals y − X̂β̂2SLS instead of

û = y −Xβ̂2SLS , we would get an inconsistent estimate of σ
2 and therefore also of VΠ in (17).

3.4 Testing overidentifying restrictions

When r > k an IV estimator sets to zero k linear combinations of the moments:

GE
(
zix
′
i

)
β = GE (ziyi)

Thus, there remains r − k linearly independent combinations that are not set to zero in estimation
but should be close to zero under correct specification. A test of overidentifying restrictions or Sargan

test is a test of the null hypothesis that the remaining r − k linear combinations are equal to zero.
Under classical errors the form of the statistic is given by

S =
û′Z (Z ′Z)−1 Z ′û

σ̂2

d→ χ2
r−k (19)

It is easy to see that S = nR2 where R2 is the r-squared in a regression of û on Z.

A sketch of the result in (19) is as follows. With classical errors n−1/2
∑n

i=1 ziui
d→ N

[
0, σ2E (ziz

′
i)
]

and therefore also

1√
n

1

σ̂
C ′Z ′u

d→ N (0, Ir)

where we are using the factorization (Z ′Z/n)−1 = CC ′.

Next, using

û = y −Xβ̂2SLS = u−X
(
β̂2SLS − β

)
and

β̂2SLS − β =
[(
X ′Z

) (
Z ′Z

)−1 (
Z ′X

)]−1 (
X ′Z

) (
Z ′Z

)−1
Z ′u,

we get

h =
1√
n

1

σ̂
C ′Z ′û =

[
Ir −B

(
B′B

)−1
B′
] 1√

n

1

σ̂
C ′Z ′u

where B = C ′ (Z ′X/n).

Since the probability limit of
[
I −B (B′B)−1B′

]
is idempotent with rank r − k it follows that

h′h = n
û′Z (Z ′Z)−1 Z ′û

û′û
d→ χ2

r−k.

9



In the presence of heteroskedasticity, the statistic S in (19) is not asymptotically chi-square, not

even under correct specification. An alternative robust Sargan statistic is:

SR =
(
ũ′Z
)
W̃−1

(
Z ′ũ
) d→ χ2

r−k (20)

where W̃ =
(∑n

i=1 û
2
i ziz

′
i

)
and ũ = y −Xβ̂

G†n
with G†n = (X ′Z) W̃−1.

Contrary to β̂2SLS , the IV estimator β̂G†n given by

β̂
G†n

=
[(
X ′Z

)
W̃−1

(
Z ′X

)]−1 (
X ′Z

)
W̃−1

(
Z ′y
)

(21)

uses an optimal choice of Gn under heteroskedasticity. This improved IV estimator was studied by

Halbert White in 1982 under the name two-stage instrumental variables (2SIV) estimator.4

4White, H. (1982): “Instrumental Variables Regression with Independent Observations,”Econometrica, 50, 483—499.
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