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Summary We introduce a class of quantile regression estimators for short panels.
Our framework covers static and dynamic autoregressive models, models with general
predetermined regressors and models with multiple individual effects. We use quantile
regression as a flexible tool to model the relationships between outcomes, covariates and
heterogeneity. We develop an iterative simulation-based approach for estimation, which
exploits the computational simplicity of ordinary quantile regression in each iteration step.
Finally, an application to measure the effect of smoking during pregnancy on birthweight
completes the paper.
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1. INTRODUCTION

Nonlinear panel data models are central to applied research. However, despite some recent
progress, the literature is still short of answers for panel versions of many models commonly
used in empirical work (Arellano and Bonhomme, 2011). More broadly, to date no approach is
yet available to specify and estimate general panel data relationships in static or dynamic settings.

In this paper, we rely on quantile regression as a flexible estimation tool for nonlinear panel
models. Since Koenker and Bassett (1978), quantile regression techniques have proven useful
tools to document distributional effects in cross-sectional settings. Koenker (2005) provides
a comprehensive account of these methods. Quantile-based specifications have the ability to
deal with complex interactions between covariates and latent heterogeneity, and to provide a
rich description of heterogeneous responses of outcomes to variations in covariates. In panel
data, quantile methods are particularly well suited as they allow us to build flexible models
for the dependence of unobserved heterogeneity on exogenous covariates or initial conditions,
and for the feedback processes of covariates in dynamic models with general predetermined
regressors.

We consider classes of panel data models with continuous outcomes that satisfy conditional
independence restrictions. In static settings, these conditions restrict the time-series dependence
of the time-varying disturbances. Imposing some form of dynamic restrictions is necessary in
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order to separate out what part of the overall time variation is due to unobserved heterogeneity;
see Evdokimov (2010) and Arellano and Bonhomme (2012). In dynamic settings, finite-order
Markovian set-ups naturally imply conditional independence restrictions. In both static and
dynamic settings, results from the literature on nonlinear measurement error models – see Hu and
Schennach (2008) and Hu and Shum (2012) – can then be used to provide sufficient conditions
for nonparametric identification for a fixed number of time periods.

The main goal of the paper is to develop a tractable estimation strategy for nonlinear panel
models. For this purpose, we specify outcomes Yit as a function of covariates Xit and latent
heterogeneity ηi as

Yit =
K1∑
k=1

θk(Uit)gk(Xit, ηi). (1.1)

Similarly, we specify the dependence of ηi on covariates Xi = (X′
i1, . . . , X

′
iT )′ as

ηi =
K2∑
k=1

δk(Vi)hk(Xi). (1.2)

Here, Ui1, . . . , UiT , Vi are independent uniform random variables, and g and h belong to
some families of functions. Outcomes Yit and heterogeneity ηi are monotonic in Uit and Vi ,
respectively, so (1.1) and (1.2) are models of conditional quantile functions.

The g and h are anonymous functions without an economic interpretation. They are just
building blocks of flexible models. Objects of interest will be summary measures of derivative
effects constructed from the models.

The linear quantile specifications (1.1) and (1.2) allow us to document interactions between
covariates and heterogeneity at various quantiles. In particular, (1.2) is a correlated random-
effects model that can become arbitrarily flexible as K2 increases. Linearity in the quantile
parameters, though not essential to our approach, is helpful for computational purposes.
Moreover, while (1.1) and (1.2) are stated for the static case and a scalar unobserved effect,
we show how to extend the framework to allow for dynamics and multidimensional latent
components.

The main econometric challenge is that the researcher has no data on heterogeneity ηi . If ηi
were observed, then one would simply run an ordinary quantile regression of Yit on the gk(Xit, ηi)
variables in (1.1). As ηi is not observed, we need to construct some imputations, say M imputed
values η(m)

i , m = 1, . . . ,M , for each individual in the panel. Having obtained these, we can get
estimates by running a quantile regression averaged over imputed values.

For the imputed values to be valid, they have to be draws from the posterior distribution of
ηi conditioned on the data, which depends on the parameters to be estimated (θ and δ). Our
approach is thus iterative. We start by selecting initial values for conditional quantiles of Yit and
ηi , which then allows us to generate imputes of ηi , which we can use to update the quantile
parameter estimates, and so on.

A difficulty in applying this idea is that the unknown parameters θ and δ are functions, and
hence infinite-dimensional. This is because we need to model the full conditional distribution of
outcomes and latent individual effects, as opposed to a single quantile, as is typically the case in
applications of ordinary quantile regression. To deal with this issue, we follow Wei and Carroll
(2009), and we use a finite-dimensional approximation to θ and δ based on interpolating splines.
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In the case of model (1.1) and (1.2), the estimation method works as follows, starting with
initial parameter values for θk(τ ) and δk(τ ) and iterating the two steps below until convergence
to a stationary distribution.

STEP 1. Given values for θk(τ ) and δk(τ ) on a grid of τ , we compute the implied posterior
distribution of the individual effects and draw, for each individual unit i in the sample, a
sequence η(1)

i , . . . , η
(M)
i from that distribution.

STEP 2. With draws of η at hand, we update the parameters θk(τ ) and δk(τ ) by means of
two sets of quantile regressions, regressing outcomes Yit on the gk(Xit, η

(m)
i ) to update

θk(τ ), and regressing the individual draws η(m)
i on the hk(Xi) to update δk(τ ).

The resulting algorithm is a variant of the expectation-maximization (EM) algorithm of
Dempster et al. (1977), sometimes referred to as stochastic EM. The sequence of parameter
estimates converges to an ergodic Markov chain in the limit. Following Nielsen (2000a, 2000b)
we characterize the asymptotic distribution of our sequential simulated method-of-moments
estimator based onM imputations. A difference with most applications of EM-type algorithms is
that we do not update parameters in each iteration using maximum likelihood, but using quantile
regressions.1 This is an important feature of our approach, as the fact that quantile regression
estimates can be computed in a quantile-by-quantile fashion, and the convexity of the quantile
regression objective function, make each parameter update in Step 2 in the above algorithm fast
and reliable.

We apply our estimator to assess the effect of smoking during pregnancy on a child’s
birthweight. Following Abrevaya (2006), we allow for mother-specific fixed effects in estimation.
Both nonlinearities and unobserved heterogeneity are thus allowed for, using our panel data
quantile regression estimator. We find that, while allowing for time-invariant mother-specific
effects decreases the magnitude of the negative coefficient of smoking, the latter remains sizable,
especially at low birthweights, and exhibits substantial heterogeneity across mothers.

Literature review and outline

Starting with Koenker (2004), most panel data approaches to date proceed in a quantile-
by-quantile fashion, and include individual indicators as additional covariates in the quantile
regression. As shown by some recent work, however, this fixed-effects approach faces special
challenges when applied to quantile regression. Galvao et al. (2012) and Arellano and Weidner
(2015) study the large N, T properties of the fixed-effects quantile regression estimator, and
show that it may suffer from large biases in short panels. Rosen (2012) shows that a fixed-
effects model for a single quantile may not be point-identified. Recent related contributions
are Lamarche (2010), Galvao (2011) and Canay (2011). In contrast, our approach relies on
specifying a semiparametric model for individual effects given covariates and initial conditions,
as in (1.2). As a result, in this paper, the analysis is conducted for fixed T , as N tends to infinity.

Our approach is closer in spirit to other random-effects approaches in the literature. For
example, Abrevaya and Dahl (2008) consider a correlated random-effects model to study the
effects of smoking and pre-natal care on birthweight. Their approach mimics control function

1 Related sequential method-of-moments estimators are considered in Arcidiacono and Jones (2003), Arcidiacono and
Miller (2011) and Bonhomme and Robin (2009), among others. Elashoff and Ryan (2004) present an algorithm for
accommodating missing data in situations where a natural set of estimating equations exists for the complete data setting.
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approaches used in linear panel models. Geraci and Bottai (2007) consider a random-effects
approach for a single quantile, assuming that the outcome variable is distributed as an asymmetric
Laplace distribution conditional on covariates and individual effects. Recent related approaches
to quantile panel data models include Chernozhukov et al. (2013, 2015) and Graham et al. (2015).
These approaches are non-nested with ours. In particular, they will generally not recover the
quantile effects we focus on in this paper. More broadly, compared to existing work, our aim
is to build a framework that can deal with general nonlinear and dynamic relationships, thus
providing an extension of standard linear panel data methods to nonlinear settings.

The analysis also relates to method-of-moments estimators for models with latent variables.
Compared to Schennach (2014), here we rely on conditional moment restrictions and focus on
cases where the entire model specification is point-identified. Finally, our analysis is most closely
related to Wei and Carroll (2009), who proposed a consistent estimation method for cross-
sectional linear quantile regression subject to covariate measurement error. A key difference
with Wei and Carroll is that, in our set-up, the conditional distribution of individual effects is
unknown, and needs to be estimated along with the other parameters of the model.

The outline of the paper is as follows. In Section 2, we present static models and discuss
identification. In Section 3, we present our estimation method and study some of its properties.
In Section 4, we extend the approach to dynamic settings. In Section 5, we show how our
method can be used to estimate average marginal effects, which are of interest in a number of
applications. In Section 6, we present the empirical illustration. Lastly, we conclude in Section 7.
Proofs and further discussion are contained in the Appendices. Computer codes implementing
the method are available as Supporting Information.

2. QUANTILE MODELS FOR PANEL DATA

In this section, we start by introducing a class of static panel data models. At the end of the
section, we provide conditions for nonparametric identification.

2.1. Model and assumptions

Outcome variables. Let Yi = (Yi1, . . . , YiT )′ denote a sequence of T scalar continuous
outcomes for individual i, and let Xi = (X′

i1, . . . , X
′
iT )′ denote a sequence of strictly exogenous

regressors, which may contain a constant. Let ηi denote a q-dimensional vector of individual-
specific effects, and let Uit denote a scalar error term. We specify the conditional quantile
response function of Yit given Xit and ηi as follows:

Yit = QY (Xit, ηi, Uit), i = 1, . . . , N, t = 1, . . . , T . (2.1)

Model (2.1) can be used to empirically document nonlinear and heterogeneous effects of
covariates. In our illustration to smoking and birthweight, the model allows smoking effects to
differ across mothers (through the dependence on ηi) and along the distribution of birthweights
(through the dependence on Uit). In Section 5, we describe a set of treatment effect parameters
that our method allows us to estimate.

We make the following assumption.

C© 2016 Royal Economic Society.



Nonlinear panel data estimation via quantile regressions C65

ASSUMPTION 2.1. (OUTCOMES) (a) Uit follows a standard uniform distribution, independent
of (Xi, ηi); (b) τ �→ QY (x, η, τ ) is strictly increasing on (0, 1), for almost all (x, η) in the support
of (Xit, ηi); (c) for all t �= s, Uit is independent of Uis .

Assumption 2.1(a) contains two parts. First, Uit is assumed independent of the full sequence
Xi1, . . . , XiT , and independent of individual effects. Strict exogeneity of X can be relaxed to
allow for predetermined covariates (see Section 4). Second, the marginal distribution of Uit is
normalized to be uniform on the unit interval. Assumption 2.1(b) guarantees that outcomes have
absolutely continuous distributions. Together, Assumption 2.1(a) and (b) imply that, for all τ ∈
(0, 1), QY (Xit, ηi, τ ) is the τ -conditional quantile of Yit given (Xi, ηi).2

Assumption 2.1(c) imposes independence restrictions on the process Ui1, . . . , UiT .
Restricting the dynamics of error variables Uit is needed when aiming at separating the
time-varying unobserved errors Uit from the time-invariant unobserved individual effects
ηi . In Assumption 2.1(c), Uit are assumed to be independent over time. In Section 4, we
develop various extensions of the model that allow for dynamic effects. Finally, although
we have assumed in (2.1) that QY does not depend on time, one could easily allow QY =
Qt
Y to depend on t , reflecting, for example, age or calendar time effects depending on the

application.

Unobserved heterogeneity. Next, we specify the conditional quantile response function of ηi
given Xi as

ηi = Qη(Xi, Vi), i = 1, . . . , N. (2.2)

Provided ηi is continuously distributed given Xi and Assumption 2.2 below holds, (2.2) is
a representation that comes without loss of generality, corresponding to a fully unrestricted
correlated random-effects specification.

ASSUMPTION 2.2. (INDIVIDUAL EFFECTS) (a) Vi follows a standard uniform distribution,
independent of Xi; (b) τ �→ Qη(x, τ ) is strictly increasing on (0, 1), for almost all x in the
support of Xi .

2.2. Examples

We next describe several examples to illustrate the static set-up introduced above.

EXAMPLE 2.1. (LOCATION SCALE) As a first special case of model (2.1), consider the following
panel generalization of the location-scale model (He, 1997)

Yit = X′
itβ + ηi + (X′

itγ + μηi)εit, (2.3)

2 Indeed, using Assumption 2.1(a) and (b), we have

Pr(Yit ≤ QY (Xit, ηi , τ )|Xi, ηi ) = Pr(QY (Xit, ηi , Uit) ≤ QY (Xit, ηi , τ )|Xi, ηi )
= Pr(Uit ≤ τ |Xi, ηi ) = τ.
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where εit are independent and identically distributed (i.i.d.) across periods, and independent of all
regressors and individual effects.3 Denoting Uit = F (εit), where F is the cumulative distribution
function (CDF) of εit, the conditional quantiles of Yit are given by

QY (Xit, ηi, τ ) = X′
itβ + ηi + (X′

itγ + μηi)F
−1(τ ), τ ∈ (0, 1).

EXAMPLE 2.2. (PANEL QUANTILE REGRESSION) Consider, next, the following linear quantile
specification with scalar ηi , which generalizes (2.3):

Yit = X′
itβ(Uit) + ηiγ (Uit). (2.4)

Given Assumption 2.1(a) and (b), the conditional quantiles of Yit are given by

QY (Xit, ηi, τ ) = X′
itβ(τ ) + ηiγ (τ ).

Model (2.4) is a panel data generalization of the classical linear quantile model of Koenker and
Bassett (1978). Were we to observe the individual effects ηi along with the covariates Xit, it
would be reasonable to postulate a model of this form. It is instructive to compare model (2.4)
with the following more general but different type of model

Yit = X′
itβ(Uit) + ηi(Uit), (2.5)

where ηi(τ ) is an individual-specific nonparametric function of τ . Koenker (2004) and
subsequent fixed-effects approaches considered this more general model. Unlike (2.4), the
presence of the process ηi(τ ) in (2.5) introduces an element of nonparametric functional
heterogeneity in the conditional distribution of Yit. In contrast, a key aspect of our approach
is that we view η as missing data, and introduce them as additional (latent) covariates in the
quantile regression model.

The term ηi(Uit) in model (2.5) can be regarded as a function of Uit and a vector of
unobserved individual effects of unspecified dimension. In this way, model (2.5) allows for
multiple individual characteristics that affect differently individuals with different error rank
Uit. However, while being agnostic about the number of unobserved individual factors affecting
outcomes is attractive, sometimes substantive reasons suggest that only a small number of
underlying factors play a role. Additionally, as our analysis makes clear, whether one uses a
quantile model with a different individual effect at each quantile or a model with a small number
of unobserved effects has implications for identification.4

In order to complete model (2.4), one can use another linear quantile specification for the
conditional distribution of individual effects:

ηi = X′
iδ(Vi). (2.6)

Given Assumption 2.2, the conditional quantiles of ηi are then given by

Qη(Xi, τ ) = X′
iδ(τ ).

3 A generalization of (2.3) that allows for two-dimensional individual effects (as in Example 2.3) is

Yit = X′
itβ + ηi1 + (X′

itγ + ηi2)εit.

4 As mentioned in the introduction, Rosen (2012) shows that a fixed-effects model for a single quantile may not be
point-identified.

C© 2016 Royal Economic Society.



Nonlinear panel data estimation via quantile regressions C67

Model (2.6) corresponds to a correlated random-effects approach. However, it is more flexible
than alternative specifications in the literature. A commonly used specification is (Chamberlain,
1984)

ηi = X′
iμ+ σεi, εi |Xi ∼ N (0, 1). (2.7)

For example, in contrast with (2.7), model (2.6) is fully nonparametric in the absence of
covariates (i.e., when an independent random-effects specification is assumed). Model (2.6) and
its extensions based on series specifications may also be of interest in other nonlinear panel data
models, where the outcome equation does not follow a quantile model. We return to this point in
the conclusion.

EXAMPLE 2.3. (MULTIDIMENSIONAL HETEROGENEITY) Model (2.4) can easily be modified
to allow for more general interactions between observables and unobservables, thus permitting
the effects of covariates to be heterogeneous at different quantiles. A random coefficients
generalization that allows for heterogeneous effects is

QY (Xit, ηi, τ ) = X′
itβ(τ ) + γ1(τ )ηi1 +X′

itγ2(τ )ηi2, (2.8)

where ηi = (ηi1, ηi2)′ is bivariate.
In order to extend (2.6) to the case with bivariate unobserved heterogeneity, it is convenient

to assume a triangular structure such as

ηi1 = X′
iδ11(Vi1),

ηi2 = ηi1δ21(Vi2) +X′
iδ22(Vi2), (2.9)

where Vi1 and Vi2 follow independent standard uniform distributions. Though not invariant
to permutation of (ηi1, ηi2), except if fully nonparametric, model (2.9) provides a flexible
specification for the bivariate conditional distribution of (ηi1, ηi2) given Xi .5

2.3. Nonparametric identification

The class of panel data models introduced above satisfies conditional independence restrictions,
as period-specific outcomes Yi1, . . . , YiT are mutually independent conditional on exogenous
covariates and individual heterogeneity Xi, ηi . A body of work, initially developed in the
context of nonlinear measurement error models, has established nonparametric identification
results in related models under conditional independence restrictions; see Hu (2015) for a
recent survey. Here we show how the result in Hu and Schennach (2008) can be used to show
nonparametric identification. In Section 4, we build on Hu and Shum (2012) to provide conditions
for identification in dynamic models, under Markovian restrictions.

Consider model (2.1) and (2.2), with a scalar unobserved effect ηi . At least three periods are
needed for identification, and we set T = 3. In the case where ηi is multivariate, identification
requires using additional time periods (see below). Throughout we use fZ and fZ|W as generic
notation for the distribution function of a random vector Z and for the conditional distribution of
Z given W , respectively.

5 It is worth pointing out that quantiles appear not to generalize easily to the multivariate case.
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Under conditional independence over time (Assumption 2.1(c)), we have, for all y1, y2, y3,
x = (x ′

1, x
′
2, x

′
3)′ and η:

fY1,Y2,Y3|η,X(y1, y2, y3 | η, x) = fY1|η,X(y1 | η, x)fY2|η,X(y2 | η, x)fY3|η,X(y3 | η, x). (2.10)

Hence the data distribution function relates to the densities of interest as follows:

fY1,Y2,Y3|X(y1, y2, y3 | x) =
∫
fY1|η,X(y1 | η, x)fY2|η,X(y2 | η, x)fY3|η,X(y3 | η, x)fη|X(η | x)dη.

(2.11)

The goal is the identification of fY1|η,X, fY2|η,X, fY3|η,X and fη|X given knowledge of fY1,Y2,Y3|X.
The setting of (2.11) is formally equivalent (conditional on x) to the instrumental variables

set-up of Hu and Schennach (2008) for nonclassical nonlinear errors-in-variables models.
Specifically, according to the terminology of Hu and Schennach, Yi3 would be the outcome
variable, Yi2 would be the mismeasured regressor, Yi1 would be the instrumental variable and ηi
would be the latent, error-free regressor. We closely rely on their analysis and make the following
assumption.

ASSUMPTION 2.3. (IDENTIFICATION) Almost surely in covariate values x, (a) the joint density
fY1,Y2,Y3,η|X=x is bounded, as well as all its joint and marginal densities; (b) for all η1 �= η2,
Pr[fY3|η,X(Yi3|η1, x) �= fY3|η,X(Yi3|η2, x) |Xi = x] > 0; (c) there exists a known functional 
x
such that 
x(fY2|η,X(·|η, x)) = η; (d) the linear operators LY2|η,x and LY1|Y2,x , associated with
the conditional densities fY2|η,X=x and fY1|Y2,X=x , respectively, are injective.

Assumption 2.3(a) requires bounded densities. Assumption 2.3(b) requires that fY3|η,X be
non-identical at different values of η. Assumption 2.3(c) imposes a centred measure of location
on fY2|η,X=x . In Example 2.2, the following normalization implies Assumption 2.3(c),∫ 1

0
β0(τ )dτ = 0, and

∫ 1

0
γ (τ )dτ = 1, (2.12)

where β0(τ ) corresponds to the coefficient of the constant in Xit. We use (2.12) in our empirical
implementation.6 Lastly, Assumption 2.3(d) is an injectivity condition. As pointed out by Hu
and Schennach (2008), injectivity is closely related to completeness conditions commonly
assumed in the literature on nonparametric instrumental variables. Similarly to completeness,
injectivity is a high-level condition.7 In Appendix A, we further discuss the different parts of
Assumption 2.3.

We then have the following result, which is a direct application of the identification theorem
in Hu and Schennach (2008).

PROPOSITION 2.1. (HU AND SCHENNACH (2008)) Let Assumptions 2.1, 2.2 and 2.3 hold.
Then all conditional densities fY1|η,X=x , fY2|η,X=x , fY3|η,X=x and fη|X=x , are nonparametrically
identified for almost all x.

This result places no restrictions on the form of fYt |η,X=x , thus allowing for general
distributional time effects.

6 In fact, Assumption 2.3(c) is also implied by (2.12) in the following model with first-order interactions, a version of
which we estimate in the empirical application: Yit = X′

itβ(Uit) + ηiX
′
itγ (Uit).

7 See, e.g., Canay et al. (2013) for results on the testability of completeness assumptions, and D’Haultfoeuille (2011),
Andrews (2011) and Hu and Shiu (2012) for primitive conditions in several settings.
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Lastly, the identification result extends to models with multiple, q-dimensional individual
effects ηi , by taking a larger T > 3. For example, with T = 5, it is possible to apply the
identification theorem of Hu and Schennach (2008) to a bivariate ηi using (Yi1, Yi2) instead of
Yi1, (Yi3, Yi4) instead of Yi2, and Yi5 instead of Yi3.

3. QUANTILE REGRESSION ESTIMATORS

In this section, we introduce our estimation strategy and discuss several of its statistical
properties.

3.1. Model specification and moment restrictions

We specify the conditional quantile function of Yit in (2.1), for scalar ηi , as

QY (Xit, ηi, τ ) = Wit(ηi)
′θ (τ ). (3.1)

In (3.1), the vectorWit(ηi) contains a finite number of functions ofXit and ηi . One possibility is to
adopt a simple linear quantile specification as in Example 2.2, in which caseWit(ηi) = (X′

it, ηi)
′.

A more flexible approach is to use a series specification of the quantile function as in (1.1), and
to set Wit(ηi) = (g1(Xit, ηi), . . . , gK1 (Xit, ηi))′ for a set of K1 functions g1, . . . , gK1 . In practice,
one can use orthogonal polynomials, wavelets or splines, for example; see Chen (2007) for a
comprehensive survey of sieve methods.

Similarly, we specify the conditional quantile function of ηi in (2.2) as

Qη(Xi, τ ) = Z′
iδ(τ ). (3.2)

In (3.2), the vector Zi contains a finite number of functions of covariates Xi , such as Zi =
(h1(Xi), . . . , hK2 (Xi)) for a set of K2 functions h1, . . . , hK2 . Extensions to vector-valued ηi can
be done along the lines of Example 2.3.

The posterior density of the individual effects fη|Y,X plays an important role in the analysis.
It is given by

fη|Y,X(η | y, x; θ (·), δ(·)) =
∏T
t=1 fYt |Xt ,η(yt | xt , η; θ (·))fη|X(η | x; δ(·))∫ ∏T
t=1 fYt |Xt ,η(yt | xt , η̃; θ (·))fη|X (̃η | x; δ(·))dη̃ , (3.3)

where we have used conditional independence in Assumption 2.1(c), and we have explicitly
indicated the dependence of the various densities on model parameters.

Let ψτ (u) = τ − 1{u < 0}. The function ψτ is the first derivative (outside the origin) of
the ‘check’ function ρτ , which is familiar from the quantile regression literature (Koenker and
Basset, 1978):

ρτ (u) = (τ − 1{u < 0})u, ψτ (u) = dρτ (u)

du
.
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In order to derive the main moment restrictions, we start by noting that, for all τ ∈ (0, 1),
the following infeasible moment restrictions hold, as a direct implication of Assumptions 2.1
and 2.2:

E
[ T∑
t=1

Wit(ηi)ψτ (Yit −Wit(ηi)
′θ (τ ))

]
= 0, (3.4)

and

E[Ziψτ (ηi − Z′
iδ(τ ))] = 0. (3.5)

Indeed, (3.4) is the first-order condition associated with the infeasible population quantile
regression of Yit on Wit(ηi). Similarly, (3.5) corresponds to the infeasible quantile regression
of ηi on Zi .

Applying the law of iterated expectations to (3.4) and (3.5), respectively, we obtain the
following integrated moment restrictions, for all τ ∈ (0, 1):

E
[ ∫ ( T∑

t=1

Wit(η)ψτ (Yit −Wit(η)′θ (τ ))
)
f (η | Yi,Xi ; θ (·), δ(·))dη

]
= 0, (3.6)

and

E
[ ∫ (

Ziψτ (η − Z′
iδ(τ ))

)
f (η | Yi,Xi ; θ (·), δ(·))dη

]
= 0. (3.7)

Here, and in the rest of the analysis, we use f as a shorthand for the posterior density fη|Y,X.
It follows from (3.6) and (3.7) that, if the posterior density of the individual effects were

known, then estimating the model’s parameters could be done using two sets of linear quantile
regressions, weighted by the posterior density. However, as the notation makes clear, the posterior
density in (3.3) depends on the entire processes θ (·) and δ(·). Specifically, for absolutely
continuous conditional densities of outcomes and individual effects, we have

fYt |Xt ,η(yt | xt , η; θ (·)) = lim
ε→0

ε

wt (η)′(θ (ut + ε) − θ (ut ))
, (3.8)

and

fη|X(η | x; δ(·)) = lim
ε→0

ε

z′(δ(v + ε) − δ(v))
, (3.9)

where ut and v are defined by wt (η)′θ (ut ) = yt and z′δ(v) = η, respectively. Equations (3.8) and
(3.9) come from the fact that the density of a random variable and the derivative of its quantile
function are the inverse of each other.

The dependence of the posterior density on the entire set of model parameters makes it
impossible to directly recover θ (τ ) and δ(τ ) in (3.6) and (3.7) in a τ -by-τ fashion. The main
idea of the algorithm that we present in the next subsection is to circumvent this difficulty by
iterating back-and-forth between computation of the posterior density, and computation of the
model’s parameters given the posterior density. The latter is easy to do, as it is based on weighted
quantile regressions. Similar ideas have been used in the literature; see, e.g. Arcidiacono and
Jones (2003). However, an additional difficulty in our case is that the posterior density depends
on a continuum of parameters. In order to develop a practical approach, we now introduce a
finite-dimensional, tractable approximating model.
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Parametric specification. Building on Wei and Carroll (2009), we approximate θ (·) and δ(·)
using splines, with L knots 0 < τ1 < τ2 < . . . < τL < 1. A practical possibility is to use
piecewise-linear splines as in Wei and Carroll, but other choices are possible, such as cubic
splines or shape-preserving B-splines. When using interpolating splines, the approximation
argument requires suitable smoothness assumptions on θ (τ ) and δ(τ ) as functions of τ ∈ (0, 1).
For fixed L, the spline specification can be seen as an approximation to the underlying quantile
functions.

Let us define ξ = (ξ ′
A, ξ

′
B)′, where

ξA = (θ (τ1)′, θ (τ2)′, . . . , θ (τL)′)′ and ξB = (δ(τ1)′, δ(τ2)′, . . . , δ(τL)′)′.

The approximating model depends on the finite-dimensional parameter vector ξ that is used
to construct interpolating splines. The associated likelihood function and density of individual
effects are then denoted as fYt |Xt ,η(yt | xt , η; ξA) and fη|X(η | x; ξB), respectively, and the implied
posterior density is

f (η | y, x; ξ ) =
∏T
t=1 fYt |Xt ,η(yt | xt , η; ξA)fη|X(η | x; ξB)∫ ∏T
t=1 fYt |Xt ,η(yt | xt , η̃; ξA)fη|X (̃η | x; ξB)dη̃

. (3.10)

The approximating densities take closed-form expressions when using piecewise-linear splines.
Moreover, when implementing the algorithm in practice we augment the specification with
parametric models in the tail intervals of the intercepts of θ (τ ) and δ(τ ). In this case,
the estimation algorithm needs to be modified slightly. See Section 6.1 for a discussion of
implementation.

Finally, the integrated moment restrictions of the approximating model are, for all � =
1, . . . , L

E
[ ∫ ( T∑

t=1

Wit(η)ψτ�(Yit −Wit(η)′θ (τ�))
)
f (η | Yi,Xi ; ξ )dη

]
= 0, (3.11)

and

E
[ ∫ (

Ziψτ� (η − Z′
iδ(τ�))

)
f (η | Yi,Xi ; ξ )dη

]
= 0. (3.12)

3.2. Estimation algorithm

Let (Yi,X′
i), i = 1, . . . , N , be an i.i.d. sample. Motivated by the integrated moment restrictions

(3.11) and (3.12), we propose to estimate the model’s parameters by using an iterative method.
In practice, we use a simulation-based approach to replace the integrals in (3.11) and (3.12) by
sums. Starting with initial parameter values ξ̂ (0), we iterate the following two steps in a stochastic
EM algorithm until convergence to a stationary distribution.

STEP 1. For all i = 1, . . . , N , compute the posterior density

f̂
(s)
i (η) = f (η | Yi,Xi ; ξ̂ (s)), (3.13)

and draw M values η(1)
i , . . . , η

(M)
i from f̂

(s)
i .
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STEP 2. Solve, for � = 1, . . . , L,

θ̂ (τ�)
(s+1) = argmin

θ

N∑
i=1

M∑
m=1

T∑
t=1

ρτ� (Yit −Wit(η
(m)
i )′θ ),

δ̂(τ�)
(s+1) = argmin

δ

N∑
i=1

M∑
m=1

ρτ� (η
(m)
i − Z′

iδ).

This sequential simulated method-of-moment method is related to, but different from, the
standard EM algorithm (Dempster et al., 1977). As in EM, the algorithm iterates back-and-forth
between computation of the posterior density of the individual effects (‘E’-step) and computation
of the parameters given the posterior density (‘M’-step). Unlike in EM, however, in the second
step of the algorithm (the M-step), estimation is not based on a likelihood function, but on the
check function of quantile regression.

Proceeding in this way has two major computational advantages compared to maximizing
the full likelihood of the approximating model. First, as opposed to the likelihood function,
which is a complicated function of all quantile regression coefficients, the M-step problem nicely
decomposes intoL different τ�-specific subproblems. Secondly, using the check function yields a
globally convex objective function in each step. In fact, the M-step simply consists of 2L ordinary
quantile regressions, where the simulated values of the individual effects are treated, in turn, as
covariates and dependent variables.

At the same time, two features of the standard EM algorithm differ in our sequential method-
of-moment method. First, as our algorithm is not likelihood-based, the resulting estimator will
not be efficient in general, even as the number of draws M tends to infinity.8

Second, unlike in deterministic versions of EM, in the E-step we draw M values for the
individual effects according to their posterior density f̂ (s)

i (η) = f (η | Yi,Xi ; ξ̂ (s)). We use a
random-walk Metropolis–Hastings sampler for this purpose, but other choices are possible (such
as particle filter methods).9 An advantage of Metropolis–Hastings over grid approximations and
importance sampling weights is that the integral in the denominator of the posterior density
of η is not needed. The output of this algorithm is a Markov chain. In practice, we stop the
chain after a large number of iterations and we report an average across the last S̃ values:
ξ̂ = (1/S̃)

∑S

s=S−S̃+1 ξ̂
(s).

In each iteration of the algorithm, the draws η(1)
i , . . . , η

(M)
i are randomly redrawn. This

approach, sometimes referred to as stochastic EM, thus differs from the simulated EM algorithm
of McFadden and Ruud (1994) where the same underlying uniform draws are used in each
iteration. Nielsen (2000a, 2000b) studies and compares various statistical properties of simulated
EM and stochastic EM in a likelihood context. In particular, he provides conditions under which
the Markov chain output of stochastic EM is ergodic. AsM tends to infinity, the sum converges to
the true integral. The problem is then smooth (because of the integral with respect to η). Building
on Nielsen’s work, we next analyse the statistical properties of estimators based on fixed-M and
large-M versions of the algorithm.

8 This loss of efficiency relative to maximum likelihood is similar to the one documented in Arcidiacono and Jones
(2003), for example.

9 Note that the posterior density is non-negative by construction. In particular, drawing from f̂
(s)
i (η) automatically

produces rearrangement of the various quantile curves, as in Chernozhukov et al. (2010).
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3.3. Asymptotic properties

We now discuss the asymptotic properties of the estimation algorithm. Throughout, T is fixed
while N tends to infinity.

Parametric inference. We start by discussing the asymptotic properties of the estimator based
on the stochastic EM algorithm, for fixed number of draws M , in the case where the parametric
model is assumed to be correctly specified. That is, K1,K2 (the number of series terms) and L
(the size of the grid on the unit interval) are held fixed as N tends to infinity. In the following
subsection, we study consistency as K1,K2 and L tend to infinity with N , in the large-M limit.

Nielsen (2000a) studies the statistical properties of the stochastic EM algorithm in a
likelihood case. He provides conditions under which the Markov chain ξ̂ (s) is ergodic, for a
fixed sample size. In addition, he also characterizes the asymptotic distribution of

√
N (̂ξ (s) − ξ )

as N increases, where ξ denotes the population parameter vector.
In Appendix B, we rely on Nielsen’s work to characterize the asymptotic distribution of

ξ̂ (s) = ((θ̂ (s))′, (̂δ(s))′)′ in our model, where the optimization step is not likelihood-based but relies
on quantile-based estimating equations. Specifically, if s corresponds to a draw from the ergodic
distribution of the Markov chain, and M is the number of draws per iteration, then

√
N (̂ξ (s) − ξ )

d→N (0,V + VM ),

where the expressions of V and VM are given in Appendix B.
In addition, if ξ̂ is a parameter draw and M tends to infinity, or alternatively if ξ̂ is computed

as the average of ξ̂ (s) over S̃ iterations with S̃ tending to infinity (as in our implementation), then
√
N (̂ξ − ξ )

d→N (0,V),

where V is the asymptotic variance of the method-of-moments estimator based on the integrated
moment restrictions (3.11) and (3.12).

Nonparametric consistency. In the asymptotic theory of the previous subsection,K1,K2 and L
are held fixed asN tends to infinity. It might be more appealing to see the parametric specification
based on series and splines as an approximation to the quantile functions, which becomes more
accurate as the dimensions K1,K2 and L increase. Here, our aim is to provide conditions under
which the estimator is consistent as N , K1,K2 and L tend to infinity.

To proceed, we consider the following assumption on the data-generating process, as in
Belloni et al. (2011),

Yit = Wit(ηi)
′θ(Uit) + RY (Xit, ηi, Uit),

and, similarly,

ηi = Z′
iδ(Vi) + Rη(Xi, Vi),

where sup(x,e,u) |RY (x, e, u)| = o(1) as K1 tends to infinity, and sup(x,v) |Rη(x, v)| = o(1) as K2

tends to infinity.
Let ξ (τ ) = (θ (τ )′, δ(τ )′)′ be a (K1 +K2) × 1 vector for all τ ∈ (0, 1), and let ξ : (0, 1) →

R
K1+K2 be the associated function. Let us consider the estimator ξ̂ = (θ̂ ′, δ̂′)′ based on the

integrated moment restrictions (3.11) and (3.12). This analysis as M → ∞ thus ignores the
impact of small-M simulation error. Note that ξ̂ is a function defined on the unit interval.
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In Appendix B, we provide and discuss conditions that guarantee that ξ̂ is uniformly consistent
for ξ = (θ

′
, δ

′
)′; that is,

sup
τ∈(0,1)

‖̂ξ (τ ) − ξ (τ )‖ = op(1), (3.14)

where ‖ · ‖ denotes the Euclidean norm on R
K1+K2 .

Some of the conditions for consistency given in Appendix B are non-primitive. In particular,
an identification condition is required, which is related to Assumption 2.3, though it differs from
it because our estimator is based on a set of moment conditions rather than the likelihood.
More generally, models with latent distributions, such as the nonlinear panel data models
we analyse in this paper, are subject to ill-posedness, making a complete characterization of
asymptotic distributions challenging.10 A practical possibility, for which we do not yet have a
formal justification, is to use empirical counterparts of the fixed-(K1,K2, L) asymptotic formulae
derived in the previous subsection or, alternatively the bootstrap, to conduct inference. A related
question is that of the practical choice of K1,K2 and L. In this paper, we do not characterize the
asymptotic distribution of our estimator as N , K1,K2 and L tend to infinity, and we leave these
important questions to future work.

4. DYNAMIC MODELS

In this section, we extend the method to dynamic models with dependence on lagged outcomes
or predetermined covariates.

4.1. Models, examples and identification

In a dynamic extension of the static model (2.1), we specify the conditional quantile function of
Yit given Yi,t−1, Xit and ηi as

Yit = QY (Yi,t−1, Xit, ηi, Uit), i = 1, . . . , N, t = 2, . . . , T . (4.1)

A simple extension is obtained by replacing Yi,t−1 by a vector containing various lags of the
outcome variable. As in the static case, QY could depend on t .

Linear versions of (4.1) are widely used in applications, including in the study of individual
earnings, firm-level investment and cross-country growth, or in the numerous applications of
panel VAR models. In these applications, interactions between heterogeneity and dynamics are
often of great interest. A recent example is the analysis of institutions and economic growth in
Acemoglu et al. (2015).

The assumptions we impose in model (4.1), and the modelling of unobserved heterogeneity,
both depend on the nature of the covariates process. We consider two cases in turn: strictly
exogenous and predetermined covariates.

10 In particular, the class of models we consider nests nonparametric deconvolution models with repeated
measurements; see, e.g. Kotlarski (1967), Horowitz and Markatou (1996), Delaigle et al. (2008), Bonhomme and Robin
(2010). In such settings, quantiles are generally not root-N estimable (Hall and Lahiri, 2008).
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Autoregressive models. In the case where covariates are strictly exogenous, with some abuse
of notation we suppose that Assumption 2.1 holds with (Yi,t−1, X

′
iT )′ instead of Xit and

(Yi1, X′
i1, . . . , X

′
iT )′ instead of Xi . Note that the latter contains both strictly exogenous covariates

and first-period outcomes. Individual effects can be written without loss of generality as

ηi = Qη(Yi1, Xi, Vi), i = 1, . . . , N, (4.2)

and we suppose that Assumption 2.2 holds with (Yi1, X′
i)

′ instead of Xi .

Predetermined covariates. In dynamic models with predetermined regressors, current values
of Uit can affect future values of covariates Xis , s > t . Given the presence of latent variables in
our nonlinear set-up, a model for the feedback process is needed. That is, we need to specify
the conditional distribution of Xit given (Y t−1

i , Xt−1
i , ηi), where Y t−1

i = (Yi,t−1, . . . , Yi1)′ and
Xt−1
i = (X′

i,t−1, . . . , X
′
i1)′. We use additional quantile specifications for this purpose. In the case

where Xit is scalar, and under a conditional first-order Markov assumption for (Yit, Xit), t =
1, . . . , T , given ηi , we specify, without further loss of generality:

Xit = QX(Yi,t−1, Xi,t−1, ηi, Ait), i = 1, . . . , N, t = 2, . . . , T . (4.3)

We suppose that Assumptions 2.1 and 2.2 hold, with (Yi,t−1, X
′
it)

′ instead of Xit and (Yi1, X′
i1)′

instead of Xi , and

ηi = Qη(Yi1, Xi1, Vi), i = 1, . . . , N. (4.4)

We then complete the model with the following assumption on the feedback process.

ASSUMPTION 4.1. (PREDETERMINED COVARIATES) (a) Ait follows a standard uniform
distribution, independent of (Yi,t−1, Xi,t−1, ηi); (b) τ �→ QX(y, x, η, τ ) is strictly increasing
on (0, 1), for almost all (y, x, η) in the support of (Yi,t−1, Xi,t−1, ηi); (c) for all t �= s, Ait is
independent of Ais .

Model (4.3) can be extended to multidimensional predetermined covariates using a triangular
approach in the spirit of the one introduced in Example 2.3. For example, with two-dimensional
Xit = (X1it , X2it )′,

X1it = QX1 (Yi,t−1, X1i,t−1, X2i,t−1, ηi, A1it ),

X2it = QX2 (Yi,t−1, X1it , X1i,t−1, X2i,t−1, ηi, A2it ), (4.5)

where ηi can be scalar or multidimensional as in Example 2.3.

EXAMPLE 4.1. (PANEL QUANTILE AUTOREGRESSION) A dynamic counterpart to Example 2.2
is the following linear quantile regression model:

Yit = ρ(Uit)Yi,t−1 +X′
itβ(Uit) + ηiγ (Uit). (4.6)

Model (4.6) differs from the more general model studied in Galvao (2011):

Yit = ρ(Uit)Yi,t−1 +X′
itβ(Uit) + ηi(Uit). (4.7)

Similarly as in (2.5), and in contrast with the models introduced in this paper, the presence of the
functional heterogeneity term ηi(τ ) makes fixed-T consistent estimation problematic in (4.7).

An extension of (4.6) is

Yit = h(Yi,t−1)′ρ(Uit) +X′
itβ(Uit) + ηiγ (Uit), t = 2, . . . , T , (4.8)
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where h is a univariate function. For example, when h(y) = |y| model (4.8) is a panel data
version of the CAViaR model of Engle and Manganelli (2004). Other choices will lead to panel
counterparts of various dynamic quantile models; see, e.g. Gouriéroux and Jasiak (2008). The
approach developed in this paper allows for more general, nonlinear series specifications of
dynamic quantile functions in a panel data context.

EXAMPLE 4.2. (QUANTILE AUTOREGRESSION WITH PREDETERMINED COVARIATES)
Extending Example 4.1 to allow for a scalar predetermined covariate Xit, we may augment (4.6)
with the following linear quantile specification for Xit:

Xit = μ(Ait)Yi,t−1 + ξ1(Ait)Xi,t−1 + ξ0(Ait) + ζ (Ait)ηi.

This specification can be extended to allow for multidimensional predetermined regressors, as
in (4.5).

Identification. In dynamic models, nonparametric identification requires T ≥ 4. Under
Assumption 2.1, Uit is independent of Xis for all s and uniformly distributed, and independent
of Uis for all s �= t . So, taking T = 4, we have

fY1,Y2,Y3,Y4|X(y1, y2, y3, y4 | x) =
∫
fY2|Y1,η,X(y2 | y1, η, x)fY3|Y2,η,X(y3 | y2, η, x)

×fY4|Y3,η,X(y4 | y3, η, x)fη,Y1|X(η, y1 | x)dη, (4.9)

where we have used that Yi4 is conditionally independent of (Yi2, Yi1) given (Yi3, Xi, ηi), and that
Yi3 is conditionally independent of Yi1 given (Yi2, Xi, ηi).

An extension of the theorem of Hu and Schennach (2008), along the lines of Hu and Shum
(2012), then shows nonparametric identification of all conditional densities fY2|Y1,η,X, fY3|Y2,η,X,
fY4|Y3,η,X and fη,Y1|X, in the autoregressive model, under suitable assumptions.11

Lastly, autoregressive models with predetermined covariates can be shown to be
nonparametrically identified using similar arguments, provided the feedback process is first-order
Markov.

4.2. Estimation in dynamic models

The estimation algorithm of Section 3 can be directly modified to deal with autoregressive models
with strictly exogenous covariates. Consider a linear specification of the quantile functions (4.1)
and (4.2), possibly based on series. Then, the stochastic EM algorithm essentially takes the same
form as in the static case, except for the posterior density of the individual effects, which is now
computed as

f (η | y, x; ξ ) =
∏T
t=2 fYt |Yt−1,Xt ,η(yt | yt−1, xt , η; ξA)fη|Y1,X(η | y1, x; ξB )∫ ∏T
t=2 fYt |Yt−1,Xt ,η(yt | yt−1, xt , η̃; ξA)fη|Y1,X (̃η | y1, x; ξB )dη̃

. (4.10)

11 In the dynamic model (4.8), it follows from the analysis of Hu and Shum (2012) that one can rely on (2.12)
as in the static case, provided the averages across τ values of the coefficients of exogenous regressors and lagged
outcome are identified based on E[Yit − Yi,t−1 | Y t−2

i , Xi ] = E[h(Yi,t−1) − h(Yi,t−2) | Y t−2
i , Xi ]′

∫ 1
0 ρ(τ )dτ + (Xit −

Xi,t−1)′
∫ 1

0 β(τ )dτ .
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General predetermined regressors. In models with predetermined covariates, the critical
difference is in the nature of the posterior density of the individual effects. Letting Wit =
(Yit, X

′
it)

′ and Wt
i = (W ′

i1, . . . ,W
′
it)

′, we have

f (η | y, x; ξ ) = fW2,...,WT
(w2, . . . , wT | w1, η)fη|W1 (η | w1)∫

fW2,...,WT
(w2, . . . , wT | w1, η)fη|W1 (η | w1)dη

= fη|W1 (η | w1; ξB )
∏T
t=2 fYt |Yt−1,Xt ,η(yt | yt−1, xt , η; ξA)fXt |Wt−1,η(xt | wt−1, η; ξC)∫

fη|W1 (̃η | w1; ξB )
∏T
t=2 fYt |Yt−1,Xt ,η(yt | yt−1, xt , η̃; ξA)fXt |Wt−1,η(xt | wt−1, η̃; ξC)dη̃

,

where now ξ = (ξ ′
A, ξ

′
B, ξ

′
C)′ includes additional parameters that correspond to the model of the

feedback process from past values of Yit and Xit to future values of Xis , for s > t .
Under predeterminedness, the quantile model only specifies the partial likelihood:

∏T

t=2
fYt |Yt−1,Xt ,η(yt | yt−1, xt , η; ξA).

However, the posterior density of the individual effects also depends on the feedback process,

fXt |Wt−1,η(xt | wt−1, η; ξC),

in addition to the density of individual effects. Note that the feedback process could depend on
an additional vector of individual effects different from ηi .

In line with our approach, we also specify the quantile function of covariates in (4.3) using
linear (series) quantile regression models. Specifically, letting Xpit , p = 1, . . . , P , denote the
various components of Xit, we specify the following triangular, recursive system that extends
Example 4.2 to multidimensional predetermined covariates:

X1it = W1it (ηi)μ1(A1it ),

· · · · · · · · ·
XPit = WPit (ηi)μP (APit ). (4.11)

Here, A1it , . . . , AP it follow independent standard uniform distributions, independent of all other
random variables in the model, W1it (ηi) contains functions of (Yi,t−1, Xi,t−1, ηi) and Wpit (ηi)
contains functions of (X1it , . . . Xp−1,it , Yi,t−1, Xi,t−1, ηi) for p > 1. The parameter vector ξC
includes all μp(τ�), for p = 1, . . . , P and � = 1, . . . , L.

Thus, the model with predetermined regressors has three layers of quantile regressions: the
outcome model (4.1) specified as a linear quantile regression, the model of the feedback process
(4.11) and the model of individual effects (4.4), which here depends on first-period outcomes
and covariates. The estimation algorithm is similar to the one for static models, with minor
differences in both steps.12

12 In addition, in Appendix C, we describe how to allow for autocorrelated errors in model (2.1) and (2.2).
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5. QUANTILE MARGINAL EFFECTS

In nonlinear panel data models, it is often of interest to compute the effect of marginal changes
in covariates on the entire distribution of outcome variables. As an example, let us consider the
following average quantile marginal effect (QME) for continuous Xit:

M(τ ) = E
[∂QY (Xit, ηi, τ )

∂x

]
.

Here, ∂QY/∂x denotes the vector of partial derivatives of QY with respect to its first dim(Xit)
arguments.

In the quantile regression model of Example 2.2, individual QMEs are equal to ∂QY

(Xit, ηi, τ )/∂x = β(τ ) and M(τ ) = β(τ ). In Example 2.3, individual QME are heterogeneous,
equal to β(τ ) + γ2(τ )ηi2 and M(τ ) = β(τ ) + γ2(τ )E[ηi2]. Series specifications of the quantile
function as in (1.1) can allow for rich heterogeneity in individual QMEs.

Dynamic models. QMEs are also of interest in dynamic models. One can define a short-run
average QME as

Mt (τ ) = E
[∂QY (Yi,t−1, Xit, ηi, τ )

∂x

]
.

Moreover, when considering marginal changes in the lagged outcome Yi,t−1, the average
QME, E[∂QY (Yi,t−1, Xit, ηi, τ )/∂y], can be interpreted as a nonlinear measure of state
dependence. In that case, ∂QY/∂y denotes the derivative ofQY with respect to its first argument.

Dynamic models also provide the opportunity to document dynamic QMEs, such as the
following one-period-ahead average QME:

Mt+1/t (τ1, τ2) = E
[∂QY (QY (Yi,t−1, Xit, ηi, τ1), Xi,t+1, ηi, τ2)

∂y
× ∂QY (Yi,t−1, Xit, ηi, τ1)

∂x

]
.

Here, Mt+1/t (τ1, τ2) measures the average effect of a marginal change in Xit when ηi is kept
fixed, and the innovations in periods t and t + 1 have rank τ1 and τ2, respectively.

Panel quantile treatment effects. When the covariate of interest is binary, as in our empirical
application in Section 6, one can define panel data versions of quantile treatment effects. To
see this, let Dit be the binary covariate of interest, and let Xit include all other time-varying
covariates. Consider the static model (2.1), the argument extending directly to dynamic models.
Potential outcomes are defined as

Yit(d) = QY (d,Xit, ηi, Uit), d ∈ {0, 1}.
Under Assumption 2.1, (Yit(0), Yit(1)) is conditionally independent ofDit given (Xi, ηi). This

amounts to assuming selection on observables and unobservables, when unobserved effects ηi are
identified from the panel dimension.

The average conditional quantile treatment effect is then defined as

E[QY (1, Xit, ηi, τ ) −QY (0, Xit, ηi, τ )].

In the linear quantile regression model of Example 2.2, this is simply the coefficient of the vector
β(τ ) corresponding toDit. In fact, the distribution of treatment effects is identified for this model,
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under the conditions spelled out in Section 2. The key assumption is rank invariance of Uit given
Xi and ηi .

It is also possible to define unconditional quantile treatment effects, as

F−1
Yit(1)(τ ) − F−1

Yit(0)(τ ), (5.1)

where the CDFs FYit(0) and FYit(1) are given by13

FYit(d)(y) = E
[ ∫ 1

0
1{QY (d,Xit, ηi, τ ) ≤ y}dτ

]
, d ∈ {0, 1}. (5.2)

All these quantities can readily be estimated using our panel quantile estimator.

6. EMPIRICAL APPLICATION

In this section, we present an empirical illustration to the link between mothers’ smoking during
pregnancy and birthweight. We start by discussing how we implement the estimation algorithm
in practice.

6.1. Implementation

Piecewise-linear splines. We use piecewise-linear splines as an approximating model.
Although other spline families could be used instead, computing the implied likelihood functions
would then require inverting quantile functions numerically. In contrast, for linear splines, for all
� = 1, . . . , L− 1, we have

θ (τ ) = θ (τ�) + τ − τ�

τ�+1 − τ�

(
θ (τ�+1) − θ (τ�)

)
, τ� < τ ≤ τ�+1,

δ(τ ) = δ(τ�) + τ − τ�

τ�+1 − τ�

(
δ(τ�+1) − δ(τ�)

)
, τ� < τ ≤ τ�+1,

and the implied approximating period-t density of outcomes and the implied approximating
density of individual effects take the following simple closed-form expressions,

fYt |Xt ,η(yt | xt , η; ξA) = τ�+1 − τ�

wt (η)′(θ (τ�+1) − θ (τ�))
if wt (η)′θ (τ�) < yt ≤ wt (η)′θ (τ�+1), (6.1)

fη|X(η | x; ξB) = τ�+1 − τ�

z′(δ(τ�+1) − δ(τ�))
if z′δ(τ�) < η ≤ z′δ(τ�+1), (6.2)

augmented with a specification in the tail intervals (0, τ1) and (τL, 1).

Tail intervals. In order to model quantile functions in the intervals (0, τ1) and (τL, 1) one could
assume, following Wei and Carroll (2009), that θ (·) and δ(·) are constant on these intervals,
so the implied distribution functions have mass points at the two ends of the support. In

13 Note that unconditional quantile treatment effects cannot be directly estimated as in Firpo (2007) in this context, due
to the presence of the unobserved ηi and the lack of fixed-T identification for fixed-effects binary choice models.
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Figure 1. Quantile effects of smoking during pregnancy on log-birthweight.

Appendix D, we outline a different, exponential-based modelling of the extreme intervals,
motivated by the desire to avoid the fact that the support of the likelihood function depends
on the parameter value. We use this method in the empirical application.

6.2. Application: smoking and birthweight

Here, we revisit the effect of maternal inputs of children’s birth outcomes. Specifically, we
study the effect of smoking during pregnancy on children’s birthweights. Abrevaya (2006)
uses a mother fixed-effects approach to address endogeneity of smoking. In this paper, we
use quantile regression with mother-specific effects to allow for both unobserved heterogeneity
and nonlinearities in the relationship between smoking and weight at birth. As a complement,
in Appendix E, we report the results of a Monte Carlo simulation broadly calibrated to this
application, in order to assess the performance of our estimator in finite samples.

We focus on a balanced subsample from the US natality data used in Abrevaya (2006), which
comprises 12,360 women with three children each. Our outcome is the log-birthweight. The main
covariate is a binary smoking indicator. Age of the mother and gender of the child are used as
additional controls.

An ordinary least-squares (OLS) regression yields a significantly negative point estimate of
the smoking coefficient: −0.095. The fixed-effects estimate is also negative, but it is twice as
small: −0.050, significant. This suggests a negative endogeneity bias in OLS, and is consistent
with the results in Abrevaya (2006).

In the left panel of Figure 1 (data from Abrevaya, 2006), the solid line shows the smoking
coefficient estimated from pooled quantile regressions, on a fine grid of τ values. According
to these estimates, the effect of smoking is more negative at lower quantiles of birthweights.
The dashed line in the left panel of Figure 1 shows the quantile estimate of the smoking effect.
We use a linear quantile regression specification as in Example 2.2, augmented with a parametric
exponential model in the tail intervals. The covariates are smoking status, age and gender, with an
intercept. We use individual-specific averages of these variables as covariates in the specification
for ηi . Estimates are computed using L = 21 knots. The stochastic EM algorithm is run for 100
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Figure 2. Quantile effects of smoking during pregnancy on log-birthweight.

iterations, with 500 random-walk Metropolis–Hastings draws within each iteration.14 Parameter
estimates are computed as averages of the 50 last iterations of the algorithm.15

In the left panel of Figure 1, we see that the smoking effect becomes less negative when
correcting for time-invariant endogeneity through the introduction of mother-specific fixed
effects. At the same time, the effect is still sizable, and it remains increasing along the
distribution.

As another exercise, in the right panel of Figure 1 we compute the unconditional quantile
treatment effect of smoking as the difference in log-birthweights between a sample of smoking
women, and a sample of non-smoking women, keeping all other characteristics (i.e. observed Xi
and unobserved ηi) constant; see (5.1) and (5.2). We report differences in quantiles of simulated
potential outcomes obtained using the method of Machado and Mata (2005). This exercise
illustrates the usefulness of specifying and estimating a complete semiparametric model of the
joint distribution of outcomes and unobservables, in order to compute counterfactual distributions
that take into account the presence of unobserved heterogeneity. In this panel, the solid line
shows the empirical difference between unconditional quantiles, while the dashed line shows the
quantile treatment effect that accounts for both observables and unobservables.

The results in the right panel of Figure 1 are broadly similar to the results reported in the left
panel. An interesting finding is that in this case the endogeneity bias (i.e. the difference between
the dashed and solid lines) is slightly larger, and that it tends to decrease as one moves from
lower to higher quantiles of birthweight.

Finally, in Figure 2 (data from Abrevaya, 2006), we report the results of an interacted
quantile model, as in (1.1) and (1.2), where the specification allows for all first-order interactions
between covariates (i.e. smoking status, age and gender) and the unobserved mother-specific
effect. In this model, the quantile effect of smoking is mother-specific. In the left panel, lines
represent the percentiles 0.05, 0.25, 0.50, 0.75 and 0.95 of the heterogeneous smoking effect

14 The variance of the random-walk proposal is set to achieve an acceptance rate of ≈ 30%.
15 For θ , starting parameter values are taken based on ordinary quantile regressions of log-birthweight on smoking

status, age and gender, with an intercept, setting the coefficient of ηi in the outcome equation to one. For δ, we set
all initial quantile parameters to {0.1, 0.2, . . . , 2.1}. The initial values for the exponential parameters in the tails are all
set to 20. We experimented with other starting values for the model’s parameters (e.g. we initialized δ based on quantile
regressions of individual-specific means Y i onXi ) and found no qualitative differences compared to the results we report.
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across mothers, at various percentiles τ . In the right panel, the solid line is the raw quantile
treatment effect of smoking, and the dashed line is the quantile treatment effect estimate based on
panel quantile regression with interactions. The results in the right panel show the unconditional
quantile treatment effect of smoking, and are similar to the results obtained for a simple linear
specification (see the right panel of Figure 1). However, in the left panel of Figure 2, we see
substantial mother-specific heterogeneity in the conditional quantile treatment effect of smoking,
as for some mothers, smoking appears particularly detrimental to children’s birthweight, whereas
for other mothers, the smoking effect, while consistently negative, is much smaller. This evidence
is in line with the results of a linear random coefficients model reported in Arellano and
Bonhomme (2012).

7. CONCLUSION

Quantile methods are flexible tools to model nonlinear panel data relationships. In this paper,
quantile regression is used to model the dependence between outcomes, covariates and individual
heterogeneity, and between individual effects and exogenous regressors or initial conditions.
Quantile specifications also allow modelling feedback processes in models with predetermined
covariates. The empirical application illustrates the benefits of having a flexible approach to allow
for heterogeneity and nonlinearity within the same model in a panel data context.

Our approach leads to fixed-T identification of complete models. The estimation algorithm
exploits the computational advantages of linear quantile regression, within an iterative scheme
that allows us to deal with the presence of unobserved individual effects. Beyond static or
dynamic quantile regression models with single or multiple individual effects, our approach
naturally extends to series specifications, thus allowing for rich interactions between covariates
and heterogeneity at various points of the distribution.

Our quantile-based modelling of the distribution of individual effects could also be of
interest in other models. For example, one could consider semiparametric likelihood panel
data models, where the conditional likelihood of the outcome Yi given Xi and ηi depends
on a finite-dimensional parameter vector α, and the conditional distribution of ηi given Xi
is left unrestricted. The approach of this paper is easily adapted to this case, and delivers a
semiparametric likelihood of the form,

fY |X(y|x;α, δ(·)) =
∫
fY |X,η(y|x, η;α)fη|X(η|x; δ(·))dη,

where δ(·) is a process of quantile coefficients.
Our framework also naturally extends to models with time-varying unobservables, such as

Yit = QY (Xit, ηit, Uit),

ηit = Qη(ηi,t−1, Vit),

where Uit and Vit are i.i.d. and uniformly distributed. Arellano et al. (2015) use a quantile-based
approach to document nonlinear relationships between earnings shocks to households and their
lifetime profiles of earnings and consumption. This application illustrates the potential of our
estimation approach in dynamic settings.

A relevant issue for empirical practice is measurement error. Our approach can be extended
to allow covariates to be measured with error, as the analysis in Wei and Carroll (2009)
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illustrates. When a validation sample is available, our algorithm can also be modified to allow
for measurement error in outcome variables. In both cases, true variables are treated similarly as
latent individual effects in the above analysis, and they are repeatedly drawn from their posterior
densities in each iteration of the algorithm.

Lastly, this paper leaves a number of important questions unanswered. Statistical inference
in the nonparametric problem, where the complexity of the approximating model increases
together with the sample size, is one of them. Providing primitive conditions for identification,
and devising efficient computational routines, are other important questions for future work.
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APPENDIX A: IDENTIFICATION – DISCUSSION OF ASSUMPTION 2.3

Assumption 2.3(a) requires that all densities under consideration be bounded. This imposes mild restrictions
on the model’s parameters. Assumption 2.3(b) requires that fY3|η,X be non-identical at different values of η.
This assumption will be satisfied if, for some τ in small open neighbourhoodQY3 (x, η1, τ ) �= QY3 (x, η2, τ ).
In Example 2.2, Assumption 2.3(a) requires strict monotonicity of quantile functions – that is, x ′∇β(τ ) +
η∇γ (τ ) ≥ c > 0, where ∇ξ (τ ) denotes the first derivative of ξ (·) evaluated at τ – while Assumption 2.3(b)
holds if γ (τ ) �= 0 for τ in some open neighbourhood.

Assumption 2.3(c) imposes a centred measure of location on fY2|η,X=x . In order to apply the
identification theorem in Hu and Schennach (2008), it is not necessary that 
x be known. If, instead, 
x is
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a known function of the data distribution, their argument goes through. For example, in Example 2.2, one
convenient normalization is obtained by noting that

E[Yit | ηi, Xit] = X′
it

[ ∫ 1

0
β(τ )dτ

]
+ ηi

[ ∫ 1

0
γ (τ )dτ

]
≡ X̃′

itβ1 + β0 + ηiγ ,

where β0 = ∫ 1
0 β0(τ )dτ corresponds to the coefficient of the constant in Xit = (X̃′

it, 1)′. Now, if X̃it varies
over time and a rank condition is satisfied, β1 is a known function of the data distribution, simply given by
the within-group estimand. Thus, in this case, we can take


x(g) =
∫
yg(y)dy − x̃ ′

2β1,

and note that the following normalization implies Assumption 2.3(c):

β0 =
∫ 1

0
β0(τ )dτ = 0 and γ =

∫ 1

0
γ (τ )dτ = 1.

In a fully nonparametric setting and arbitrary t , to ensure that Assumption 2.3(c) holds for some period
(i.e. t = 1) we can proceed as follows. First, let us define

η̃i ≡ E(Yi1 | ηi, Xi1).

Then, in every period t , provided η �→ E[Yi1|ηi = η,Xi1 = x1] is invertible for almost all x1, we have

Yit = QY (Xit, ηi, Uit) ≡ Q̃Y (Xit, Xi1, η̃i , Uit).

Estimating specifications of this form will deliver estimates of Q̃Y , from which the average marginal
effects defined in Section 5 can be recovered as estimates of

Mt (τ ) = E

[
∂QY (Xit, ηi, τ )

∂xt

]
= E

[
∂Q̃Y (Xit, Xi1, η̃i , τ )

∂xt

]
,

where ∂Q̃Y /∂xt denotes the vector of partial derivatives of Q̃Y with respect to its first dim(Xit) arguments.
Assumption 2.3(d) is an injectivity condition. The operator LY2|η,x is defined as [LY2|η,x h](y2) =∫

fY2|η,X(y2|η, x)h(η)dη, for all bounded functions h. Here, LY2|η,x is injective if the only solution to
LY2|η,xh = 0 is h = 0. As pointed out by Hu and Schennach (2008), injectivity is closely related to
completeness conditions commonly assumed in the literature on nonparametric instrumental variable
estimation. Similarly as completeness, injectivity is a high-level condition; see, e.g. Canay et al. (2013)
for results on the testability of completeness assumptions.

Several recent papers provide explicit conditions for completeness or injectivity in specific
models. Andrews (2011) constructs classes of distributions that are L2-complete and boundedly
complete. D’Haultfoeuille (2011) provides primitive conditions for completeness in a linear model
with homoscedastic errors. The results of Hu and Shiu (2012) apply to the location-scale quantile
model of Example 2.1. In this case, conditions that guarantee that LY2|η,x is injective involve the
tail properties of the conditional density of Yi2 given ηi (and Xi) and its characteristic function.16

Providing primitive conditions for injectivity/completeness in more general models, such as the linear
quantile regression model of Example 2.2, is an interesting question but exceeds the scope of this
paper.

16 See Lemma 4 in Hu and Shiu (2012).
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APPENDIX B: ASYMPTOTIC PROPERTIES

B.1. Parametric inference

Here, we rely on Nielsen’s work to characterize the asymptotic distribution of ξ̂ (s) in our model, where
the optimization step is not likelihood-based. To do so, let us rewrite the moment restrictions in a compact
notation,

E[�i(ηi ; ξ )] = 0,

where ξ (with true value ξ ) is a finite-dimensional parameter vector of the same dimension as �.
Equivalently, we have

E

[ ∫
�i(η; ξ )f (η|Wi ; ξ )dη

]
= 0,

where Wi = (Yi,X′
i)

′.
The stochastic EM algorithm for this problem works as follows, based on an i.i.d. sample

(W1, . . . ,WN ). Iteratively, one draws ξ̂ (s+1) given ξ̂ (s) in two steps.

STEP 1. For i = 1, . . . , N , draw η
(1,s)
i , . . . , η

(M,s)
i from the posterior distribution f (ηi |Wi ; ξ̂ (s)).17

STEP 2. Solve for ξ̂ (s+1) in

N∑
i=1

M∑
m=1

�i(η
(m,s)
i ; ξ̂ (s+1)) = 0.

This results in a Markov chain (̂ξ (0), ξ̂ (1), . . .), which is ergodic under suitable conditions. Moreover,
under conditions given in Nielsen (2000a), asymptotically as N tends to infinity, and for almost every W -
sequence and conditional on W (hereafter, simply ‘conditional on W ’) the process

√
N (̂ξ (s) − ξ̂ ) converges

to a Gaussian AR(1) process, where ξ̂ solves the integrated moment restrictions:

N∑
i=1

∫
�i(η; ξ̂ )f (η|Wi ; ξ̂ )dη = 0. (B.1)

In the rest of this section, we characterize the unconditional asymptotic distribution of
√
N (̂ξ (s) − ξ ). The

derivations in this section are heuristic, and throughout we assume sufficient regularity conditions to justify
all the steps.18

Using a conditional quantile representation, we have

η
(m,s)
i = Qη|W (Wi, V

(m,s)
i ; ξ̂ (s)),

where V (m,s)
i are standard uniform draws, independent of each other and independent of Wi .

Thus, we have

N∑
i=1

M∑
m=1

�i(Qη|W (Wi, V
(m,s)
i ; ξ̂ (s)); ξ̂ (s+1)) = 0.

17 For simplicity, we consider the case where η(1,s)
i , . . . , η

(M,s)
i are independent draws.

18 Note that in our quantile model some of the moment restrictions involve derivatives of ‘check’ functions, which are
not smooth. However, this is not central to the discussion that follows, as it does not affect the form of the asymptotic
variance.
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Expanding around ξ̂ conditional on W , and using the fact that ξ̂ tends to ξ as N tends to infinity, we
obtain

A(̂ξ (s+1) − ξ̂ ) + B (̂ξ (s) − ξ̂ ) + ε(s) = op(N−(1/2)), (B.2)

where

A ≡ ∂

∂ξ ′

∣∣∣∣
ξ

E[�i(Qη|W (Wi, Vi ; ξ ); ξ )] = ∂

∂ξ ′

∣∣∣∣
ξ

E[�i(ηi ; ξ )],

B ≡ ∂

∂ξ ′

∣∣∣∣
ξ

E[�i(Qη|W (Wi, Vi ; ξ ); ξ )] = ∂

∂ξ ′

∣∣∣∣
ξ

E[
∫
�i(η; ξ )f (η|Wi ; ξ )dη],

ε(s) ≡ 1

NM

N∑
i=1

M∑
m=1

�i(Qη|W (Wi, V
(m,s)
i ; ξ ); ξ ).

Note that

A+ B = ∂

∂ξ ′

∣∣∣∣
ξ

E

[ ∫
�i(η; ξ )f (η|Wi ; ξ )dη

]
.

The identification condition for the method-of-moments problem thus requires A+ B < 0, so (−A)−1B <

I . This implies that the Gaussian AR(1) limit of
√
N (̂ξ (s) − ξ̂ ) conditional on W is stable. Thus, we have

√
N (̂ξ (s) − ξ̂ ) =

∞∑
k=0

(−A−1B)k(−A−1)
√
Nε(s−1−k) + op(1). (B.3)

Moreover,
√
Nε(s) are asymptotically i.i.d. normal with zero mean and variance �/M , where

� = E[�i(ηi ; ξ )�i(ηi ; ξ )′].

Hence, conditional on W ,

√
N (̂ξ (s) − ξ̂ )

d→N (0,VM ),

where

VM =
∞∑
k=0

(−A−1B)k(−A−1)
�

M
(−A−1)′((−A−1B)k)′.

Note that VM can be recovered from the following matrix equation

A−1BVMB ′(A−1)′ = VM − A−1 �

M
(A−1)′,

which can be easily solved in vector form.
Finally, unconditionally, we have by asymptotic independence,

√
N (̂ξ (s) − ξ ) =

√
N (̂ξ (s) − ξ̂ ) +

√
N (̂ξ − ξ )

d→N (0,V + VM ),

where V is the asymptotic variance of
√
N (̂ξ − ξ ); that is,

V = (A+ B)−1�((A+ B)−1)′,

where � = E[(
∫
�i(η; ξ )f (η|Wi ; ξ )dη)(

∫
�i(η; ξ )f (η|Wi ; ξ )dη)′].
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B.2. Nonparametric consistency

Let ξ (τ ) = (θ(τ )′, δ(τ )′)′, and let ϕi(ξ (·), τ ) be the (K1 +K2) × 1 moment vector that corresponds to the
integrated moment restrictions (3.6) and (3.7). Let ‖ · ‖ denote the Euclidean norm on R

K1+K2 , and let
‖ξ (·)‖∞ = supτ∈(0,1) ‖ξ (τ )‖ denote the associated uniform norm.

Let K = K1 +K2. Consider a space HK of functions ξ (·), which contains differentiable functions
whose first derivatives (component-wise) are bounded and Lipschitz continuous on (0, 1). Moreover,
suppose there exists c such that, for all τ1 < τ2 and with probability one, Wit(ηi)′(θ (τ2) − θ (τ1)) ≥ c(τ2 −
τ1) and Z′

i(δ(τ2) − δ(τ1)) ≥ c(τ2 − τ1). This last requirement imposes strict monotonicity of the conditional
quantile functions. These assumptions guarantee that the implied likelihood functions and posterior density
of the individual effects are bounded from above and away from zero. Finally, all functions ξ (·) ∈ HK are
assumed to satisfy a location restriction as in Assumption 2.3(c).

To every function ξ (·) ∈ HK , we associate an interpolating spline πLξ (·) in a space HKL. We use
piecewise-linear splines on (τ1, . . . , τL), as in Section 6.1. For simplicity, we consider the case where
quantile functions are constant on the tail intervals, so πLξ (τ ) = ξ (τ1) for τ ∈ (0, τ1), and πLξ (τ ) = ξ (τL)
for τ ∈ (τL, 1). Moreover, the minimum and maximum of L|τ�+1 − τ�| are assumed to be asymptotically
bounded away from zero and infinity. We also assume that L tends to infinity sufficiently fast relative to K
so that ‖ξ (·) − πLξ (·)‖∞ = o(1) for all ξ (·) ∈ HK .

Let us define

QK (ξ (·)) =
∫ 1

0
‖E[ϕi(ξ (·), τ )]‖2dτ,

and

Q̂KL(ξ (·)) = 1

L

L∑
�=1

∥∥∥∥ 1

N

N∑
i=1

ϕi(πLξ (·), τ�)
∥∥∥∥2

.

The estimator ξ̂ (·) minimizes Q̂KL on HKL.
Consistency follows from the following high-level assumptions, which we briefly and informally

discuss below.

ASSUMPTION B.1. (IDENTIFICATION; UNIFORM CONVERGENCE) (a) For all ε > 0 there is a c > 0 such
that, for all K1,K2, L,

inf
ξ (·)∈HK , ‖ξ (·)−ξ (·)‖∞>ε

QK (ξ (·)) > QK (ξ (·)) + c;

(b) as N,K1,K2, L tend to infinity,

sup
ξ (·)∈HK

|Q̂KL(ξ (·)) −QK (ξ (·))| = op(1).

PROPOSITION B.1. (NONPARAMETRIC CONSISTENCY) Under Assumption B.1, ξ̂ (·) is uniformly
consistent for ξ (·) in the sense that (3.14) holds.

Proof: Let ξ̃ (·) ∈ HK such that ξ̂ (·) = πLξ̃ (·). We have ‖̃ξ (·) − ξ̂ (·)‖∞ = ‖̃ξ (·) − πLξ̃ (·)‖∞ = op(1).
By definition of ξ̂ , we have Q̂KL (̂ξ (·)) ≤ Q̂KL(ξ (·)). Hence, by Assumption B.1(b), and as Q̂KL (̂ξ (·)) =

Q̂KL (̃ξ (·)):
QK (̃ξ (·)) ≤ QK (ξ (·)) + op(1).

Let ε > 0. By Assumption B.1(a), it thus follows that ‖̃ξ (·) − ξ (·)‖∞ ≤ ε with probability approaching
one.

Hence, ‖̂ξ (·) − ξ (·)‖∞ ≤ ‖̂ξ (·) − ξ̃ (·)‖∞ + ‖̃ξ (·) − ξ (·)‖∞ = op(1). This shows (3.14). �
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Discussion of Assumption B.1(a). To provide intuition on the identification condition in Assumption
B.1(a), consider the case where the posterior density f (η|Yi,Xi) is known. Consider the last K2 elements
of ϕi , the argument for the first K1 elements being similar. Showing Assumption B.1(a) requires bounding
the following quantity from below:

� ≡
∫ 1

0
‖E[Zi(τ − F (Z′

i δ(τ )|Yi,Xi))]‖2 − ‖E[Zi(τ − F (Z′
i δ(τ )|Yi,Xi))]‖2dτ.

Expanding around δ(τ ) yields

E[Zi(τ − F (Z′
i δ(τ )|Yi,Xi))] = E[Zi(τ − F (Z′

i δ(τ )|Yi,Xi))]
−E[ZiZ

′
if (Ai(τ ; δ)|Yi,Xi)](δ(τ ) − δ(τ )),

where Ai(τ ; δ) lies between Z′
i δ(τ ) and Z′

i δ(τ ). Now, E[Zi(τ − F (Z′
i δ(τ )|Yi,Xi))] = o(1), provided the

remainder Rη tends to zero sufficiently fast asK2 increases. Moreover, if f (η|Yi,Xi) is bounded away from
zero as well as from above, and if the eigenvalues of the Gram matrix E[ZiZ′

i] are bounded away from zero
as well as from above, then there exists a constant μ > 0 such that, for all τ :

‖E[ZiZ
′
if (Ai(τ ; δ)|Yi,Xi)](δ(τ ) − δ(τ ))‖2 ≥ μ‖δ(τ ) − δ(τ )‖2.

Finally, suppose ‖δ(·) − δ(·)‖∞ > ε. Then, by continuity of δ(·) − δ(·), there exists a non-empty interval
(τ1, τ2) such that ‖δ(τ ) − δ(τ )‖ > ε for τ ∈ (τ1, τ2). Hence, � > με2|τ2 − τ1| + o(1).

In the panel quantile models considered in this paper, f (η|Yi,Xi ; ξ (·)) depends on the unknown
function ξ (·) = (θ (·)′, δ(·)′)′. As we pointed out in Section 2.3, identification then depends on high-level
conditions such as operator injectivity. Here, we do not provide primitive conditions for Assumption B.1(a)
to hold in this case.

Discussion of Assumption B.1(b). The uniform convergence condition in Assumption B.1(b) will hold
if the following conditions are satisfied:

A ≡ sup
ξ (·)∈HK

∣∣∣∣ 1

L

L∑
�=1

∥∥∥∥ 1

N

N∑
i=1

ϕi(πLξ (·), τ�)
∥∥∥∥2

− 1

L

L∑
�=1

‖E[ϕi(πLξ (·), τ�)]‖2

∣∣∣∣ = op(1),

B ≡ sup
ξ (·)∈HK

∣∣∣∣ 1

L

L∑
�=1

‖E[ϕi(πLξ (·), τ�)]‖2 − 1

L

L∑
�=1

‖E[ϕi(ξ (·), τ�)]‖2

∣∣∣∣ = o(1),

C ≡ sup
ξ (·)∈HK

∣∣∣∣ 1

L

L∑
�=1

‖E[ϕi(ξ (·), τ�)]‖2 −
∫ 1

0
‖E[ϕi(ξ (·), τ )]‖2dτ

∣∣∣∣ = o(1).

The A quantity involves the difference between the empirical and population objective functions of
the approximating parametric model. In the second term in B, the posterior density of individual effects
depends on the entire function ξ (·), as opposed to its spline approximation πLξ (·). Lastly, the second term
in C involves an integral on the unit interval, which needs to be compared to an average on the grid of τ�.

C© 2016 Royal Economic Society.



Nonlinear panel data estimation via quantile regressions C91

A,B,C can be bounded if it can first be established that there exist constants C1 > 0, C2 > 0, ν > 0
such that, for all ξ1(·), ξ2(·) in HKL and τ1, τ2 in (0, 1):19

‖ϕi(ξ2(·), τ2) − ϕi(ξ1(·), τ1)‖ ≤ C1

√
K‖ξ2(·) − ξ1(·)‖ν∞ + C2

√
K|τ2 − τ1|. (B.4)

The πLξ (·) belong to a compact KL-dimensional space. Given (B.4), it can be shown that A = op(1),
provided L tends to infinity sufficiently fast relative to K and KL/N tends to zero. The latter condition
arises as πLξ (·) is finite-dimensional, with dimension KL. Wei and Carroll (2009) establish this result
formally for a related model, in a case where K does not increase with the sample size.

Next, provided (B.4) can be extended to hold for any ξ1(·) and ξ2(·) in HK , and using that ‖ξ (·) −
πLξ (·)‖∞ = o(1), we find that B = o(1) as long as L tends to infinity sufficiently fast relative to K .

Lastly, again using (B.4) but now for ξ1(·) = ξ2(·), we obtain C = o(1), again provided L tends to
infinity sufficiently fast relative to K .

APPENDIX C: EXTENSION – AUTOCORRELATED DISTURBANCES

To allow for autocorrelated errors in model (2.1) and (2.2), we replace Assumption 2.1(c) by the following.

ASSUMPTION C.1. (AUTOCORRELATED ERRORS) (Ui1, . . . , UiT ) is distributed as a copula
C(u1, . . . , uT ), independent of (Xi, ηi).

Nonparametric identification of the model (including the copula) can be shown under Markovian
assumptions, as in the autoregressive model of Section 4. For estimation, we let the copula depend on
a finite-dimensional parameter φ, which we estimate along with all quantile parameters. The iterative
estimation algorithm is then easily modified by adding an update in Step 2 (the M-step):

φ̂(s+1) = argmax
φ

N∑
i=1

M∑
m=1

ln
[
c(F (Yi1|Xi1, η(m)

i ; ξ̂ (s+1)
A ), . . . , F (Yit|Xit, η

(m)
i ; ξ̂ (s+1)

A );φ)
]
. (C.1)

Here, c(u1, . . . , uT ) ≡ ∂T C(u1, . . . , uT )/∂u1 . . . ∂uT is the copula density and, for any yt such that
wt (η)′θ (τ�) < yt ≤ wt (η)′θ (τ�+1),

F (yt |xt , η; ξA) = τ� + (τ�+1 − τ�)
yt − wt (η)′θ (τ�)

wt (η)′(θ (τ�+1) − θ (τ�))
,

augmented with a specification outside the interval (wt (η)′θ (τ1), wt (η)′θ (τL)). Here, F is a shorthand for
FYt |Xt ,η.

The posterior density is then given by

f (η|y, x; ξ, φ) =
∏T

t=1 fYt |Xt ,η(yt | xt , η; ξA)c[F (y1|x1, η; ξA), . . . , F (yT |xT , η; ξA);φ]f (η | x; ξB )∫ ∏T

t=1 fYt |Xt ,η(yt | xt , η̃; ξA)c[F (y1|x1, η̃; ξA), . . . , F (yT |xT , η̃; ξA);φ]f (̃η | x; ξB )dη̃
.

Lastly, note that the approach outlined here does not seem to easily generalize to allow for
autocorrelated disturbances in autoregressive models (i.e. for ARMA-type quantile regression models).

19 Consider the first K1 elements of ϕi (the last K2 elements having a similar structure):∫ T∑
t=1

Wit(η)ψτ (Yit −Wit(η)′θ (τ ))f (η|Yi ,Xi ;πLξ (·))dη.

A possibility to establish (B.4) could be to assume that η �→ Wit(η)′θ (τ ) is invertible almost surely (such a condition
requires that the conditional quantile function of outcomes be monotonic in ηi ), and that its inverse is Lipschitz
continuous in θ (τ ), and then to use the expression of f (η|Yi,Xi ;πLξ (·)), which involves the piecewise-linear expressions
(6.1) and (6.2).

C© 2016 Royal Economic Society.



C92 M. Arellano and S. Bonhomme

APPENDIX D: EXPONENTIAL MODELLING OF THE TAILS

For implementation, we use the following modelling for the splines in the extreme intervals indexed by
λ1 > 0 and λL > 0,

θ (τ ) = θ (τ1) + ln(τ/τ1)

λ1
ιc, τ ≤ τ1,

θ (τ ) = θ (τL) − ln((1 − τ )/(1 − τL))

λL
ιc, τ > τL,

where ιc is a vector of zeros, with a one at the position of the constant term in θ (τ ). We adopt a similar
specification for δ(τ ), with parameters λη1 > 0 and ληL > 0. Modelling the constant terms in θ (τ ) and δ(τ ),
as we do, avoids the inconvenient that the support of the likelihood function depends on the parameter
value. Moreover, our specification boils down to the Laplace model of Geraci and Bottai (2007) when
L = 1, λ1 = 1 − τ1 and λL = τL.

The implied approximating period-t outcome density is then

fYt |Xt ,η(yt | xt , η; ξA) =
L−1∑
�=1

τ�+1 − τ�

wt (η)′(θ (τ�+1) − θ (τ�))
1{wt (η)′θ (τ�) < yt ≤ wt (η)′θ (τ�+1)}

+ τ1λ1e
λ1(yt−wt (η)′θ(τ1))1{yt ≤ wt (η)′θ (τ1)}

+ (1 − τL)λLe
−λL(yt−wt (η)′θ(τL))1{yt > wt (η)′θ (τL)}.

Similarly, the approximating density of individual effects is

fη|X(η | x; ξB ) =
L−1∑
�=1

τ�+1 − τ�

z′(δ(τ�+1) − δ(τ�))
1{z′δ(τ�) < η ≤ z′δ(τ�+1)}

+ τ1λ
η

1e
λ
η
1 (η−z′δ(τ1))1{η ≤ z′δ(τ1)}

+ (1 − τL)ληLe
−λη

L
(η−z′δ(τL))1{η > z′δ(τL)}.

Update rules for exponential parameters. We adopt a likelihood approach to update the parameters
λ1, λL, λ

η

1, λ
η

L. This yields the following moment restrictions:

λ
η

1 = −E[
∫

1{η ≤ Z′
i δ(τ1)}f (η|Yi,Xi ; ξ )dη]

E[
∫

(η − Z′
i δ(τ1))1{η ≤ Z′

i δ(τ1)}f (η|Yi,Xi ; ξ )dη]
,

and

λ
η

L = E[
∫

1{η > Z′
i δ(τL)}f (η|Yi,Xi ; ξ )dη]

E[
∫

(η − Z′
i δ(τL))1{η > Z′

i δ(τL)}f (η|Yi,Xi ; ξ )dη]
,

with similar equations for λ1, λL.
Hence, the update rules in Step 2 of the algorithm (the M-step) are

λ̂
η,(s+1)
1 = −∑N

i=1

∑M

m=1 1{η(m)
i ≤ Z′

i δ̂(τ1)(s)}∑N

i=1

∑M

m=1(η(m)
i − Z′

i δ̂(τ1)(s))1{η(m)
i ≤ Z′

i δ̂(τ1)(s)} ,

and

λ̂
η,(s+1)
L =

∑N

i=1

∑M

m=1 1{η(m)
i > Z′

i δ̂(τL)(s)}∑N

i=1

∑M

m=1(η(m)
i − Z′

i δ̂(τL)(s))1{η(m)
i > Z′

i δ̂(τL)(s)} .
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APPENDIX E: MONTE CARLO ILLUSTRATION

The data-generating process is

Yit = β0(Uit) + β1(Uit)X1it + β2(Uit)X2it + β3(Uit)X3it + γ (Uit)ηi,

and

ηi = δ0(Vi) + δ1(Vi)X1i + δ2(Vi)X2i + δ3(Vi)X3i .

The covariates Xi1 (smoking status), Xi2 (age) and Xi3 (gender) are taken from the data set of the
empirical illustration. T = 3, and we extract a random subsample of 1000 mothers from the original data
set. The true parameter values correspond to estimates on the full sample. Parameters β, γ and δ are taken
to be piecewise-linear on an equidistant grid with L = 11 knots, with exponential specifications in the tails
of intercept coefficients. For computation, we use the same method as in the application to select starting
values, and we let the EM algorithm run for 100 iterations, with 100 random-walk Metropolis–Hastings
draws within each iteration, reporting averages over the last 50 iterations. We report the results of 500
simulations in Figure E.1, which shows the data-generating process with L = 11 knots, N = 1000 and
T = 3. The x-axis shows τ percentiles. True parameter values are shown by solid lines, Monte Carlo means
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Figure E.1. Monte Carlo results.
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are shown by thick dashed lines and 95% pointwise confidence intervals are shown by thin dashed lines. For
example, the confidence intervals of the quantile parameters β1(τ ) corresponding to the effect of smoking
are quite tight, even though the sample size is about 12 times smaller than the one of the application. Overall,
the results provide encouraging evidence on the finite sample performance of the estimator.
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