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We propose a simple two-step within-groups estimator for limited dependent
variable models, which may include lags of the dependent variable, other
endogenous explanatory variables, and unobservable individual effects. The
models that we present are' extensions of the random effects probit model of
Chamberlain (1984), and have application in the analysis of binary choice,
linear regression subject to censoring, and other models with endogenous
selectivity. The estimator is based on reduced form predictions of the latent
endogenous variables. We also show how to obtain, in one more step, chi
squared test statistics of the overidentifying restrictions, and linear GMM
estimators that are asymptotically efficient. (JEL C23)

1. Introduction

In this article we consider the problem of estimating a limited depen
dent variable (LDV) model from panel data, which may include lags
of the dependent variable, other endogenous explanatory variables,
and unobservable individual effects. The models that we present are
extensions of the random effects probit model of Chamberlain (1984),
and have application in the analysis of binary choice, linear regression
subject to censoring, and models with endogenous selectivity.

An earlier version of this paper previously circulated under the title "Estimating
Dynamic Limited Dependent Variable Models from Panel Data with an Applica
tion to Female Labour Supply", Nuffield College, Oxford, February 1988. We are
grateful to two anonymous referees and the editor for helpful comments on this
work. All remaining errors are our own.
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We propose a simple within-groups estimator which uses reduced
form predicted values of the dependent variable. It can be regarded as
a member of Chamberlain's class of random effects minimum distance
estimators, and as such it is consistent and asymptotically normal for
a fixed number of periods in the absence of misspecification. It also
provides a convenient framework for the estimation of semiparametric
random effects models in which some of the distributional assump
tions implicit in the basic models are relaxed. However, the within
groups estimator is not asymptotically efficient within the minimum
distance class, since it implicitly uses a non-optimal weighting ma
trix. In this regard, we also show how to obtain, in one more step,
chi-squared test statistics of the overidentifying restrictions, and lin
ear GMM estimators that are asymptotically efficient.

In the models considered in this paper, variables are either endoge
nous or exogenous. Lags of the dependent variable are treated as
endogenous variables, since we do not restrict the pattern of serial
correlation in the errors. Models which contain predetermined vari
ables (through assumptions of absence of autocorrelation, or some
other form of sequential conditioning over time) are outside the scope
of the present paper.

The random effects models considered here are attractive because
they are sufficiently flexible to make it possible the estimation of
various nonlinear models of empirical interest subject to permanent
unobservable effects.1 The disadvantage is, of course, that they rely
on an explicit specification of the reduced form.

The paper is organized as follows. Section 2 presents the two-step
within-groups estimator for the basic model with only exogenous ex
planatory variables. In addition, we show that the same idea can
he applied in the case of a binary choice model with time-series het
eroskedasticity. Sections 3 and 4 extend the results, respectively,
to a dynamic specification and to endogenous explanatory variables.
Section 5 considers asymptotically efficient linear GMM estimation

lLabeaga (1990, Ch. 4) applies some of the models and the two-step estimator
proposed in this paper to his empirical analysis of the demand for tobacco in Spain
using household unbalanced panel data.
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and specification testing. Finally, Section 6 contains some concluding
remarks.

2. A within-groups estimator for random effects LDV
models

2.1. The model and the estimator

We begin by considering a static random effects LDV model of the
form

* I
Yit = xitf3 + 1Ji +Vit (t = 1, ... ,T; i = 1, ... , N) [1]

where Xit is a k x 1 vector of exogenous variables such that

and 1Ji is an unobservable individual effect potentially correlated with
Xit. Yit is a latent dependent variable which is not directly ob
servable. We observe instead Yit which is some function of yit. In
the Tobit model Yit = max(YitlO) while in the binary choice model
Yit = l(Yit > 0), where 1(A) is the indicator function of the event
A. In a generalized selectivity model Yit = 1(lit > O)yit where lit
is some stochastic index determining whether Yit is zero or equal to
Yit. The result of not observing Yit is that the parameter vector in
its conditional mean, f3 I will not be identified in the absence of ad
ditional assumptions concerning the conditional distribution of the
error terms. In an obvious notation, the T equations in model [1] can
be written as

(i=1, ... ,N) [2]

where" is a T x 1 vector of ones.

Following Chamberlain (1984), we parameterize the expectation of TJi
conditional on the values of the exogenous variables. Suppose that
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where ri is a vector of variables that includes nonlinear terms in the
xit's. Therefore, letting Zi be the m x 1 vector (m > Tk) Zi =
(X~1 ..,x~T rD', the reduced form of the model is given by

(i = 1, ... , N). [4]

The estimators below will be sensitive to the specification of the con
ditional distribution of rJi. Notice that the conditional expectation of
rJi can be approximated to any degree by a polynomial expansion. We
would expect that a linear specification, possibly with the addition
of quadratic or cubic terms, may often provide a reasonably good
approximation. In any event, the reduced form [4] can be tested to
some extent against functional misspecification.

If we transform the variables in [2] into deviations from time means,
the rJi's are eliminated. Letting yi = Qy;, Xi = QXi and vi = QVi,
where Q is the deviations from time means operator Q = IT - u'IT:

yi = xt/3 + vi·

If y; is directly observed, the OL8 regression of yt on xt gives us
the within-groups estimator of {3. However, even if yi is not directly
observed, the following expression for the restrictions

implies that

(i = 1, ... , N) [5]

[6](

N -1 N

f3 = ~ Xt'xt) ~ Xt'l1z;.

This suggests to estimate /3 by replacing II in [6] by a consistent esti
mator ft. That is, if we let fh be a consistent reduced form predictor
of Yi,

we consider as an estimator of /3 the within-groups regression of fli
on Xi:

(

N -1 N

jj = ~xt'xt) ~xt'Yt [7]



ESTIMATING DYNAMIC LIMITED DEPENDENT VARIABL~ MODELS 145

where fit = QfJi·
~ ~.

If IT is a consistent and asymptotically normal estimator of IT, then f3
can easily be shown to be also consistent and asymptotically normal.
Subtracting f3 from [7] we can write

(~xt'xt) (fj - (3) =~xt' (it - xt(3) =~ xt' (IT - II)zi
t t t

or

fj - (3 = (~xtxt) -1~ (xt (8) Zi)' vec(TI - Il). [8]

That is, since fj is linear in vec(IT), provided the latter is asymptot
ically normal, the asymptotic normality of the former follows from
Cramer's transformation theorem.2 Assuming that

ffivec(IT - IT) aN(O, V),

the asymptotic variance of 13 can be consistently estimated as3

.AVAR(fj) = (~xtxt) -1 M/V M (~ xtxt)-1 [9]

where M = ~ (xt ® Zi) and V is a consistent estimator of V.
t

Notice that if we evaluate expression [7] at the 0 LS regression coef
ficient matrix of Yi on Zi

we obtain the actual within-groups estimated coefficients in the re
gression of the observed endogenous variable Yit on Xit:

i3 = (~xtxt) -1 ~xtfioLSZi= (~xtxt) -1 ~XtYi'

2For any matrix A, vec(A) is obtained by stacking the rows of A.
3 AVAR(~) denotes a consistent estimate of the variance of the asymptotic

distribution of -IN(~ - (3).
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In general, such estimator will not be consistent for 13 because ITOLS

is not a consistent estimate for IT in LDV models. The connection,
however, illustrates the fact that the ordinary within-groups estima
tor can also be regarded as a random effects estimator of the type
given in [7].

2.2. Estimating the reduced form

We now turn to consider the problem of obtaining a consistent es
timate IT and an estimate of its asymptotic variance matrix V. For
this purpose, it is convenient to provide separate discussion for binary
choice, censored (or Tobit) regression, and models with selectivity.

Binary choice

In the binary choice model Yit = l(yit > 0). The simplest probit speci
fication is based on the assumption that each of the errors of equation
(4) are independent of Zi, and follow a normal distribution with a con
stant variance Cit I Zi - N(O, ( 2). Using u 2 = 1 as a normalization, we
then have that

Pr(Yit = 1 I Zi) = q>(7r~Zi)

where q>(.) is the N(O, 1) cdf and 7rt is the t-th row of IT. Although the
components of Ci will be correlated in general, separate ML probit
estimates of the 7ft for each period are consistent and asymptotically
normal.

A less restrictive probit model can be obtained allowing for time-series
heteroskedasticity (cf. Chamberlain, 1984, pp. 1270-1274). In such
case, we assume Cit IZi - N(O, un, so that Pr(Yit = 1 I Zi) = q>(7ft'Zi)

with 7ft = 7ft/Ut. As before, some normalization must be chosen. For
example, using u~ = 1 as the normalization restriction, notice that
period by period probit estimates of the reduced form for t = 2, ... ,T
will be consistent for 7f; but not for 7ft. However, it is still possible
to obtain a linear within-groups estimator for the probit model with
unequal variances based on reduced form estimates of the 7ft . Using
equation [5] we have

xt13 = QAIT*Zi [11)

where A = diag(ut). Letting dti be a T x 1 vector with one in the t-th
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position and zero elsewhere, this can be written as4

147

[12]

where 8 = (/3/,0"2, ... ,O"T)', Wi = (Xi: - (1r2/Zi)d2i : ... : - (1r1! zi)dTi),
and Wi+ = QWi.

An implication is that

[13]

As before, this suggests estimating 8 by replacing the 7ft in expression
[13] by their period-specific probit estimates:

N -1 N

..... ("" -+1-+) "" -+' .....*'8 = (;;; Wi Wi 6. Wi dli(1r1 Zi)

where Wi+ is as Wi+ but using the estimated 7ft.
Notice that subtracting 8 from [14] we can write

"" - +' [ I -]L.- Wi Q d1i (ii Zi) - Wi8
i

- L:Wi+
1 (QAIT*Zi - QAIT*Zi)

i

- L:W/'A (IT* - IT*) Zi.
i

As a consequence, the equation error can be written as

[14]

which suggests that again the consistency and asymptotic normality
of '8 follows from the consistency and asymptotic normality of IT*.

4We are us"ing the fact that AIl· Zi = E~=1 O't(7r;'zi)dti together with the
normalization 0'1 = 1.
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Finally, the binary choice model can be further generalized by relax
ing the assumption of normality. Suppose that Zi contains at least a
continuous element, and that cit I Zi is distributed independent of Zi

with a continuously differentiable unknown cdf Ft. Let now re-define
7ft = 7ft/117ft 11 exclusive of the constant term, which would be sub
sumed in Ft. The semiparametric ML estimator of Klein and Spady
(1993) or the least-squares estimator of Ichimura (1993) can be used
to obtain consistent and asymptotically normal estimates of 7ft, from
which estimates of {3 and the relative scales 11 7ft 11 can be developed
along the lines of the previous specification.

Censored (or Tobit) models

In the top censored regression model with known censoring point c
(as, for example, in the case of top-coded wages), we have Yit =
min(yit, c). In this case, assuming that cit I Zi - N(O, ar), separate
ML estimates of each of the T rows of IT are consistent and asymptot
ically normal. Here the scale parameters at are separately identified,
so the problem discussed above for probit models does not arise.
On the other hand, in view of the well known lack of robustness of
the Tobit estimator to heteroskedasticity and non-normality, the ci'S

can alternatively be maintained to be just independent errors with
symmetric distributions. Under theses circumstances, each row of IT
can be consistently estimated using, for example, the trimmed least
squares method proposed by Powell (1986).

Models with selectivity

In model with selectivity, where Yit is a theoretical construct (for
example, "desired labour supply" or "reservation wages") as opposed
to an actual variable subject to censoring, the selection mechanism is
often found not to be governed by Yit itself. Mroz (1987), for example,
presented evidence that this type of misspecification may have serious
consequences in a model of women's hours of work, and Blundell,
Ham and Meghir (1987) also rejected the Tobit model in favour of a
double hurdle specification (see Heckman, 1993, for a survey of the
literature). It is also possible to extend semiparametric methods to a
generalized sample selection model where Yit = l(Iit > O)yit (see, for
example, Newey, Powell and Walker, 1990, and the references cited
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th~re). However, in the more standard context, if we specify an index
model of the form

lit = I:Zi + Vit

and assume that Vit has a known parametric distribution, Heckman
(1979)'s lambda-corrected least squares estimators of separate rows
of TI are consistent.

2.3. Estimating the asymptotic variance matrix

Since for simplicity we restrict our attention to single equation esti
mators of [4], for any particular choice of model and estimator, if can
be calculated as follows. Let 1r~ be an estimate of the t-th row of TI
defined to minimize a differentiable criterion5

N

St = L Sit (Yit, Zi, 7rt)
i=l

(for example, St can represent (minus) a Tobit log-likelihood), so that
__ T

1r = vec(TI) minimizes s(7r) = E St. Subject to suitable regularity
t=l

conditions, a first order expansion of 8s(ff)j87r about the true value
of 7r gives

which suggests an estimate if of the form

if = fi-l~fi-l [15]

where If'" = diag (N- 182s j87r 87r') and ~ = N-l ~ {8SH • 8Sis }t t t LJ 81rt 81r' •
i=l s

51£ 7ft is a trimmed least-squares or a least absolute deviations estimator then
the corresponding St is not differentiable. Nevertheless, the argument below
can be generalized to accommodate asymptotically normal estimators from non
differentiable criteria.
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'TUrning to efficiency issues, since jj will be usually based on an in
efficient reduced form prediction of Yi, jj itself will be inefficient.6

However, in general jj will also be inefficient relative to the optimal
minimum distance estimator of {3 based on ft. This is because jj can
be regarded as a transformed minimum distance estimator which uses
a non-optimal norm (see the Appendix for the details). The advan
tages of jj are that it is simpler to compute and has a straightforward
interpretation. Nevertheless, in Section 5 we show how to obtain
linear GMM estimates that are asymptotically efficient relative to a
given ft, and specification tests of the overidentifying restrictions.

3. A dynamic specification

The previous discussion has a straightforward extension to a dynamic
specification, since the within-groups estimator based on the same re
duced form predictions of the dependent variable remains consistent
and asymptotically normal when lags of Yit are amongst the explana
tory variables in the equation.

The use of lags of Yit as opposed to lags of Yit is the natural choice
in models with censoring. For example, in analysing the dynamics of
wages with top coded wage data Yit would typically be the process
of interest. In binary choice models the situation is rather different,
however, since we would condition on past states by conditioning on
lags of Yit. By conditioning on lags of Yit instead, one is specifying
distributed lagged effects of past exogenous variables and past errors
on the current choices (see Heckman, 1981, for a description of these
two models). So both types of models are potentially interesting in
applications. Nevertheless, models which specify lags of Yit would not
in general be compatible with linear reduced forms, as assumed here,
and therefore they are not considered in this paper (Arellano and
Carrasco, 1996, and Honore and Kyriazidou, 1997, consider binary
choice models with state dependence and individual effects).

It should also be mentioned that in the models considered in this pa-

6Single equation estimates of IT will in general be inefficient because they ig
nore the dependence among the components of Ci. Taking into account such
dependence would typically require the use of simulation based estimators (see
Hajivassiliou and Ruud, 1994, and references cited there).
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per the serial correlation in Vit is left unrestricted, and so we treat the.
lags of yit as endogenous variables. If, for example, we assumed Vit

to be serially independent, values of yit lagged two periods or more
would be predetermined variables in the equation in first differences.
Such situation would generate a type of identifying restrictions that
are distinct from those arising from the presence of strictly exoge
nous variables analyzed here (Arellano and Bond, 1991, considered
linear models of this kind, and Arellano, Bover and Labeaga, 1997,
considered similar models subject to censoring).

We consider the equation

* * I (3 *1 ~Yit = aYi(t-I) + Xit + TJi + Vit = wit u + TJi + Vit [16]

where wit = (Yi(t-l) :Xit)' and {j = ('" : (3')'. T time periods are

observed (T ~ 3), and as above we assume

In addition we assume

so that the reduced form of the model is also given by [4].

The set of (T - 1) equations in [16] can be written as

(10 - aL)yi = Xi!3 + TJi t +Vi [17]

where 10 is the (T - 1) x T trim operator 10 = (0 : IT-I), L is

the (T - 1) x T lag operator L = (IT-I : 0), Xi is now of order
(T -1) )(k, and t and Vi are (T -1) x 1 vectors. Again the individual
effects can be eliminated transforming [17] into deviations from time
means. Letting Q now be the (T - 1) within-groups operator and
B = 10 - aL we have
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Comparing this equation with the reduced form equation [4] pre
multiplied by QB, we can write the restrictions in the form

(i = 1, ... , N). [18]

Letting Wi = (LITzi : Xi) and W/ =" QWi, thi~ can be rewritten as

W/8 = QloITzi

which implies

[19]

Again this suggests estimating 8 by replacing IT in [19] by a consistent
estimator IT:

[20]

where YiO = IOITzi,Yi(-l) = LITzi and Wi = (Yi(-l) : Xi), with the
(+) symbols denoting within-groups transformations.

Subtracting 8 from [20] we can write

('" ..-.+,..-.+) ...... '" ..-.+' (~ ..-.+)7 Wi Wi (8 - 8) = L: Wi YiO - Wi 8

LW/' (QBYi - xtf3) = 2: Wi+'B(IT - IT)Zi
i i

or

In this case, '8 is not linear in IT but it is still true that

VN('8 - 8) =

(~W'+'w,+) -1 ~ (W,+ ® Zi)' (B ® Im ) VNvec(TI - IT) + op(1)
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since plimN-1~ (wt'Wi+- W/'Wi+) = 0 and
t

p lim N-l 2;= [(Wi+ ® Zi) - (wt ® Zi)] = 0, so that the consistency
, t

and asymptotic normality of8follows from the consistency and asymp-.....
totic normality of n.
The asymptotic variance of '8 can be consistenly estimated as

AiiAR(6) = (~tV/fW/) -1 M'V'M (~W;+fW/) -1 [22]

where M = 2;= (wt ® Zi), 17* = (B ® I m ) 17(131 ® I m ) and 13 =
t

10 - a.L. '

Our previous comments on efficiency also apply to 8. 8 can be re
garded as the minimizer of a transformed minimum distance criterion
which uses in general a non-optimal norm, and it is therefore inef
ficient relative to the optimal MD estimator of 0 based on IT (see
Appendix).

.....
The robustness of 0 depends directly on the robustness of Yit. In
particular, note that '8 is in all cases robust to arbitrary forms of
serial correlation in the errors, since no restrictions are placed in the
covariances between the components of Ci when estimating the rows
of n.
To summarize, note that the fAt need only be calculated once, and
from then on they can be used as our data on the dependent variable
to estimating alternative models using the within-groups procedure.
Of course, the same is true for 17. Generally, an attractive feature of
methods of the Chamberlain type is a convenient separation between
specification searches at the level of the reduced form and at the level
of the structural equation. That is, functional form, distributional
and obserxability assumptions can be tested in the reduced form until
statistically satisfactory Yit'S are available, and concentrate on the
equation of interest thereafter.

4. Endogenous explanatory variables

Finally we consider a model with endogenous explanatory variables.
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For simplicity of presentation a static case with only one endogenous
explanatory variable is described. Let

• • 1 f.? ., 1: + +Ylit = ,Y2it + Xit/J + 'TU + Vit = Wit v 1]i Vit [23]

where now wit = (Y2it: Xit)' and {j = (1' : {3')'. The endogenous

variable Y2it mayor may not be subject to some censoring rule. In
any event we asume

and
E(Y2i IZi) = TI2zi

where Zi will now typically include some time-varying outside instru
mental variables in addition to functions of the Xit. The complete
reduced form is given by

~=TI~+~ ~

where Yi = (Yi; :Y2:) I is 2T x 1 and IT = (IT~ : IT~)' is 2T x m. The

set of T equations in [23] can be written as

(IT: -1'IT) Y; = X i{3 + l1iL +Vi. [251

In addition, multiplying through by Q to eliminate the individual

effects, and letting C = (IT: -1'IT):

QCyi = xtf3 +vt· [26]

Pre-multiplying [24] by QC, and comparing with [26], the restrictions
can be written as

or
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[27]

where Wi = (TI2Zi: Xi)' Once again we estimate {j by using pre

dicted values of yii and Y2i:

8= (~wtwt) -1 ~wtyt;

where Wi = (ihi : Xi)' 1hi = fi2Zi and flIi = fi1Zi· If Y2it is directly

observable a valid choice for IT2 is the OL8 estimate of II2.

The discussion concerning the asymptotic distribution of '6 in this
case, parallels the one for the dynamic model. Equation [22] remains......
a valid expression for an estimate of the asymptotic variance of 8 as
given in [27], except that now y* is defined to be

Y is an estimate of the 2Tm x 2Tm variance matrix of vec(IT), and

8 = (IT: -"lIT)'

5. GMM estimation and testing

The within-groups (WG) estimators presented in the previous sec
tions are simple to calculate but, as we pointed out, are inefficient
relative to the optimal minimum distance estimator of {3 based on IT.
Another disadvantage of the WG estimates is that it is not straight
forward to obtain from them a chi-squared test statistic of the overi
dentifying restrictions.7 Nevertheless, it is still possible to obtain
linear GMM asymptotically efficient estimators (relative to IT) and
test statistics in one more step, which do not require the specification
of the nonlinear constraints in II or the estimation of the nuisance
parameters A.

Let us cons~der the following model that combines the previous spec
ifications

yiit = rY2it + aYii(t-l) + x~tl3 + TJi +Vit = wi£8 + TJi + Vit [28]

7The results by Newey (1985) can, nevertheless, be applied to this context to
obtain an asymptotic chi-squared statistic.
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where now Wit = (Y2it : y~i(t-l) : X~t)' and 8 = ('Y : a : (3')'.

Since the within-groups equation errors are uncorrelated to the con
ditioning variables Zi, we can write

[29]

where Zi = (I ® zD, Q is the (T - 1) within-groups operator, yiiO =
(yii2' ... , yiiT)' and Wt = (wi2"'" wiT)" Moreover, using the law of
iterated expectations

[30]

where E(Wt I Zi) = Wi = (loII2zi : LIIIZi : Xi) and E(yiiO I Zi) =
IoIIIZi .

This suggests to consider GMM estimators of 8 based on the sample
orthogonality conditions:

N

bN(8) = ~ LZ:O!1io - ~+8)
i=l

[31]

[33]

where YliO = Ioll1zi , Wi = .(Y2iO : Yli(-l) : Xi), Y2iO = Ioll2 Zi' Yli(-l)

= Ln1Zi , and as before the (+) symbols denote within-groups trans
formations.

A GMM estimator of 8 based on bN(8) takes the form

[(~W/IZi) AN (~Z;W/)] -1 (~W/IZi)AN (~Z;yt;o)
[32]

where AN is a weighting matrix. With AN = (~Z;Zi) -1 , ;5A coin

cides with the WG estimator:

-.. (""' _+'_+) -1 ""' _+'::":1-8 = 7'Wi Wi 7'Wi YliO'
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This numerical equivalence results from the fact that the columns in
W/ are linear combinations of those in Zi.

In order to obtain the large sample distribution of 8A for an arbitrary
AN, we require an expression for the asymptotic variance of bN(8).
This follows from noticing that bN (8) can be expressed as a transfor
mation of vec(IT - IT) (the Appendix contains a similar discussion,
but conducted in terms of transformed minimum distance criteria).
Specifically, we have

where f = (10 - aL: -[10)'

Using the fact that QXd3 = QfITzi:

1 N
N I)I ® zi)[Qf(IT - IT)Zi]

i=l

1 '" ' '"(Q ® N ~ zizJ(f ® Im)vec(IT - IT).
~

Therefore,

[34]

[35]

JNbN (8) a N (0, QE(Z:Zi)V· E(Z:Zi)Q') [36]

where Q = (Q ® Im), and V* = (f ® Im)V(f' ® Im).

Hence, a consistent estimate of the asymptotic variance of 8A is given
by

(M;WANMz:U)-l M;wAN (QMzzV* MzzQ') ANMzw (M;wANMzw)-l

[37]

where M zw = Ei ZiW/, M zz = Ei Zi Zi and V* is a consistent es
timate of V*. When AN = Mz-;l this expression blows down to the
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asymptotic variance estimates for each of the versions of mode~ [28]
discussed in the previous sections.

In the previous discussion the within-groups operator Q can be re
placed by any (T - 2) x (T - 1) matrix K of rank (T - 2) such that
Kt = 0, since then Q = K'(KK,)-l K. Natural candidates are the
first difference operator, the orthogonal deviations operator, or the
first (T - 2) rows of the within groups operator (cf. Arellano and
Bover, 1995). For any such K matrix, a generic GMM estimator
takes the form:

[(~W:KIZi) AN (~Z;KWi)r (~W:KIZi) AN (~Z;KYHO)
(38]

With AN = (LiZiKK'Zi)-l, 8A is numerically the same as the
within-groups estimator [33]. The formula [37] remains a valid ex---pression for AVAR(6A) provided we re-define Mzw and Q as M zw =
Li Z:KWi and Q = (K \&l Im ).

We can now turn to consider efficient estimation relative to ft. From
standard GMM theory, we know that an optimal choice of AN is given
by a consistent estimate of the inverse of the covariance matrix of the
orthogonality conditions. Notice that if the within-groups operator
is used there are m redundant moment conditions in [31], with the
result that their covariance matrix is singular. It is still possible
to construct an optimal estimator using a generalized inverse of the
covariance matrix of the within-groups moments. This problem does
not arise, however, if a transformation K of the type discussed above
is used (e.g. first differences). An estimator 8v of the form given in
[38] with weighting matrix AN = Vb-I where

[39]

is asymptotically efficient. Moreover, since the moments eliminated
by the transformation to vec(ft - IT) implicit in bN (6) are unrestricted,
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6v is also asymptotically equivalent to the optimal minimum distance
....... .......

estimator of fJ based on n.
.......

Finally, the minimized estimation criterion for fJv provides a test
statistic of the overidentifying restrictions that has an asymptotic
chi-squared distribution with (m(T - 2) - (k + 2)] degrees of freedom
under the null of lack of misspecification:

S = N (t ft;K'Zi) ~-1 (t Z;Kfi;) ~ X~(T-2)-(k+2) [40]
~=1 1=1

.- .......

where Ui = YliO - WifJV·

6. Concluding remarks

This paper has considered various extensions of the random effects
probit model of Chamberlain (1984), which include Tobit and other
sample selection models with dynamics in the latent endogenous vari
able and endogenous regressors. We show that all these models can
be estimated using a relatively simple two-step within-group method
based on estimated reduced form predictions of the latent endogenous
variables. The method is not difficult to implement, and its appli
cation can be expected to be most promising when based on robust
estimates of the reduced form of the type recently developed in the
cross-sectional literature on selection models. We also show how to
obtain chi-squared specification tests and linear GMM estimators in
one more step, that are asymptotically efficient relative to the mini
mum distance class. The drawbacks of this approach are the same as
for Chamberlain's probit model. Namely, that it requires the avail
ability of strictly exogenous variables, and relies on a specification of
the conditional distribution of the effects.

The latter assumption can be relaxed somewhat along the lines of
Newey (1994) who assumes a nonparametric ·conditional expectation
for the effect!,. Newey's probit model could be easily extended to in
corporate the kind of dynamics and endogenous regressors considered
in this paper. Finally, an alternative to the random effects approach
spoused in this paper is to consider a fixed effects approach 'as in
the work of Honore (1992 and 1993) and Honore and Kyriazidou
(1997) . The advantage of the fixed effects approach is that it leaves



160 INVESTIGACIONES ECONOMICAS

the distribution of the effects unrestricted, but often at the expense
of unavoidable lack of flexibility in specifying the structural model of
interest.

Appendix

Minimum distance criteria of the random effects LDV estimators

A minimum distance (MD) estimator eminimizes a criterion function of
the form

[vec (IT - IT(e) )]'w-1vec (IT - IT(O») . [A.l]

The optimal choice for the weighting matrix Wis if, a consistent estimate of
the asymptotic variance matrix of vec(IT). For the static model of Section

2, () = (f3' : N)' while for the dynamic specification () = (c' : )..' :Jl),.

However, the original distance function [A.l] can be considerably simplified
without efficiency loss by using the following two properties in MD estima
tion. Firstly, if K is a nonsingular matrix of dimension T which mayor
may not depend on e, the minimizer of the transformed criterion

[vec(KIT - KIT)]' w;lvec(KIT - KIT) [A.2]

where w* = (K ® Im)W(K' 0Im) and K is such that plimK - K, is
asymptotically equivalent to (j (see for example Newey, 1987). Secondly, if
some of the coefficients of KIT are unrestricted they can be concentrated
out, thus obtaining a distance function which depends on a smaller set of
parameters.

For the static model let us consider the following non-singular difference
transformation:

o 0 ... -1 1

D*=

1 0
-1 1

o 0
o 0

where D is the (T - 1) x T difference operator, D = 10 - L. Note that
the last (T - 1) rows of D*TI only depend on f3 and that the first row is a
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transformation of .A which can be concentrated out to obtain the following
criterion for {3

where

(vec(DIT - DI1))'\lJi) l vec(DIT - DI1) [A.3]

Wo = (D 0 Im)\lJ(D' 0 Im ).

Letting H be a (T - l)m x k 0 - 1 matrix such that vec(DII) = H{3, the
minimizer of [A.3] can be obtained as

[AA]

The efficient estimator relative to IT sets \lJ = V. However, we can now show
that the within-groups estimator jj given in [7] is an estimator of the form

of 1J which sets 'It = (IT ® ~ ZiZ:) -'. For this choice of 'It the criterion in

[A.3] becomes

[veC(DIT - DIl)]' [(DD')-' ® ~ZiZ:] vec(DIT - DIl)

Ltr(IT - I1)'D'(DD')-l D(IT - l1)ziz~
i

- L z~ (IT - 11)'Q(IT - l1)zi = L (fit - xi (3)' (fit - xi(3)
i i

since Q = D'(D D') -1 D and Ql1zi = xi{3. Therefore jj can only be efficient

with respect to IT if a multiple of (Ir ®~ ZiZ:) -, is consistent for V.

In a more explicit way, if we let E(1Ji I Zi) = .A' Zi and let Ti to be of order
p xl:

Il = (Ir ® ,6' : 0) + tA'

where 0 is a T x p matrix of zeros. Then since QL = 0:
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Thrning to the dynamic model, we consider the non-singular transformation
D* B* where B* is given by

BO=C o ... 0)
B .

Note that the last (T - 2) rows of D* B*ll only depend on {3 and that the
first two rows are transformations of oX and J.L which can be concentrated
out to obtain the following criterion for Cl: and (38

[vec(DBIT - DBll)]' '1101vec(DBIT - DBn)

where now D is the (T - 2) x (T - 1) difference operator and

[A.5]

'110 = (DB ® Im ) '11 (B'D' ® Im ).

Letting H be the (T - 2)m x (k +1) matrix such that vec(aDLIT +DBIT) =
He (H is linear in IT), the minimizer of [A.5] can be written as

[A.6]

Since '110 depends on a through B, the calculation of the efficient estimator
will require in general a preliminary consistent estimate of Cl:. However if
we choose

ill = (BOIBO ® ~z;z:) -1

we obtain the within-groups estimator '8given in [20] which can be calculated
in one step. For this choice of '11 the criterion [A.5] becomes

8Fo, the dynamic model n=B o-l r where r = (I': r;)' and r, i. the (T - 1) X m

matrix
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[vec (DBft - DBll)r[(DB(B*'B,)-IB'DT
1

@ ~ZiZ:]

vec(DBIT - DBll)

- 2: zHBIT - Bll)'Q(BIT - Bll)Zi
i

- 2: (Yit - aYi(-I) - xtl3)' (Yit - aYi(-I) - xtl3)
i

163

since DB(B*'B*)-IB'D' = DD' and QBllzi = xtl3. Note that '8 would
be efficient when Yit = Yit, IT is the unrestricted OLS estimator and the Uit

are white noise iid errors.
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Resumen

165

En este trabajo proponemos un estimador intrn-grupos en dos etapas para
modelos con variable dependiente limitada, que pueden incluir retardos de
la variable dependiente, otras variables explicativas endogenas y efectos in
dividuales inobservables. Los modelos que presentamos son extensiones del
modelo probit con efectos aleatorios de Chamberlain (1.984) Y tienen apli
cacion en el analisis de eleccion discreta, regresion lineal censurada y otros
modelos con seleccion endogena. El estimador se basa en predicciones de
forma reducida de las variables endogenas latentes. Tambien mostramos
como obtener, en una etapa adicional, contrastes ji-cuadrado de las restric
ciones de sobreidentificacion y estimadores lineales del metodo generalizado
de momentos que son asintOticamente eficientes.


