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1 Introduction

Nonlinear panel data models are central to applied research. However, despite some recent

progress, the literature is still short of answers for panel versions of many models commonly

used in empirical work (Arellano and Bonhomme, 2011). More broadly, to date no approach

is yet available to specify and estimate general panel data relationships in static or dynamic

settings.

In this paper we rely on quantile regression as a flexible estimation tool for nonlinear

panel models. Since Koenker and Bassett (1978), quantile regression techniques have proven

useful tools to document distributional effects in cross-sectional settings. Koenker (2005)

provides a comprehensive account of these methods. Quantile-based specifications have the

ability to deal with complex interactions between covariates and latent heterogeneity, and to

provide a rich description of heterogeneous responses of outcomes to variations in covariates.

In panel data, quantile methods are particularly well-suited as they allow building flexible

models for the dependence of unobserved heterogeneity on exogenous covariates or initial

conditions, and for the feedback processes of covariates in dynamic models with general

predetermined regressors.

We consider classes of panel data models with continuous outcomes that satisfy condi-

tional independence restrictions. In static settings, these conditions restrict the time-series

dependence of the time-varying disturbances. Imposing some form of dynamic restrictions

is necessary in order to separate out what part of the overall time variation is due to unob-

served heterogeneity (Evdokimov, 2010, Arellano and Bonhomme, 2012). In dynamic set-

tings, finite-order Markovian setups naturally imply conditional independence restrictions.

In both static and dynamic settings, results from the literature on nonlinear measurement

error models (Hu and Schennach, 2008, Hu and Shum, 2012) can then be used to provide

sufficient conditions for nonparametric identification for a fixed number of time periods.

The main goal of the paper is to develop a tractable estimation strategy for nonlinear

panel models. For this purpose, we specify outcomes Yit as a function of covariates Xit and

latent heterogeneity ηi as:

Yit =

K1∑

k=1

θk(Uit)gk (Xit, ηi) , (1)
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and we similarly specify the dependence of ηi on covariates Xi = (X ′
i1, ..., X

′
iT )

′ as:

ηi =

K2∑

k=1

δk(Vi)hk (Xi) , (2)

where Ui1, ..., UiT , Vi are independent uniform random variables, and g’s and h’s belong to

some families of functions. Outcomes Yit and heterogeneity ηi are monotone in Uit and Vi,

respectively, so (1) and (2) are models of conditional quantile functions.

The g’s and h’s are anonymous functions without an economic interpretation. They are

just building blocks of flexible models. Objects of interest will be summary measures of

derivative effects constructed from the models.

The linear quantile specifications (1) and (2) allow documenting interactions between

covariates and heterogeneity at various quantiles. In particular, (2) is a correlated random-

effects model that can become arbitrarily flexible as K2 increases. Linearity in the quantile

parameters, though not essential to our approach, is helpful for computational purposes.

Moreover, while (1) and (2) are stated for the static case and a scalar unobserved effect,

we show how to extend the framework to allow for dynamics and multi-dimensional latent

components.

The main econometric challenge is that the researcher has no data on heterogeneity ηi.

If ηi were observed, one would simply run an ordinary quantile regression of Yit on the

gk(Xit, ηi) variables in (1). As ηi is not observed we need to construct some imputations, say

M imputed values η
(m)
i , m = 1, ...,M , for each individual in the panel. Having got those, we

can get estimates by running a quantile regression averaged over imputed values.

For the imputed values to be valid they have to be draws from the posterior distribution

of ηi conditioned on the data, which depends on the parameters to be estimated (θ’s and δ’s).

Our approach is thus iterative. We start by selecting initial values for conditional quantiles

of Yit and ηi, which then allows us to generate imputes of ηi, which we can use to update

the quantile parameter estimates, and so on.

A difficulty for applying this idea is that the unknown parameters θ’s and δ’s are functions,

hence infinite-dimensional. This is because we need to model the full conditional distribution

of outcomes and latent individual effects, as opposed to a single quantile as is typically the

case in applications of ordinary quantile regression. To deal with this issue we follow Wei

and Carroll (2009), and we use a finite-dimensional approximation to θ’s and δ’s based on

interpolating splines.
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In the case of model (1) and (2), the estimation method works as follows, starting with

initial parameter values for θk(τ) and δk(τ) and iterating the two steps below until conver-

gence to a stationary distribution:

1. Given values for θk(τ) and δk(τ) on a grid of τ ’s, we compute the implied posterior

distribution of the individual effects and draw, for each individual unit i in the sample,

a sequence η
(1)
i , ..., η

(M)
i from that distribution.

2. With draws of η’s at hand, we update the parameters θk(τ) and δk(τ) by means of

two sets of quantile regressions, regressing outcomes Yit on the gk(Xit, η
(m)
i ) to update

θk(τ), and regressing the individual draws η
(m)
i on the hk (Xi) to update δk(τ).

The resulting algorithm is a variant of the Expectation-Maximization algorithm of Demp-

ster, Laird and Rubin (1977), sometimes referred to as “stochastic EM”. The sequence of

parameter estimates converges to an ergodic Markov Chain in the limit. Following Nielsen

(2000a, 2000b) we characterize the asymptotic distribution of our sequential simulated

method-of-moments estimator based on M imputations. A difference with most applica-

tions of EM-type algorithms is that we do not update parameters in each iteration using

maximum likelihood, but using quantile regressions.1 This is an important feature of our

approach, as the fact that quantile regression estimates can be computed in a quantile-by-

quantile fashion, and the convexity of the quantile regression objective function, make each

parameter update in step 2 fast and reliable.

We apply our estimator to assess the effect of smoking during pregnancy on a child’s

birthweight. Following Abrevaya (2006), we allow for mother-specific fixed-effects in estima-

tion. Both nonlinearities and unobserved heterogeneity are thus allowed for by our panel

data quantile regression estimator. We find that, while allowing for time-invariant mother-

specific effects decreases the magnitude of the negative coefficient of smoking, the latter

remains sizable, especially at low birthweights, and exhibits substantial heterogeneity across

mothers.

Literature review and outline. Starting with Koenker (2004), most panel data ap-

proaches to date proceed in a quantile-by-quantile fashion, and include individual indicators

1Related sequential method-of-moments estimators are considered in Arcidiacono and Jones (2003), Ar-
cidiacono and Miller (2011), and Bonhomme and Robin (2009), among others. Elashoff and Ryan (2004)
present an algorithm for accommodating missing data in situations where a natural set of estimating equa-
tions exists for the complete data setting.
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as additional covariates in the quantile regression. As shown by some recent work, however,

this “fixed-effects” approach faces special challenges when applied to quantile regression.

Galvao, Kato and Montes-Rojas (2012) and Arellano and Weidner (2015) study the large

N, T properties of the fixed-effects quantile regression estimator, and show that it may suffer

from large biases in short panels. Rosen (2012) shows that a fixed-effects model for a single

quantile may not be point-identified. Recent related contributions are Lamarche (2010),

Galvao (2011), and Canay (2011). In contrast, our approach relies on specifying a semi-

parametric model for individual effects given covariates and initial conditions, as in (2). As

a result, in this paper the analysis is conducted for fixed T , as N tends to infinity.

Our approach is closer in spirit to other random-effects approaches in the literature. For

example, Abrevaya and Dahl (2008) consider a correlated random-effects model to study the

effects of smoking and prenatal care on birthweight. Their approach mimics control function

approaches used in linear panel models. Geraci and Bottai (2007) consider a random-effects

approach for a single quantile assuming that the outcome variable is distributed as an asym-

metric Laplace distribution conditional on covariates and individual effects. Recent related

approaches to quantile panel data models include Chernozhukov et al. (2013, 2015) and

Graham et al. (2015). These approaches are non-nested with ours. In particular, they will

generally not recover the quantile effects we focus on in this paper. More broadly, compared

to existing work, our aim is to build a framework that can deal with general nonlinear and

dynamic relationships, thus providing an extension of standard linear panel data methods

to nonlinear settings.

The analysis also relates to method-of-moments estimators for models with latent vari-

ables. Compared to Schennach (2014), here we rely on conditional moment restrictions and

focus on cases where the entire model specification is point-identified. Finally, our analysis

is most closely related to Wei and Carroll (2009), who proposed a consistent estimation

method for cross-sectional linear quantile regression subject to covariate measurement error.

A key difference with Wei and Carroll is that, in our setup, the conditional distribution of

individual effects is unknown, and needs to be estimated along with the other parameters of

the model.

The outline of the paper is as follows. In Section 2 we present static models and discuss

identification. In Section 3 we present our estimation method and study some of its proper-

ties. In Section 4 we extend the approach to dynamic settings. In Section 5 we show how our
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method can be used to estimate average marginal effects, which are of interest in a number

of applications. In Section 6 we present the empirical illustration. Lastly, we conclude in

Section 7. Proofs and further discussion are contained in the appendix. Computer codes

implementing the method are available as supplementary material.

2 Quantile models for panel data

In this section we start by introducing a class of static panel data models. At the end of the

section we provide conditions for nonparametric identification.

2.1 Model and assumptions

Outcome variables. Let Yi = (Yi1, ..., YiT )
′ denote a sequence of T scalar continuous

outcomes for individual i, and let Xi = (X ′
i1, ..., X

′
iT )

′ denote a sequence of strictly exogenous

regressors, which may contain a constant. Let ηi denote a q-dimensional vector of individual-

specific effects, and let Uit denote a scalar error term. We specify the conditional quantile

response function of Yit given Xit and ηi as follows:

Yit = QY (Xit, ηi, Uit) , i = 1, ..., N, t = 1, ..., T. (3)

Model (3) can be used to empirically document nonlinear and heterogeneous effects of

covariates. In our illustration to smoking and birthweight, the model allows smoking effects

to differ across mothers (through the dependence on ηi) and along the distribution of birth-

weights (through the dependence on Uit). In Section 5 we will describe a set of treatment

effect parameters that our method allows us to estimate.

We make the following assumption.

Assumption 1. (outcomes)

(i) Uit follows a standard uniform distribution, independent of (Xi, ηi).

(ii) τ 7→ QY (x, η, τ) is strictly increasing on (0, 1), for almost all (x, η) in the support of

(Xit, ηi).

(iii) For all t 6= s, Uit is independent of Uis.

Assumption 1 (i) contains two parts. First, Uit is assumed independent of the full se-

quence Xi1, ..., XiT , and independent of individual effects. Strict exogeneity of X’s can be
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relaxed to allow for predetermined covariates, see Section 4. Second, the marginal distri-

bution of Uit is normalized to be uniform on the unit interval. Part (ii) guarantees that

outcomes have absolutely continuous distributions. Together, parts (i) and (ii) imply that,

for all τ ∈ (0, 1), QY (Xit, ηi, τ) is the τ -conditional quantile of Yit given (Xi, ηi).
2

Assumption 1 (iii) imposes independence restrictions on the process Ui1, ..., UiT . Restrict-

ing the dynamics of error variables Uit is needed when aiming at separating the time-varying

unobserved errors Uit from the time-invariant unobserved individual effects ηi. In part (iii),

Uit are assumed to be independent over time. In Section 4 we develop various extensions

of the model that allow for dynamic effects. Finally, although we have assumed in (3) that

QY does not depend on time, one could easily allow QY = Qt
Y to depend on t, reflecting for

example age or calendar time effects depending on the application.

Unobserved heterogeneity. Next, we specify the conditional quantile response function

of ηi given Xi as follows:

ηi = Qη (Xi, Vi) , i = 1, ..., N. (4)

Provided ηi is continuously distributed given Xi and Assumption 2 below holds, equation (4)

is a representation that comes without loss of generality, corresponding to a fully unrestricted

correlated random-effects specification.

Assumption 2. (individual effects)

(i) Vi follows a standard uniform distribution, independent of Xi.

(ii) τ 7→ Qη (x, τ) is strictly increasing on (0, 1), for almost all x in the support of Xi.

2.2 Examples

We next describe several examples to illustrate the static setup introduced above.

Example 1: Location-scale. As a first special case of model (3), consider the following

panel generalization of the location-scale model (He, 1997):

Yit = X ′
itβ + ηi + (X ′

itγ + µηi) εit, (5)

2Indeed we have, using Assumption 1 (i) and (ii):

Pr (Yit ≤ QY (Xit, ηi, τ) |Xi, ηi) = Pr (QY (Xit, ηi, Uit) ≤ QY (Xit, ηi, τ) |Xi, ηi)

= Pr (Uit ≤ τ |Xi, ηi) = τ .
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where εit are i.i.d. across periods, and independent of all regressors and individual effects.3

Denoting Uit = F (εit), where F is the cdf of εit, the conditional quantiles of Yit are given

by:

QY (Xit, ηi, τ) = X ′
itβ + ηi + (X ′

itγ + µηi)F
−1 (τ) , τ ∈ (0, 1).

Example 2: Panel quantile regression. Consider next the following linear quantile

specification with scalar ηi, which generalizes (5):

Yit = X ′
itβ (Uit) + ηiγ (Uit) . (6)

Given Assumption 1 (i) and (ii), the conditional quantiles of Yit are given by:

QY (Xit, ηi, τ) = X ′
itβ (τ) + ηiγ (τ) .

Model (6) is a panel data generalization of the classical linear quantile model of Koenker

and Bassett (1978). Were we to observe the individual effects ηi along with the covariates

Xit, it would be reasonable to postulate a model of this form. It is instructive to compare

model (6) with the following more general but different type of model:

Yit = X ′
itβ (Uit) + ηi (Uit) , (7)

where ηi (τ) is an individual-specific nonparametric function of τ . Koenker (2004) and subse-

quent fixed-effects approaches considered this more general model. Unlike (6), the presence

of the process ηi (τ) in (7) introduces an element of nonparametric functional heterogeneity

in the conditional distribution of Yit. In contrast, a key aspect of our approach is that we

view the η’s as missing data, and introduce them as additional (latent) covariates in the

quantile regression model.

The term ηi (Uit) in model (7) can be regarded as a function of Uit and a vector of

unobserved individual effects of unspecified dimension. In this way model (7) allows for mul-

tiple individual characteristics that affect differently individuals with different error rank Uit.

However, while being agnostic about the number of unobserved individual factors affecting

outcomes is attractive, sometimes substantive reasons suggest that only a small number of

3A generalization of (5) that allows for two-dimensional individual effects—as in Example 3 below—is:

Yit = X ′

itβ + ηi1 + (X ′

itγ + ηi2) εit.
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underlying factors play a role. Additionally, as our analysis makes clear, whether one uses

a quantile model with a different individual effect at each quantile or a model with a small

number of unobserved effects has implications for identification.4

In order to complete model (6) one may use another linear quantile specification for the

conditional distribution of individual effects:

ηi = X ′
iδ (Vi) . (8)

Given Assumption 2, the conditional quantiles of ηi are then given by:

Qη(Xi, τ) = X ′
iδ (τ) .

Model (8) corresponds to a correlated random-effects approach. However, it is more

flexible than alternative specifications in the literature. A commonly used specification is

(Chamberlain, 1984):

ηi = X ′
iµ+ σεi, εi|Xi ∼ N (0, 1) . (9)

For example, in contrast with (9), model (8) is fully nonparametric in the absence of co-

variates, i.e., when an independent random-effects specification is assumed. Model (8) and

its extensions based on series specifications may also be of interest in other nonlinear panel

data models, where the outcome equation does not follow a quantile model. We will return

to this point in the conclusion.

Example 3: Multi-dimensional heterogeneity. Model (6) may easily be modified to

allow for more general interactions between observables and unobservables, thus permitting

the effects of covariates to be heterogeneous at different quantiles. A random coefficients

generalization that allows for heterogeneous effects is:

QY (Xit, ηi, τ) = X ′
itβ(τ) + γ1(τ)ηi1 +X ′

itγ2(τ)ηi2, (10)

where ηi = (ηi1, ηi2)
′ is bivariate.

In order to extend (8) to the case with bivariate unobserved heterogeneity, it is convenient

to assume a triangular structure such as:

ηi1 = X ′
iδ11 (Vi1) ,

ηi2 = ηi1δ21 (Vi2) +X ′
iδ22 (Vi2) , (11)

4As mentioned in the introduction, Rosen (2012) shows that a fixed-effects model for a single quantile
may not be point-identified.

8



where Vi1 and Vi2 follow independent standard uniform distributions. Though not invariant

to permutation of (ηi1, ηi2), except if fully nonparametric, model (11) provides a flexible

specification for the bivariate conditional distribution of (ηi1, ηi2) given Xi.
5

2.3 Nonparametric identification

The class of panel data models introduced above satisfies conditional independence restric-

tions, as period-specific outcomes Yi1, ..., YiT are mutually independent conditional on exoge-

nous covariates and individual heterogeneity Xi, ηi. A body of work, initially developed in

the context of nonlinear measurement error models, has established nonparametric identifi-

cation results in related models under conditional independence restrictions; see Hu (2015)

for a recent survey. Here we show how the result in Hu and Schennach (2008) can be used

to show nonparametric identification. In Section 4 we will build on Hu and Shum (2012) to

provide conditions for identification in dynamic models, under Markovian restrictions.

Consider model (3)-(4), with a scalar unobserved effect ηi. At least three periods are

needed for identification, and we set T = 3. In the case where ηi is multivariate, identifica-

tion requires using additional time periods, see below. Throughout we use fZ and fZ|W as

generic notation for the distribution function of a random vector Z and for the conditional

distribution of Z given W , respectively.

Under conditional independence over time (Assumption 1 (iii)) we have, for all y1, y2, y3,

x = (x′1, x
′
2, x

′
3)

′, and η:

fY1,Y2,Y3|η,X (y1, y2, y3 | η, x) = fY1|η,X (y1 | η, x) fY2|η,X (y2 | η, x) fY3|η,X (y3 | η, x) . (12)

Hence the data distribution function relates to the densities of interest as follows:

fY1,Y2,Y3|X (y1, y2, y3 | x) =∫
fY1|η,X (y1 | η, x) fY2|η,X (y2 | η, x) fY3|η,X (y3 | η, x) fη|X (η | x) dη. (13)

The goal is the identification of fY1|η,X , fY2|η,X , fY3|η,X and fη|X given knowledge of fY1,Y2,Y3|X .

The setting of equation (13) is formally equivalent (conditional on x) to the instrumental

variables setup of Hu and Schennach (2008) for nonclassical nonlinear errors-in-variables

models. Specifically, according to Hu and Schennach’s terminology Yi3 would be the outcome

variable, Yi2 would be the mismeasured regressor, Yi1 would be the instrumental variable,

5It is worth pointing out that quantiles appear not to generalize easily to the multivariate case.
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and ηi would be the latent, error-free regressor. We closely rely on their analysis and make

the following assumption.

Assumption 3. (identification)

Almost surely in covariate values x:

(i) The joint density fY1,Y2,Y3,η|X=x is bounded, as well as all its joint and marginal den-

sities.

(ii) For all η1 6= η2: Pr
[
fY3|η,X(Yi3|η1, x) 6= fY3|η,X(Yi3|η2, x) |Xi = x

]
> 0.

(iii) There exists a known functional Γx such that Γx(fY2|η,X(·|η, x)) = η.

(iv) The linear operators LY2|η,x and LY1|Y2,x, associated with the conditional densities

fY2|η,X=x and fY1|Y2,X=x, respectively, are injective.

Part (i) in Assumption 3 requires bounded densities. Part (ii) requires that fY3|η,X be

non-identical at different values of η. Part (iii) imposes a centered measure of location on

fY2|η,X=x. In Example 2, the following normalization implies Assumption 3 (iii):

∫ 1

0

β0 (τ) dτ = 0, and

∫ 1

0

γ (τ) dτ = 1, (14)

where β0(τ) corresponds to the coefficient of the constant in Xit. We will use (14) in our

empirical implementation.6 Lastly, part (iv) is an injectivity condition. As pointed out by

Hu and Schennach (2008), injectivity is closely related to completeness conditions commonly

assumed in the literature on nonparametric instrumental variables. Similarly as complete-

ness, injectivity is a high-level condition.7 In Appendix A we further discuss the different

parts of Assumption 3.

We then have the following result, which is a direct application of the identification

theorem in Hu and Schennach (2008). A brief sketch of the identification argument is given

in Appendix A.

Proposition 1. (Hu and Schennach, 2008)

Let Assumptions 1, 2, and 3 hold. Then all conditional densities fY1|η,X=x, fY2|η,X=x,

fY3|η,X=x, and fη|X=x, are nonparametrically identified for almost all x.

6In fact, Assumption 3 (iii) is also implied by (14) in the following model with first-order interactions, a
version of which we estimate in the empirical application: Yit = X ′

itβ (Uit) + ηiX
′

itγ (Uit).
7See for example Canay et al. (2012) for results on the testability of completeness assumptions, and

D’Haultfoeuille (2011), Andrews (2011), and Hu and Shiu (2012) for primitive conditions in several settings.
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This result places no restrictions on the form of fYt|η,X=x, thus allowing for general distribu-

tional time effects.

Lastly, the identification result extends to models with multiple, q-dimensional individual

effects ηi, by taking a larger T > 3. For example, with T = 5 it is possible to apply Hu

and Schennach (2008)’s identification theorem to a bivariate ηi using (Yi1, Yi2) instead of

Yi1, (Yi3, Yi4) instead of Yi2, and Yi5 instead of Yi3. Provided injectivity conditions hold,

nonparametric identification follows from similar arguments as in the scalar case.

3 Quantile regression estimators

In this section we introduce our estimation strategy and discuss several of its statistical

properties.

3.1 Model specification and moment restrictions

We specify the conditional quantile function of Yit in (3) as:

QY (Xit, ηi, τ) = Wit (ηi)
′ θ (τ) . (15)

In (15) the vector Wit (ηi) contains a finite number of functions of Xit and ηi. One

possibility is to adopt a simple linear quantile specification as in Example 2, in which case

Wit (ηi) = (X ′
it, ηi)

′. A more flexible approach is to use a series specification of the quantile

function as in (1), and to set Wit (ηi) = (g1(Xit, ηi), ..., gK1
(Xit, ηi))

′ for a set of K1 functions

g1, ..., gK1
. In practice one may use orthogonal polynomials, wavelets or splines, for example;

see Chen (2007) for a comprehensive survey of sieve methods.

Similarly, we specify the conditional quantile function of ηi in (4) as:

Qη (Xi, τ) = Z ′
iδ (τ) . (16)

In (16) the vector Zi contains a finite number of functions of covariates Xi, such as Zi =

(h1(Xi), ..., hK2
(Xi)) for a set of K2 functions h1, ..., hK2

.

The posterior density of the individual effects fη|Y,X plays an important role in the anal-

ysis. It is given by:

fη|Y,X (η | y, x; θ (·) , δ (·)) =
∏T

t=1 fYt|Xt,η (yt | xt, η; θ (·)) fη|X (η | x; δ (·))∫ ∏T
t=1 fYt|Xt,η (yt | xt, η̃; θ (·)) fη|X (η̃ | x; δ (·)) dη̃

, (17)
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where we have used conditional independence in Assumption 1 (iii), and we have explicitly

indicated the dependence of the various densities on model parameters.

Let ψτ (u) = τ − 1 {u < 0}. The function ψτ is the first derivative (outside the origin) of

the “check” function ρτ , which is familiar from the quantile regression literature (Koenker

and Basset, 1978):

ρτ (u) = (τ − 1 {u < 0}) u, ψτ (u) =
dρτ (u)

du
.

In order to derive the main moment restrictions, we start by noting that, for all τ ∈ (0, 1),

the following infeasible moment restrictions hold, as a direct implication of Assumptions 1

and 2:

E

[
T∑

t=1

Wit (ηi)ψτ

(
Yit −Wit (ηi)

′ θ (τ)
)
]

= 0, (18)

and:

E [Ziψτ (ηi − Z ′
iδ (τ))] = 0. (19)

Indeed, (18) is the first-order condition associated with the infeasible population quantile

regression of Yit on Wit (ηi). Similarly, (19) corresponds to the infeasible quantile regression

of ηi on Zi.

Applying the law of iterated expectations to (18) and (19), respectively, we obtain the

following integrated moment restrictions, for all τ ∈ (0, 1):

E

[∫ ( T∑

t=1

Wit (η)ψτ

(
Yit −Wit (η)

′ θ (τ)
)
)
f (η | Yi, Xi; θ (·) , δ (·)) dη

]
= 0, (20)

and:

E

[∫ (
Ziψτ (η − Z ′

iδ (τ))

)
f (η | Yi, Xi; θ (·) , δ (·)) dη

]
= 0, (21)

where, here and in the rest of the analysis, we use f as a shorthand for the posterior density

fη|Y,X .

It follows from (20)-(21) that, if the posterior density of the individual effects were known,

then estimating the model’s parameters could be done using two sets of linear quantile

regressions, weighted by the posterior density. However, as the notation makes clear, the

posterior density in (17) depends on the entire processes θ (·) and δ (·). Specifically we have,

for absolutely continuous conditional densities of outcomes and individual effects:

fYt|Xt,η (yt | xt, η; θ (·)) = lim
ǫ→0

ǫ

wt (η)
′ [θ (ut + ǫ)− θ (ut)]

, (22)
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and:

fη|X (η | x; δ (·)) = lim
ǫ→0

ǫ

z′ [δ (v + ǫ)− δ (v)]
, (23)

where ut and v are defined by wt (η)
′ θ (ut) = yt and z

′δ (v) = η, respectively. Equations (22)

and (23) come from the fact that the density of a random variable and the derivative of its

quantile function are the inverse of each other.

The dependence of the posterior density on the entire set of model parameters makes

it impossible to directly recover θ (τ) and δ (τ) in (20)-(21) in a τ -by-τ fashion. The main

idea of the algorithm that we present in the next subsection is to circumvent this difficulty

by iterating back-and-forth between computation of the posterior density, and computation

of the model’s parameters given the posterior density. The latter is easy to do as it is

based on weighted quantile regressions. Similar ideas have been used in the literature (e.g.,

Arcidiacono and Jones, 2003). However, an additional difficulty in our case is that the

posterior density depends on a continuum of parameters. In order to develop a practical

approach, we now introduce a finite-dimensional, tractable approximating model.

Parametric specification. Building on Wei and Carroll (2009), we approximate θ (·) and
δ (·) using splines, with L knots 0 < τ 1 < τ 2 < ... < τL < 1. A practical possibility is to use

piecewise-linear splines as in Wei and Carroll, but other choices are possible, such as cubic

splines or shape-preserving B-splines. When using interpolating splines, the approximation

argument requires suitable smoothness assumptions on θ (τ) and δ (τ) as functions of τ ∈
(0, 1). For fixed L, the spline specification may be seen as an approximation to the underlying

quantile functions.

Let us define ξ = (ξ′A, ξ
′
B)

′
, where:

ξA =
(
θ (τ 1)

′ , θ (τ 2)
′ , ..., θ (τL)

′)′ , and ξB =
(
δ (τ 1)

′ , δ (τ 2)
′ , ..., δ (τL)

′)′ .

The approximating model depends on the finite-dimensional parameter vector ξ that is

used to construct interpolating splines. The associated likelihood function and density of

individual effects are then denoted as fYt|Xt,η (yt | xt, η; ξA) and fη|X (η | x; ξB), respectively,
and the implied posterior density is:

f (η | y, x; ξ) =
∏T

t=1 fYt|Xt,η (yt | xt, η; ξA) fη|X (η | x; ξB)∫ ∏T
t=1 fYt|Xt,η (yt | xt, η̃; ξA) fη|X (η̃ | x; ξB) dη̃

. (24)

The approximating densities take closed-form expressions when using piecewise-linear splines.

Moreover, when implementing the algorithm in practice we augment the specification with

13



parametric models in the tail intervals of the coefficients of θ(τ) and δ(τ) corresponding to

the constant terms. In this case the estimation algorithm needs to be modified slightly. See

Section 6.1 for a discussion of implementation.

Finally, the integrated moment restrictions of the approximating model are, for all ℓ =

1, ..., L:

E

[∫ ( T∑

t=1

Wit (η)ψτℓ

(
Yit −Wit (η)

′ θ (τ ℓ)
)
)
f (η | Yi, Xi; ξ) dη

]
= 0, (25)

and:

E

[∫ (
Ziψτℓ

(η − Z ′
iδ (τ ℓ))

)
f (η | Yi, Xi; ξ) dη

]
= 0. (26)

3.2 Estimation algorithm

Let (Yi, X
′
i), i = 1, ..., N , be an i.i.d. sample. Motivated by the integrated moment re-

strictions (25)-(26) we propose to estimate the model’s parameters by using an iterative

method. In practice we use a simulation-based approach to replace the integrals in (25)-(26)

by sums. Starting with initial parameter values ξ̂
(0)
, we iterate the following two steps until

convergence to a stationary distribution.

Algorithm. (stochastic EM)

1. For all i = 1, ..., N , compute the posterior density:

f̂
(s)
i (η) = f

(
η | Yi, Xi; ξ̂

(s)
)
, (27)

and draw M values η
(1)
i ,...,η

(M)
i from f̂

(s)
i .

2. Solve, for ℓ = 1, ..., L:

θ̂ (τ ℓ)
(s+1) = argmin

θ

N∑

i=1

M∑

m=1

T∑

t=1

ρτℓ

(
Yit −Wit

(
η
(m)
i

)′
θ

)
,

δ̂ (τ ℓ)
(s+1) = argmin

δ

N∑

i=1

M∑

m=1

ρτℓ

(
η
(m)
i − Z ′

iδ
)
.

This sequential simulated method-of-moment method is related to, but different from,

the standard EM algorithm (Dempster et al., 1977). As in EM, the algorithm iterates back-

and-forth between computation of the posterior density of the individual effects (“E”-step)
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and computation of the parameters given the posterior density (“M”-step). Unlike in EM,

however, in the second step of the algorithm (the “M”-step) estimation is not based on a

likelihood function, but on the check function of quantile regression.

Proceeding in this way has two major computational advantages compared to maximizing

the full likelihood of the approximating model. Firstly, as opposed to the likelihood function,

which is a complicated function of all quantile regression coefficients, the M-step problem

nicely decomposes into L different τ ℓ-specific subproblems. Secondly, using the check func-

tion yields a globally convex objective function in each step. In fact, the “M”-step simply

consists of 2L ordinary quantile regressions, where the simulated values of the individual

effects are treated, in turn, as covariates and dependent variables.

At the same time, two features of the standard EM algorithm differ in our sequential

method-of-moment method. First, as our algorithm is not likelihood-based, the resulting

estimator will not be efficient in general, even as the number of draws M tends to infinity.8

Second, unlike in deterministic versions of EM, in the “E”-step we drawM values for the

individual effects according to their posterior density f̂
(s)
i (η) = f

(
η | Yi, Xi; ξ̂

(s)
)
. We use

a random-walk Metropolis-Hastings sampler for this purpose, but other choices are possible

(such as particle filter methods).9 An advantage of Metropolis-Hastings over grid approx-

imations and importance sampling weights is that the integral in the denominator of the

posterior density of η is not needed. The output of this algorithm is a Markov chain. In

practice, we stop the chain after a large number of iterations and we report an average across

the last S̃ values: ξ̂ = 1

S̃

∑S
s=S−S̃+1 ξ̂

(s)
.

In each iteration of the algorithm, the draws η
(1)
i ,...,η

(M)
i are randomly re-drawn. This

approach, sometimes referred to as “stochastic EM”, thus differs from the simulated EM

algorithm of McFadden and Ruud (1994) where the same underlying uniform draws are used

in each iteration. Nielsen (2000a, 2000b) studies and compares various statistical properties

of simulated EM and stochastic EM in a likelihood context. In particular, he provides

conditions under which the Markov chain output of stochastic EM is ergodic. As M tends

to infinity the sum converges to the true integral. The problem is then smooth (because of

the integral with respect to η). Building on Nielsen’s work, we next analyze the statistical

8This loss of efficiency relative to maximum likelihood is similar to the one documented in Arcidiacono
and Jones (2003), for example.

9Note that the posterior density is non-negative by construction. In particular, drawing from f̂
(s)
i (η)

automatically produces rearrangement of the various quantile curves, as in Chernozhukov, Galichon and
Fernández-Val (2010).
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properties of estimators based on fixed-M and large-M versions of the algorithm.

3.3 Asymptotic properties

We now discuss the asymptotic properties of the estimation algorithm. Throughout, T is

fixed while N tends to infinity.

Parametric inference. We start by discussing the asymptotic properties of the estimator

based on the stochastic EM algorithm, for fixed number of draws M , in the case where the

parametric model is assumed to be correctly specified. That is, K1, K2 (the number of series

terms) and L (the size of the grid on the unit interval) are held fixed as N tends to infinity.

In the next paragraph we will study consistency as K1, K2 and L tend to infinity with N , in

the large-M limit.

Nielsen (2000a) studies the statistical properties of the stochastic EM algorithm in a like-

lihood case. He provides conditions under which the Markov Chain ξ̂
(s)

is ergodic, for a fixed

sample size. In addition, he also characterizes the asymptotic distribution of
√
N
(
ξ̂
(s) − ξ

)

as N increases, where ξ denotes the population parameter vector.

In Appendix B we rely on Nielsen’s work to characterize the asymptotic distribution of

ξ̂
(s)

= ((θ̂
(s)
)′, (δ̂

(s)
)′)′ in our model, where the optimization step is not likelihood-based but

relies on quantile-based estimating equations. Specifically, if s corresponds to a draw from

the ergodic distribution of the Markov Chain, and M is the number of draws per iteration,

then:
√
N
(
ξ̂
(s) − ξ

)
d→ N (0,V + VM),

where the expressions of V and VM are given in Appendix B.

In addition, if ξ̂ is a parameter draw and M tends to infinity, or alternatively if ξ̂ is

computed as the average of ξ̂
(s)

over S̃ iterations with S̃ tending to infinity (as in our

implementation), then:
√
N
(
ξ̂ − ξ

)
d→ N (0,V),

V being the asymptotic variance of the method-of-moments estimator based on the integrated

moment restrictions (25)-(26).

Nonparametric consistency. In the asymptotic theory of the previous paragraph,K1, K2

and L are held fixed as N tends to infinity. It may be more appealing to see the parametric
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specification based on series and splines as an approximation to the quantile functions, which

becomes more accurate as the dimensions K1, K2 and L increase. Here our aim is to provide

conditions under which the estimator is consistent as N , K1, K2, and L tend to infinity.

To proceed we consider the following assumption on the data generating process, as in

Belloni, Chernozhukov and Fernández-Val (2011):

Yit = Wit(ηi)
′θ(Uit) +RY (Xit, ηi, Uit),

and, similarly:

ηi = Z ′
iδ(Vi) +Rη(Xi, Vi),

where sup(x,e,u) |RY (x, e, u)| = o(1) as K1 tends to infinity, and sup(x,v) |Rη(x, v)| = o(1) as

K2 tends to infinity.

Let ξ(τ) = (θ(τ)′, δ(τ)′)′ be a (K1 +K2)× 1 vector for all τ ∈ (0, 1), and let ξ : (0, 1) →
R

K1+K2 be the associated function. Let us consider the estimator ξ̂ = (θ̂
′
, δ̂

′
)′ based on the

integrated moment restrictions (25)-(26). This analysis as M → ∞ thus ignores the impact

of small-M simulation error. Note that ξ̂ is a function defined on the unit interval. In

Appendix B we provide and discuss conditions that guarantee that ξ̂ is uniformly consistent

for ξ = (θ
′
, δ

′
)′, that is:

sup
τ∈(0,1)

∥∥∥ξ̂(τ)− ξ(τ)
∥∥∥ = op(1), (28)

where ‖·‖ denotes the Euclidean norm on R
K1+K2 .

Some of the conditions for consistency given in Appendix B are non-primitive. In par-

ticular, an identification condition is required which is related to Assumption 3, though it

differs from it due to the fact that our estimator is based on a set of moment conditions

rather than the likelihood. More generally, models with latent distributions such as the

nonlinear panel data models we analyze in this paper are subject to ill-posedness, making a

complete characterization of asymptotic distributions challenging.10 A practical possibility,

for which we do not yet have a formal justification, is to use empirical counterparts of the

fixed-(K1, K2, L) asymptotic formulas derived in the previous paragraph, or alternatively the

bootstrap, to conduct inference. A related question is that of the practical choice of K1, K2

and L. In this paper we do not characterize the asymptotic distribution of our estimator as

N , K1, K2, and L tend to infinity, and we leave these important questions to future work.

10In particular, the class of models we consider nests nonparametric deconvolution models with repeated
measurements (Kotlarski, 1967, Horowitz and Markatou, 1996, Delaigle, Hall and Meister, 2008, Bonhomme
and Robin, 2010). In such settings, quantiles are generally not root-N estimable (Hall and Lahiri, 2008).

17



4 Dynamic models

In this section we extend the method to dynamic models with dependence on lagged outcomes

or predetermined covariates.

4.1 Models, examples, and identification

In a dynamic extension of the static model (3), we specify the conditional quantile function

of Yit given Yi,t−1, Xit and ηi as:

Yit = QY (Yi,t−1, Xit, ηi, Uit) , i = 1, ..., N, t = 2, ..., T. (29)

A simple extension is obtained by replacing Yi,t−1 by a vector containing various lags of the

outcome variable. As in the static case, QY could depend on t.

Linear versions of (29) are widely used in applications, including in the study of individual

earnings, firm-level investment, cross-country growth, or in the numerous applications of

panel VAR models. In these applications, interactions between heterogeneity and dynamics

are often of great interest. A recent example is the analysis of institutions and economic

growth in Acemoglu et al. (2015).

The assumptions we impose in model (29), and the modelling of unobserved heterogeneity,

both depend on the nature of the covariates process. We consider two cases in turn: strictly

exogenous and predetermined covariates.

Autoregressive models. In the case where covariates are strictly exogenous, with some

abuse of notation we suppose that Assumption 1 holds with (Yi,t−1, X
′
it)

′ instead of Xit and

(Yi1, X
′
i1, ..., X

′
iT )

′ instead of Xi. Note that the latter contains both strictly exogenous covari-

ates and first-period outcomes. Individual effects can be written without loss of generality

as:

ηi = Qη (Yi1, Xi, Vi) , i = 1, ..., N, (30)

and we suppose that Assumption 2 holds with (Yi1, X
′
i)

′ instead of Xi.

Predetermined covariates. In dynamic models with predetermined regressors, current

values of Uit may affect future values of covariates Xis, s > t. Given the presence of latent

variables in our nonlinear setup, a model for the feedback process is needed. That is, we

need to specify the conditional distribution of Xit given (Y t−1
i , X t−1

i , ηi), where Y t−1
i =
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(Yi,t−1, ..., Yi1)
′ and X t−1

i = (X ′
i,t−1, ..., X

′
i1)

′. We use additional quantile specifications for

this purpose. In the case where Xit is scalar, and under a conditional first-order Markov

assumption for (Yit, Xit), t = 1, ..., T , given ηi, we specify, without further loss of generality:

Xit = QX (Yi,t−1, Xi,t−1, ηi, Ait) , i = 1, ..., N, t = 2, ..., T. (31)

We suppose that Assumptions 1 and 2 hold, with (Yi,t−1, X
′
it)

′ instead of Xit and (Yi1, X
′
i1)

′

instead of Xi, and:

ηi = Qη (Yi1, Xi1, Vi) , i = 1, ..., N. (32)

We then complete the model with the following assumption on the feedback process.

Assumption 4. (predetermined covariates)

(i) Ait follows a standard uniform distribution, independent of (Yi,t−1, Xi,t−1, ηi).

(ii) τ 7→ QX (y, x, η, τ) is strictly increasing on (0, 1), for almost all (y, x, η) in the support

of (Yi,t−1, Xi,t−1, ηi).

(iii) For all t 6= s, Ait is independent of Ais.

Model (31) can be extended to multi-dimensional predetermined covariates using a tri-

angular approach in the spirit of the one introduced in Example 3. For example, with

two-dimensional Xit = (X1it, X2it)
′:

X1it = QX1
(Yi,t−1, X1i,t−1, X2i,t−1, ηi, A1it) ,

X2it = QX2
(Yi,t−1, X1it, X1i,t−1, X2i,t−1, ηi, A2it) , (33)

where ηi may be scalar or multi-dimensional as in Example 3.

Example 4: Panel quantile autoregression. A dynamic counterpart to Example 2 is

the following linear quantile regression model:

Yit = ρ (Uit)Yi,t−1 +X ′
itβ (Uit) + ηiγ (Uit) . (34)

Model (34) differs from the more general model studied in Galvao (2011):

Yit = ρ (Uit)Yi,t−1 +X ′
itβ (Uit) + ηi (Uit) . (35)

Similarly as in (7), and in contrast with the models introduced in this paper, the presence

of the functional heterogeneity term ηi (τ) makes fixed-T consistent estimation problematic

in (35).
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An extension of (34) is:

Yit = h (Yi,t−1)
′ ρ (Uit) +X ′

itβ (Uit) + ηiγ (Uit) , t = 2, ..., T, (36)

where h is a univariate function. For example, when h(y) = |y| model (36) is a panel data

version of the CAViaR model of Engle and Manganelli (2004). Other choices will lead to

panel counterparts of various dynamic quantile models (e.g., Gouriéroux and Jasiak, 2008).

The approach developed in this paper allows for more general, nonlinear series specifications

of dynamic quantile functions in a panel data context.

Example 5: Quantile autoregression with predetermined covariates. Extending

Example 4 to allow for a scalar predetermined covariate Xit, we may augment (34) with the

following linear quantile specification for Xit:

Xit = µ (Ait)Yi,t−1 + ξ1 (Ait)Xi,t−1 + ξ0 (Ait) + ζ (Ait) ηi.

This specification can be extended to allow for multi-dimensional predetermined regressors,

as in (33).

Identification. In dynamic models nonparametric identification requires T ≥ 4. Under

Assumption 1, Uit is independent of Xis for all s and uniformly distributed, and independent

of Uis for all s 6= t. So taking T = 4 we have:

fY1,Y2,Y3,Y4|X (y1, y2, y3, y4 | x) =

∫
fY2|Y1,η,X (y2 | y1, η, x) fY3|Y2,η,X (y3 | y2, η, x)

×fY4|Y3,η,X (y4 | y3, η, x) fη,Y1|X (η, y1 | x) dη,

(37)

where we have used that Yi4 is conditionally independent of (Yi2, Yi1) given (Yi3, Xi, ηi), and

that Yi3 is conditionally independent of Yi1 given (Yi2, Xi, ηi).

An extension of Hu and Schennach (2008)’s theorem, along the lines of Hu and Shum

(2012), then shows nonparametric identification of all conditional densities fY2|Y1,η,X , fY3|Y2,η,X ,

fY4|Y3,η,X , and fη,Y1|X , in the autoregressive model, under suitable assumptions. A brief sketch

of the identification argument is provided in Appendix A.11

11In the dynamic model (36), it follows from Hu and Shum (2012)’s analysis that one can rely on (14) as
in the static case, provided the averages across τ values of the coefficients of exogenous regressors and lagged
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Lastly, autoregressive models with predetermined covariates can be shown to be nonpara-

metrically identified using similar arguments, provided the feedback process is first-order

Markov.

4.2 Estimation in dynamic models

The estimation algorithm of Section 3 can be directly modified to deal with autoregressive

models with strictly exogenous covariates. Consider a linear specification of the quantile

functions (29) and (30), possibly based on series. Then the stochastic EM algorithm es-

sentially takes the same form as in the static case, except for the posterior density of the

individual effects which is now computed as:

f (η | y, x; ξ) =
∏T

t=2 fYt|Yt−1,Xt,η (yt | yt−1, xt, η; ξA) fη|Y1,X (η | y1, x; ξB)∫ ∏T
t=2 fYt|Yt−1,Xt,η (yt | yt−1, xt, η̃; ξA) fη|Y1,X (η̃ | y1, x; ξB) dη̃

. (38)

General predetermined regressors. In models with predetermined covariates, the crit-

ical difference is in the nature of the posterior density of the individual effects. Letting

Wit = (Yit, X
′
it)

′ and Wi = (W ′
i1, ...,W

′
iT )

′ we have:

f (η | y, x; ξ) = fW2,...,WT
(w2, ..., wT | w1, η) fη|W1

(η | w1)∫
fW2,...,WT

(w2, ..., wT | w1, η) fη|W1
(η | w1) dη

=
fη|W1

(η | w1; ξB)
∏T

t=2 fYt|Yt−1,Xt,η (yt | yt−1, xt, η; ξA) fXt|W t−1,η (xt | wt−1, η; ξC)∫
fη|W1

(η̃ | w1; ξB)
∏T

t=2 fYt|Yt−1,Xt,η (yt | yt−1, xt, η̃; ξA) fXt|W t−1,η (xt | wt−1, η̃; ξC) dη̃
,

where now ξ = (ξ′A, ξ
′
B, ξ

′
C)

′
includes additional parameters that correspond to the model of

the feedback process from past values of Yit and Xit to future values of Xis, for s > t.

Under predeterminedness, the quantile model only specifies the partial likelihood:

∏T

t=2
fYt|Yt−1,Xt,η (yt | yt−1, xt, η; ξA) .

However, the posterior density of the individual effects also depends on the feedback process:

fXt|W t−1,η

(
xt | wt−1, η; ξC

)
,

outcome are identified based on:

E
[
Yit − Yi,t−1 | Y t−2

i , Xi

]
= E

[
h (Yi,t−1)− h (Yi,t−2) | Y t−2

i , Xi

]′ ∫ 1

0

ρ(τ)dτ + (Xit −Xi,t−1)
′

∫ 1

0

β(τ)dτ .
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in addition to the density of individual effects. Note that the feedback process could depend

on an additional vector of individual effects different from ηi.

In line with our approach, we also specify the quantile function of covariates in (31) using

linear (series) quantile regression models. Specifically, letting Xpit, p = 1, ..., P , denote the

various components of Xit, we specify the following triangular, recursive system that extends

Example 5 to multi-dimensional predetermined covariates:

X1it = W1it(ηi)µ1 (A1it) ,

· · · · · · · · ·

XPit = WPit(ηi)µP (APit) , (39)

where A1it, ..., APit follow independent standard uniform distributions, independent of all

other random variables in the model, W1it(ηi) contains functions of (Yi,t−1, Xi,t−1, ηi), and

Wpit(ηi) contains functions of (X1it, ...Xp−1,it, Yi,t−1, Xi,t−1, ηi) for p > 1. The parameter

vector ξC includes all µp(τ ℓ), for p = 1, ..., P and ℓ = 1, ..., L.

The model with predetermined regressors has thus three layers of quantile regressions:

the outcome model (29) specified as a linear quantile regression, the model of the feedback

process (39), and the model of individual effects (32), which here depends on first-period

outcomes and covariates. The estimation algorithm is similar to the one for static models,

with minor differences in both steps.12

5 Quantile marginal effects

In nonlinear panel data models, it is often of interest to compute the effect of marginal

changes in covariates on the entire distribution of outcome variables. As an example, let us

consider the following average quantile marginal effect (QME hereafter) for continuous Xit:

M(τ) = E

[
∂QY (Xit, ηi, τ)

∂x

]
,

where ∂QY /∂x denotes the vector of partial derivatives ofQY with respect to its first dim(Xit)

arguments.

In the quantile regression model of Example 2, individual quantile marginal effects are

equal to ∂QY (Xit, ηi, τ)/∂x = β(τ), and M(τ) = β(τ). In Example 3, individual QME are

12In addition, in Appendix C we describe how to allow for autocorrelated errors in model (3)-(4).
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heterogeneous, equal to β(τ)+γ2(τ)ηi2, andM(τ) = β(τ)+γ2(τ)E [ηi2]. Series specifications

of the quantile function as in (1) can allow for rich heterogeneity in individual QME.

Dynamic models. Quantile marginal effects are also of interest in dynamic models. One

can define short-run average QME as:

Mt(τ) = E

[
∂QY (Yi,t−1, Xit, ηi, τ)

∂x

]
.

Moreover, when considering marginal changes in the lagged outcome Yi,t−1, the aver-

age QME, E [∂QY (Yi,t−1, Xit, ηi, τ)/∂y], can be interpreted as a nonlinear measure of state

dependence. In that case ∂QY /∂y denotes the derivative of QY with respect to its first

argument.

Dynamic models also provide the opportunity to document dynamic quantile marginal

effects, such as the following one-period-ahead average QME:

Mt+1/t(τ 1, τ 2) = E

[
∂QY (QY (Yi,t−1, Xit, ηi, τ 1), Xi,t+1, ηi, τ 2)

∂y
× ∂QY (Yi,t−1, Xit, ηi, τ 1)

∂x

]
.

Mt+1/t(τ 1, τ 2) measures the average effect of a marginal change in Xit when ηi is kept fixed,

and the innovations in periods t and t+ 1 have rank τ 1 and τ 2, respectively.

Panel quantile treatment effects. When the covariate of interest is binary, as in our

empirical application in Section 6, one can define panel data versions of quantile treatment

effects. To see this, let Dit be the binary covariate of interest, and let Xit include all other

time-varying covariates. Consider the static model (3), the argument extending directly to

dynamic models. Potential outcomes are defined as:

Yit(d) = QY (d,Xit, ηi, Uit) , d ∈ {0, 1}.

Under Assumption 1, (Yit(0), Yit(1)) is conditionally independent of Dit given (Xi, ηi).

This amounts to assuming selection on observables and unobservables, when unobserved

effects ηi are identified from the panel dimension.

The average conditional quantile treatment effect is then defined as:

E [QY (1, Xit, ηi, τ)−QY (0, Xit, ηi, τ)] .

In the linear quantile regression model of Example 2, this is simply the coefficient of the

vector β(τ) corresponding to Dit. In fact, the distribution of treatment effects is identified
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for this model, under the conditions spelled out in Section 2. The key assumption is rank

invariance of Uit given Xi and ηi.

It is also possible to define unconditional quantile treatment effects, as:

F−1
Yit(1)

(τ)− F−1
Yit(0)

(τ),

where the cdfs FYit(0) and FYit(1) are given by:13

FYit(d)(y) = E

[∫ 1

0

1 {QY (d,Xit, ηi, τ) ≤ y} dτ
]
, d ∈ {0, 1}. (40)

All these quantities can readily be estimated using our panel quantile estimator.

6 Empirical application

In this section we present an empirical illustration to the link between mothers’ smoking

during pregnancy and birthweight. We start by discussing how we implement the estimation

algorithm in practice.

6.1 Implementation

Piecewise-linear splines. We use piecewise-linear splines as an approximating model.

Although other spline families could be used instead, computing the implied likelihood func-

tions would then require inverting quantile functions numerically. In contrast, for linear

splines we have, for all ℓ = 1, ..., L− 1:

θ (τ) = θ (τ ℓ) +
τ − τ ℓ
τ ℓ+1 − τ ℓ

[θ (τ ℓ+1)− θ (τ ℓ)] , τ ℓ < τ ≤ τ ℓ+1,

δ (τ) = δ (τ ℓ) +
τ − τ ℓ
τ ℓ+1 − τ ℓ

[δ (τ ℓ+1)− δ (τ ℓ)] , τ ℓ < τ ≤ τ ℓ+1,

and the implied approximating period-t density of outcomes and the implied approximating

density of individual effects take simple closed-form expressions:

fYt|Xt,η (yt | xt, η; ξA) =
τ ℓ+1 − τ ℓ

wt (η)
′ [θ (τ ℓ+1)− θ (τ ℓ)]

if wt (η)
′ θ (τ ℓ) < yt ≤ wt (η)

′ θ (τ ℓ+1) ,

(41)

fη|X (η | x; ξB) =
τ ℓ+1 − τ ℓ

z′ [δ (τ ℓ+1)− δ (τ ℓ)]
if z′δ (τ ℓ) < η ≤ z′δ (τ ℓ+1) , (42)

augmented with a specification in the tail intervals (0, τ 1) and (τL, 1).

13Note that unconditional quantile treatment effects cannot be directly estimated as in Firpo (2007) in
this context, due to the presence of the unobserved ηi and the lack of fixed-T identification for fixed-effects
binary choice models.
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Tail intervals. In order to model quantile functions in the intervals (0, τ 1) and (τL, 1) one

could assume, following Wei and Carroll (2009), that θ(·) and δ(·) are constant on these

intervals, so the implied distribution functions have mass points at the two ends of the

support. In Appendix D we outline a different, exponential-based modelling of the extreme

intervals, motivated by the desire to avoid that the support of the likelihood function depends

on the parameter value. We use this method in the empirical application.

6.2 Application: smoking and birthweight

Here we revisit the effect of maternal inputs of children’s birth outcomes. Specifically, we

study the effect of smoking during pregnancy on children’s birthweights. Abrevaya (2006)

uses a mother fixed-effects approach to address endogeneity of smoking. Here we use quan-

tile regression with mother-specific effects to allow for both unobserved heterogeneity and

nonlinearities in the relationship between smoking and weight at birth. As a complement,

in Appendix E we report the results of a Monte Carlo simulation broadly calibrated to this

application, in order to assess the performance of our estimator in finite samples.

We focus on a balanced subsample from the US natality data used in Abrevaya (2006),

which comprises 12360 women with 3 children each. Our outcome is the log-birthweight.

The main covariate is a binary smoking indicator. Age of the mother and gender of the child

are used as additional controls.

An OLS regression yields a significantly negative point estimate of the smoking coefficient:

−.095. The fixed-effects estimate is also negative, but it is twice as small: −.050, significant.
This suggests a negative endogeneity bias in OLS, and is consistent with the results in

Abrevaya (2006).

The solid line on the left graph of Figure 1 shows the smoking coefficient estimated from

pooled quantile regressions, on a fine grid of τ values. According to these estimates, the

effect of smoking is more negative at lower quantiles of birthweights.

The dashed line on the left graph of Figure 1 shows the quantile estimate of the smoking

effect. We use a linear quantile regression specification as in Example 2, augmented with

a parametric exponential model in the tail intervals. The covariates are smoking status,

age, and gender, with an intercept. We use individual-specific averages of these variables

as covariates in the specification for ηi. Estimates are computed using L = 21 knots. The

stochastic EM algorithm is run for 100 iterations, with 500 random walk Metropolis-Hastings
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Figure 1: Quantile effects of smoking during pregnancy on log-birthweight (linear quantile
specification)
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Note: Data from Abrevaya (2006). Left graph: solid line is the pooled quantile regression
smoking coefficient; dashed line is the panel quantile regression smoking coefficient. Right
graph: solid line is the raw quantile treatment effect of smoking; dashed line is the quantile
treatment effect estimate based on panel quantile regression.

draws within each iteration.14 Parameter estimates are computed as averages of the 50 last

iterations of the algorithm.15

We see on the left graph of Figure 1 that the smoking effect becomes less negative when

correcting for time-invariant endogeneity through the introduction of mother-specific fixed-

effects. At the same time, the effect is still sizable, and it remains increasing along the

distribution.

As another exercise, on the right graph of Figure 1 we compute the unconditional quantile

treatment effect of smoking as the difference in log-birthweights between a sample of smok-

ing women, and a sample of non-smoking women, keeping all other characteristics (that is,

observed Xi and unobserved ηi) constant, as defined in Section 5. We report differences

in quantiles of simulated potential outcomes obtained using the method of Machado and

Mata (2005). This exercise illustrates the usefulness of specifying and estimating a complete

semiparametric model of the joint distribution of outcomes and unobservables, in order to

14The variance of the random walk proposal is set to achieve ≈ 30% acceptance rate.
15For θ’s, starting parameter values are taken based on ordinary quantile regressions of log-birthweight on

smoking status, age, and gender, with an intercept, setting the coefficient of ηi in the outcome equation to
one. For δ’s, we set all initial quantile parameters to {.1, .2, ..., 2.1}. The initial values for the exponential
parameters in the tails are all set to 20. We experimented with other starting values for the model’s
parameters (for example, we initialized the δ’s based on quantile regressions of individual-specific means Y i

on Xi) and found no qualitative differences compared to the results we report.
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Figure 2: Quantile effects of smoking during pregnancy on log-birthweight (interacted quan-
tile specification)
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Note: Data from Abrevaya (2006). Left graph: lines represent the percentiles .05, .25, .50,
.75, and .95 of the heterogeneous smoking effect across mothers, at various percentiles τ .
Right graph: solid line is the raw quantile treatment effect of smoking; dashed line is the
quantile treatment effect estimate based on panel quantile regression with interactions.

compute counterfactual distributions that take into account the presence of unobserved het-

erogeneity. On the graph, the solid line shows the empirical difference between unconditional

quantiles, while the dashed line shows the quantile treatment effect that accounts for both

observables and unobservables.

The results on the right graph of Figure 1 are broadly similar to the ones reported on

the left graph. An interesting finding is that in this case the endogeneity bias (that is, the

difference between the dashed and solid lines) is slightly larger, and that it tends to decrease

as one moves from lower to higher quantiles of birthweight.

Lastly, on Figure 2 we report the results of an interacted quantile model, as in (1) and

(2), where the specification allows for all first-order interactions between covariates (that is,

smoking status, age and gender) and the unobserved mother-specific effect. In this model

the quantile effect of smoking is mother-specific. The results on the right graph show the

unconditional quantile treatment effect of smoking. Results are similar to the ones obtained

for a simple linear specification (see the right graph of Figure 1). However, on the left

graph of Figure 2 we see substantial mother-specific heterogeneity in the conditional quantile

treatment effect of smoking, as for some mothers smoking appears particularly detrimental

to children’s birthweight, whereas for other mothers the smoking effect, while consistently
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negative, is much smaller. This evidence is in line with the results of a linear random

coefficients model reported in Arellano and Bonhomme (2012).

7 Conclusion

Quantile methods are flexible tools to model nonlinear panel data relationships. In this

work, quantile regression is used to model the dependence between outcomes, covariates

and individual heterogeneity, and between individual effects and exogenous regressors or

initial conditions. Quantile specifications also allow modelling feedback processes in models

with predetermined covariates. The empirical application illustrates the benefits of having

a flexible approach to allow for heterogeneity and nonlinearity within the same model in a

panel data context.

Our approach leads to fixed-T identification of complete models. The estimation algo-

rithm exploits the computational advantages of linear quantile regression, within an itera-

tive scheme which allows dealing with the presence of unobserved individual effects. Beyond

static or dynamic quantile regression models with single or multiple individual effects, our ap-

proach naturally extends to series specifications, thus allowing for rich interactions between

covariates and heterogeneity at various points of the distribution.

Our quantile-based modelling of the distribution of individual effects could be of interest

in other models as well. For example, one could consider semiparametric likelihood panel

data models, where the conditional likelihood of the outcome Yi given Xi and ηi depends on

a finite-dimensional parameter vector α, and the conditional distribution of ηi given Xi is

left unrestricted. The approach of this paper is easily adapted to this case, and delivers a

semiparametric likelihood of the form:

fY |X(y|x;α, δ(·)) =
∫
fY |X,η(y|x, η;α)fη|X(η|x; δ(·))dη,

where δ(·) is a process of quantile coefficients.

Our framework also naturally extends to models with time-varying unobservables, such

as:

Yit = QY (Xit, ηit, Uit) ,

ηit = Qη

(
ηi,t−1, Vit

)
,

where Uit and Vit are i.i.d. and uniformly distributed. Arellano, Blundell and Bonhomme

(2015) use a quantile-based approach to document nonlinear relationships between earnings
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shocks to households and their lifetime profiles of earnings and consumption. This applica-

tion illustrates the potential of our estimation approach in dynamic settings.

A relevant issue for empirical practice is measurement error. Our approach may be

extended to allow covariates to be measured with error, as the analysis in Wei and Carroll

(2009) illustrates. When a validation sample is available, our algorithm can also be modified

to allow for measurement error in outcome variables. In both cases, true variables are treated

similarly as latent individual effects in the above analysis, and they are repeatedly drawn

from their posterior densities in each iteration of the algorithm.

Lastly, this paper leaves a number of important questions unanswered. Statistical in-

ference in the nonparametric problem, where the complexity of the approximating model

increases together with the sample size, is one of them. Providing primitive conditions for

identification, and devising efficient computational routines, are other important questions

for future work.
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APPENDIX

A Identification

A.1 Discussion of Assumption 3

Part (i) in Assumption 3 requires that all densities under consideration be bounded. This imposes
mild restrictions on the model’s parameters. Part (ii) requires that fY3|η,X be non-identical at
different values of η. This assumption will be satisfied if, for some τ in small open neighborhood
QY3

(x, η1, τ) 6= QY3
(x, η2, τ). In Example 2, part (i) requires strict monotonicity of quantile

functions; that is: x′∇β(τ) + η∇γ(τ) ≥ c > 0, where ∇ξ(τ) denotes the first derivative of ξ(·)
evaluated at τ , while part (ii) holds if γ(τ) 6= 0 for τ in some open neighborhood.

Part (iii) imposes a centered measure of location on fY2|η,X=x. In order to apply the identifi-
cation theorem in Hu and Schennach (2008), it is not necessary that Γx be known. If instead Γx is
a known function of the data distribution, their argument goes through. For example, in Example
2 one convenient normalization is obtained by noting that:

E (Yit | ηi, Xit) = X ′
it

[∫ 1

0
β (τ) dτ

]
+ ηi

[∫ 1

0
γ (τ) dτ

]
≡ X̃ ′

itβ1 + β0 + ηiγ,

where β0 =
∫ 1
0 β0(τ)dτ corresponds to the coefficient of the constant in Xit = (X̃ ′

it, 1)
′. Now, if X̃it

varies over time and a rank condition is satisfied, β1 is a known function of the data distribution,
simply given by the within-group estimand. In this case one may thus take:

Γx(g) =

∫
yg(y)dy − x̃′2β1,

and note that the following normalization implies Assumption 3 (iii):

β0 =

∫ 1

0
β0 (τ) dτ = 0, and γ =

∫ 1

0
γ (τ) dτ = 1.

In a fully nonparametric setting and arbitrary t, to ensure that Assumption 3 (iii) holds for
some period (t = 1, say) one can proceed as follows. First, let us define:

η̃i ≡ E (Yi1 | ηi, Xi1) .

Then, in every period t we have, provided η 7→ E (Yi1 | ηi = η,Xi1 = x1) is invertible for almost all
x1:

Yit = QY (Xit, ηi, Uit) ≡ Q̃Y (Xit, Xi1, η̃i, Uit) .

Estimating specifications of this form will deliver estimates of Q̃Y , from which the average
marginal effects defined in Section 5 can be recovered as estimates of:

Mt(τ) = E

[
∂QY (Xit, ηi, τ)

∂xt

]
= E

[
∂Q̃Y (Xit, Xi1, η̃i, τ)

∂xt

]
,

where ∂Q̃Y /∂xt denotes the vector of partial derivatives of Q̃Y with respect to its first dim(Xit)
arguments.

Part (iv) in Assumption 3 is an injectivity condition. The operator LY2|η,x is defined as
[LY2|η,xh](y2) =

∫
fY2|η,X(y2|η, x)h(η)dη, for all bounded functions h. LY2|η,x is injective if the

only solution to LY2|η,xh = 0 is h = 0. As pointed out by Hu and Schennach (2008), injectivity is
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closely related to completeness conditions commonly assumed in the literature on nonparametric
instrumental variable estimation. Similarly as completeness, injectivity is a high-level condition;
see for example Canay et al. (2012) for results on the testability of completeness assumptions.

Several recent papers provide explicit conditions for completeness or injectivity in specific mod-
els. Andrews (2011) constructs classes of distributions that are L2-complete and boundedly com-
plete. D’Haultfoeuille (2011) provides primitive conditions for completeness in a linear model with
homoskedastic errors. Results by Hu and Shiu (2012) apply to the location-scale quantile model of
Example 1. In this case, conditions that guarantee that LY2|η,x is injective involve the tail proper-
ties of the conditional density of Yi2 given ηi (and Xi) and its characteristic function.16 Providing
primitive conditions for injectivity/completeness in more general models, such as the linear quantile
regression model of Example 2, is an interesting question but exceeds the scope of this paper.

A.2 Informal sketch of the arguments

We consider two setups in turn: the static model of Section 2, and the autoregressive first-order
Markov model with exogenous regressors of Section 4. In both cases we provide a brief informal
sketch of the identification argument.

Static model. Consider the static model of Subsection 2. For simplicity we leave the condi-
tioning on covariates Xi implicit. Following Hu and Schennach (2008), we define several linear
operators, which act on spaces of bounded functions. Let y2 be one element in the support of Yi2.
To a function h : y1 7→ h(y1) we associate:

LY1,ηh : η 7→
∫
fY1,η(y1, η)h(y1)dy1,

and:

LY1,(y2),Y3
h : y3 7→

∫
fY1,Y2,Y3

(y1, y2, y3)h(y1)dy1.

To a function g : η 7→ g(η) we associate:

∆(y2)|ηg : η 7→ fY2|η(y2|η)g(η),

and:

LY3|ηg : y3 7→
∫
fY3|η(y3|η)g(η)dη.

We have, for all functions h : y1 7→ h(y1), and provided integrals can be switched:

[LY1,(y2),Y3
h](y3) =

∫
fY1,Y2,Y3

(y1, y2, y3)h(y1)dy1

=

∫ [∫
fY3|η(y3|η)fY2|η(y2|η)fY1,η(y1, η)dη

]
h(y1)dy1

=

∫
fY3|η(y3|η)fY2|η(y2|η)

[∫
fY1,η(y1, η)h(y1)dy1

]
dη

= [LY3|η∆(y2)|ηLY1,ηh](y3).

We thus have:
LY1,(y2),Y3

= LY3|η∆(y2)|ηLY1,η, y2 − a.e. (A1)

16See Lemma 4 in Hu and Shiu (2012).
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This yields a joint diagonalization system of operators, because, under suitable invertibility (i.e.,
injectivity) conditions, (A1) implies:

LY1,(y2),Y3
L−1
Y1,(ỹ2),Y3

= LY3|η∆(y2)|η∆
−1
(ỹ2)|η

L−1
Y3|η

, (y2, ỹ2)− a.e. (A2)

The conditions of Hu and Schennach (2008)’s theorem then guarantee uniqueness of the solutions
to (A2).

Dynamic autoregressive model. Let us now consider the dynamic autoregressive model of
Section 4. As in Hu and Shum (2012) we define several operators. Let (y2, y3) be an element in
the support of (Yi2, Yi3). To a function h : y1 7→ h(y1) we associate:

LY1,(y2),ηh : η 7→
∫
fY1,Y2,η(y1, y2, η)h(y1)dy1,

and

LY1,(y2),(y3),Y4
h : y4 7→

∫
fY1,Y2,Y3,Y4

(y1, y2, y3, y4)h(y1)dy1.

To a function g : η 7→ g(η) we associate:

∆(y3)|(y2),ηg : η 7→ fY3|Y2,η(y3|y2, η)g(η),

and

LY4|(y3),ηg : y4 7→
∫
fY4|(y3),η(y4|y3, η)g(η)dη.

As above we verify that:

LY1,(y2),(y3),Y4
= LY4|(y3),η∆(y3)|(y2),ηLY1,(y2),η, (y2, y3)− a.e. (A3)

Hence, under suitable invertibility conditions:

LY1,(y2),(y3),Y4
L−1
Y1,(y2),(ỹ3),Y4

= LY4|(y3),η∆(y3)|(y2),η∆
−1
(ỹ3)|(y2),η

L−1
Y4|(ỹ3),η

, (y2, y3, ỹ3)− a.e. (A4)

Hu and Shum (2012), in particular in their Lemma 3, provide conditions for uniqueness of the
solutions to (A4). Their conditions are closely related to the ones in Hu and Schennach (2008); see
Assumption 3 in Subsection 2.3.

B Asymptotic results

B.1 Parametric inference

Here we rely on Nielsen’s work to characterize the asymptotic distribution of ξ̂
(s)

in our model,
where the optimization step is not likelihood-based but relies on different estimating equations. To
do so, let us rewrite the moment restrictions in a compact notation:

E[Ψi(ηi; ξ)] = 0,

where ξ (with true value ξ) is a finite-dimensional parameter vector of the same dimension as Ψ.
Equivalently, we have

E

[∫
Ψi(η; ξ)f(η|Wi; ξ)dη

]
= 0,

where Wi = (Yi, X
′
i)
′.

The stochastic EM algorithm for this problem works as follows, based on an i.i.d. sample

(W1, ...,WN ). Iteratively, one draws ξ̂
(s+1)

given ξ̂
(s)

in two steps:
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1. For i = 1, ..., N , draw η
(1,s)
i , ..., η

(M,s)
i from the posterior distribution f(ηi|Wi; ξ̂

(s)
).17

2. Solve for ξ̂
(s+1)

in:
N∑

i=1

M∑

m=1

Ψi(η
(m,s)
i ; ξ̂

(s+1)
) = 0.

This results in a Markov Chain (ξ̂
(0)
, ξ̂

(1)
, ...), which is ergodic under suitable conditions. More-

over, under conditions given in Nielsen (2000a), asymptotically as N tends to infinity the pro-

cess
√
N(ξ̂

(s) − ξ̂) converges to a Gaussian autoregressive process conditional on almost every
W -sequence, where ξ̂ solves the integrated moment restrictions:

N∑

i=1

∫
Ψi(η; ξ̂)f(η|Wi; ξ̂)dη = 0. (B5)

In the rest of this section we characterize the unconditional asymptotic distribution of
√
N(ξ̂

(s) −
ξ). The derivations in this section are heuristic, and throughout we assume sufficient regularity
conditions to justify all the steps.18

Using a conditional quantile representation we can write:

η
(m,s)
i = Qη|W

(
Wi, V

(m,s)
i ; ξ̂

(s)
)
,

where V
(m,s)
i are standard uniform draws, independent of each other and independent of Wi.

We thus have:
N∑

i=1

M∑

m=1

Ψi

(
Qη|W

(
Wi, V

(m,s)
i ; ξ̂

(s)
)
; ξ̂

(s+1)
)
= 0.

Expanding around ξ̂, we obtain:

A
(
ξ̂
(s+1) − ξ̂

)
+B

(
ξ̂
(s) − ξ̂

)
+ ε(s) = op

(
N− 1

2

)
, (B6)

where:

A ≡ ∂

∂ξ′

∣∣∣∣∣
ξ

E
[
Ψi

(
Qη|W

(
Wi, Vi; ξ

)
; ξ
)]

=
∂

∂ξ′

∣∣∣∣∣
ξ

E [Ψi (ηi; ξ)] ,

B ≡ ∂

∂ξ′

∣∣∣∣∣
ξ

E
[
Ψi

(
Qη|W (Wi, Vi; ξ) ; ξ

)]
=

∂

∂ξ′

∣∣∣∣∣
ξ

E

[∫
Ψi

(
η; ξ
)
f (η|Wi; ξ) dη

]
,

and:

ε(s) ≡ 1

NM

N∑

i=1

M∑

m=1

Ψi

(
Qη|W

(
Wi, V

(m,s)
i ; ξ

)
; ξ
)
.

17For simplicity we consider the case where η
(1,s)
i , ..., η

(M,s)
i are independent draws.

18Note that in our quantile model some of the moment restrictions involve derivatives of “check” functions,
which are not smooth. This is however not central to the discussion that follows, as it does not affect the
form of the asymptotic variance.
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Note that:

A+B =
∂

∂ξ′

∣∣∣∣∣
ξ

E

[∫
Ψi(η; ξ)f(η|Wi; ξ)dη

]
.

The identification condition for the method-of-moments problem thus requires A + B < 0, so

(−A)−1B < I. This implies that the autoregressive process
√
N
(
ξ̂
(s) − ξ̂

)
is asymptotically stable.

Conditionally on almost every W -sequence,
√
N
(
ξ̂
(s) − ξ̂

)
is a stable Gaussian AR(1) process. We

thus have:
√
N
(
ξ̂
(s) − ξ̂

)
=

∞∑

k=0

(
−A−1B

)k (−A−1
)√

Nε(s−1−k) + op(1). (B7)

Moreover,
√
Nε(s) are asymptotically i.i.d. normal with zero mean and variance Σ/M , where:

Σ = E

[
Ψi

(
ηi; ξ

)
Ψi

(
ηi; ξ

)′]
.

Hence, conditionally on almost every W -sequence:

√
N
(
ξ̂
(s) − ξ̂

)
d→ N (0,VM ) ,

where:

VM =
∞∑

k=0

(
−A−1B

)k (−A−1
) Σ

M

(
−A−1

)′ ((−A−1B
)k)′

.

Note that VM can be recovered from the following matrix equation:

A−1BVMB
′(A−1)′ = VM −A−1 Σ

M
(A−1)′,

which can be easily solved in vector form.
Finally, unconditionally we have by asymptotic independence:

√
N
(
ξ̂
(s) − ξ

)
=

√
N
(
ξ̂
(s) − ξ̂

)
+
√
N
(
ξ̂ − ξ

)
d→ N (0,V + VM ) ,

where V is the asymptotic variance of
√
N
(
ξ̂ − ξ

)
; that is:

V = (A+B)−1Ω((A+B)−1)′,

where Ω = E

[(∫
Ψi(η; ξ)f(η|Wi; ξ)dη

) (∫
Ψi(η; ξ)f(η|Wi; ξ)dη

)′]
.

B.2 Nonparametric consistency

Let ξ(τ) =
(
θ(τ)′, δ(τ)′

)′
, and let ϕi (ξ(·), τ) be the (K1 +K2)× 1 moment vector that corresponds

to the integrated moment restrictions (20)-(21). Let ‖·‖ denote the Euclidean norm on R
K1+K2 ,

and let ‖ξ(·)‖∞ = supτ∈(0,1) ‖ξ(τ)‖ denote the associated uniform norm.
Let K = K1 + K2. The space HK of functions ξ(·) contains differentiable functions whose

first derivatives (component-wise) are bounded and Lipschitz on (0, 1). Moreover, there exists
a c such that, for all τ1 < τ2 and with probability one, Wit(ηi)

′ (θ(τ2)− θ(τ1)) ≥ c(τ2 − τ1) and
Z ′
i(δ(τ2)−δ(τ1)) ≥ c(τ2−τ1). This last requirement imposes strict monotonicity of the conditional

quantile functions. These assumptions guarantee that the implied likelihood functions and posterior
density of the individual effects are bounded from above and away from zero. Finally, all functions
ξ(·) ∈ HK satisfy a location restriction as in Assumption 3 (iii).
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To every function ξ(·) ∈ HK we associate an interpolating spline πLξ(·) ∈ HKL. We use
piecewise-linear splines on (τ1, ..., τL), as in Subsection 6.1. To simplify the analysis, we consider
the case where quantile functions are constant on the tail intervals, so πLξ(τ) = ξ(τ1) for τ ∈ (0, τ1),
and πLξ(τ) = ξ(τL) for τ ∈ (τL, 1). Moreover, the minimum and maximum of L|τ ℓ+1 − τ ℓ| are
asymptotically bounded away from zero and infinity. As a result, ‖ξ(·)− πLξ(·)‖∞ = O(

√
K/L),

which we assume to tend to zero asymptotically.
Let us define:

QK (ξ(·)) =
∫ 1

0
‖E [ϕi (ξ(·), τ)]‖2 dτ,

and

Q̂KL (ξ(·)) = 1

L

L∑

ℓ=1

∥∥∥∥∥
1

N

N∑

i=1

ϕi (πLξ(·), τ ℓ)
∥∥∥∥∥

2

.

We make the following high-level assumptions, which we will discuss below.

Assumption B1.

(i) (identification) For all ǫ > 0 there is a c > 0 such that, for all K1,K2, L:

infξ(·)∈HK ,‖ξ(·)−ξ(·)‖
∞
>ǫQK (ξ(·)) > QK

(
ξ(·)
)
+ c.

(ii) (uniform convergence) As N,K1,K2, L tend to infinity:

supξ(·)∈HK

∣∣∣Q̂KL (ξ(·))−QK (ξ(·))
∣∣∣ = op(1).

Proposition B1. (nonparametric consistency)
Under Assumption B1, ξ̂(·) is uniformly consistent for ξ(·) in the sense that (28) holds.

Proof. Let ξ̃(·) ∈ HK such that ξ̂(·) = πLξ̃(·). We have
∥∥∥ξ̃(·)− ξ̂(·)

∥∥∥
∞

= op(1).

By definition of ξ̂ we have: Q̂KL

(
ξ̂(·)
)
≤ Q̂KL

(
ξ(·)
)
. Let ǫ > 0. By Assumption B1 (ii), and

as Q̂KL

(
ξ̂(·)
)
= Q̂KL

(
ξ̃(·)
)
:

QK

(
ξ̃(·)
)
≤ QK

(
ξ(·)
)
+ op(1),

so, by Assumption B1 (i),
∥∥∥ξ̃(·)− ξ(·)

∥∥∥
∞

≤ ǫ with probability approaching one. This shows (28).

Discussion of Assumption B1 (i). To provide intuition on the identification condition in
Assumption B1 (i), consider the case where the posterior density f(η|Yi, Xi) is known. Consider the
last K2 elements of ϕi, the argument for the first K1 elements being similar. Showing Assumption
B1 (i) requires bounding the following quantity from below:

∆ ≡
∫ 1

0

∥∥E
[
Zi

(
τ − F

(
Z ′
iδ(τ)|Yi, Xi

))]∥∥2 −
∥∥E
[
Zi

(
τ − F

(
Z ′
iδ(τ)|Yi, Xi

))]∥∥2 dτ.

Expanding yields:

E
[
Zi

(
τ − F

(
Z ′
iδ(τ)|Yi, Xi

))]
= E

[
Zi

(
τ − F

(
Z ′
iδ(τ)|Yi, Xi

))]

−E
[
ZiZ

′
if (Ai(τ ; δ)|Yi, Xi)

] (
δ(τ)− δ(τ)

)
,
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where Ai(τ ; δ) lies between Z
′
iδ(τ) and Z

′
iδ(τ). Now, E

[
Zi

(
τ − F

(
Z ′
iδ(τ)|Yi, Xi

))]
= o(1), provided

the remainder Rη tends to zero sufficiently fast as K2 increases. Moreover, if f(η|Yi, Xi) is bounded
away from zero as well as from above, and if the eigenvalues of the Gram matrix E [ZiZ

′
i] are bounded

away from zero as well as from above, then there exists a constant µ > 0 such that:
∥∥E
[
ZiZ

′
if (Ai(τ ; δ)|Yi, Xi)

] (
δ(τ)− δ(τ)

)∥∥2 ≥ µ
∥∥δ(τ)− δ(τ)

∥∥2 .

Finally, suppose
∥∥δ(·)− δ(·)

∥∥
∞
> ǫ. Then by continuity of δ(·) − δ(·) there exists a non-empty

interval (τ1, τ2) such that
∥∥δ(τ)− δ(τ)

∥∥ > ǫ for τ ∈ (τ1, τ2). Hence ∆ > µǫ2|τ2 − τ1|+ o(1).
In the panel quantile models considered in this paper f(η|Yi, Xi; ξ(·)) depends on the unknown

function ξ(·) = (θ(·)′, δ(·)′)′. As we pointed out in Subsection 2.3, identification then depends on
high-level conditions such as operator injectivity. Here we do not provide primitive conditions for
Assumption B1 (i) to hold in this case.

Discussion of Assumption B1 (ii). The uniform convergence condition in Assumption B1
(ii) will hold if the following conditions are satisfied:

A ≡ supξ(·)∈HK

∣∣∣∣∣∣
1

L

L∑

ℓ=1

∥∥∥∥∥
1

N

N∑

i=1

ϕi (πLξ(·), τ ℓ)
∥∥∥∥∥

2

− 1

L

L∑

ℓ=1

‖E [ϕi (πLξ(·), τ ℓ)]‖2
∣∣∣∣∣∣
= op(1),

B ≡ supξ(·)∈HK

∣∣∣∣∣
1

L

L∑

ℓ=1

‖E [ϕi (πLξ(·), τ ℓ)]‖2 −
1

L

L∑

ℓ=1

‖E [ϕi (ξ(·), τ ℓ)]‖2
∣∣∣∣∣ = o(1),

C ≡ supξ(·)∈HK

∣∣∣∣∣
1

L

L∑

ℓ=1

‖E [ϕi (ξ(·), τ ℓ)]‖2 −
∫ 1

0
‖E [ϕi (ξ(·), τ)]‖2 dτ

∣∣∣∣∣ = o(1).

The A quantity involves the difference between the empirical and population objective functions
of the approximating parametric model. In the second term in B, the posterior density of individual
effects depends on the entire function ξ(·), as opposed to its spline approximation πLξ(·). Lastly,
the second term in C involves an integral on the unit interval, which needs to be compared to an
average on the grid of τ ℓ’s.

A,B,C can be bounded by first establishing that ϕi is Lipschitz. Specifically, that there exist
constants C1 > 0, C2 > 0, ν > 0 such that, for all ξ1(·), ξ2(·) in HKL and τ1, τ2 in (0, 1):

‖ϕi (ξ2(·), τ2)− ϕi (ξ1(·), τ1)‖ ≤ C1

√
K ‖ξ2(·)− ξ1(·)‖ν∞ + C2

√
K|τ2 − τ1|. (B8)

Consider the first K1 elements of ϕi (the last K2 elements having a similar structure):

∫ T∑

t=1

Wit(η)ψτ (Yit −Wit(η)
′θ(τ))f(η|Yi, Xi;πLξ(·))dη.

To establish (B8), one may assume that η 7→ Wit(η)
′θ(τ) is invertible almost surely19 and that its

inverse is Lipschitz in θ(τ), and then use the expression of f(η|Yi, Xi;πLξ(·)), which involves the
piecewise-linear expressions (41) and (42).

The πLξ(·) belong to a compact KL-dimensional space. Using (B8), it can be shown that
A = op(1) provided K/Lν tends to zero and KL/N tends to zero. The latter condition arises
as πLξ(·) is finite-dimensional, with dimension KL. Wei and Carroll (2009) establish this result
formally for a related model, in a case where K = O(1).

Next, extending (B8) to hold for ξ1(·) and ξ2(·) in HK , and using that ‖ξ(·)− πLξ(·)‖∞ = o(1),
yields B = o(1) provided K/L tends to zero sufficiently fast. Lastly, again using (B8) but now for
ξ1(·) = ξ2(·), and using that K/L2 = o(1), yields C = o(1).

19Such a condition requires that the conditional quantile function of outcomes be monotone in ηi.
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C Extension: autocorrelated disturbances

To allow for autocorrelated errors in model (3)-(4) we replace Assumption 1 (iii) by:

Assumption C2. (autocorrelated errors)
(Ui1, ..., UiT ) is distributed as a copula C(u1, ..., uT ), independent of (Xi, ηi).

Nonparametric identification of the model (including the copula) can be shown under Markovian
assumptions, as in the autoregressive model of Section 4. For estimation we let the copula depend
on a finite-dimensional parameter φ, which we estimate along with all quantile parameters. The
iterative estimation algorithm is then easily modified by adding an update in Step 2 (the “M”-step):

φ̂
(s+1)

= argmax
φ

N∑

i=1

M∑

m=1

ln
[
c
(
F
(
Yi1|Xi1, η

(m)
i ; ξ̂

(s+1)

A

)
, ..., F

(
YiT |XiT , η

(m)
i ; ξ̂

(s+1)

A

)
;φ
)]
,

(C9)

where c(u1, ..., uT ) ≡ ∂TC(u1, ..., uT )/∂u1...∂uT is the copula density, and where, for any yt such
that wt (η)

′ θ (τ ℓ) < yt ≤ wt (η)
′ θ (τ ℓ+1):

F (yt|xt, η; ξA) = τ ℓ + (τ ℓ+1 − τ ℓ)
yt − wt (η)

′ θ (τ ℓ)

wt (η)
′ [θ (τ ℓ+1)− θ (τ ℓ)]

,

augmented with a specification outside the interval
(
wt (η)

′ θ (τ1) , wt (η)
′ θ (τL)

)
. Here F is a

shorthand for FYt|Xt,η.
The posterior density is then given by:

f (η|y, x; ξ, φ) =
∏T

t=1 fYt|Xt,η (yt | xt, η; ξA) c [F (y1|x1, η; ξA) , ..., F (yT |xT , η; ξA) ;φ] f (η | x; ξB)∫ ∏T
t=1 fYt|Xt,η (yt | xt, η̃; ξA) c [F (y1|x1, η̃; ξA) , ..., F (yT |xT , η̃; ξA) ;φ] f (η̃ | x; ξB) dη̃

.

Lastly, note that the approach outlined here does not seem to easily generalize to allow for
autocorrelated disturbances in autoregressive models (that is, for ARMA-type quantile regression
models).

D Exponential modelling of the tails

For implementation, we use the following modelling for the splines in the extreme intervals indexed
by λ1 > 0 and λL > 0:

θ (τ) = θ (τ1) +
ln (τ/τ1)

λ1
ιc, τ ≤ τ1,

θ (τ) = θ (τL)−
ln ((1− τ)/(1− τL))

λL
ιc, τ > τL,

where ιc is a vector of zeros, with a one at the position of the constant term in θ (τ). We adopt a
similar specification for δ (τ), with parameters λη1 > 0 and ληL > 0. Modelling the constant terms in
θ (τ) and δ (τ) as we do avoids the inconvenient that the support of the likelihood function depends
on the parameter value. Moreover, our specification boils down to the Laplace model of Geraci and
Bottai (2007) when L = 1, λ1 = 1− τ1, and λL = τL.
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The implied approximating period-t outcome density is then:

fYt|Xt,η (yt | xt, η; ξA) =
L−1∑

ℓ=1

τ ℓ+1 − τ ℓ

wt (η)
′ [θ (τ ℓ+1)− θ (τ ℓ)]

1
{
wt (η)

′ θ (τ ℓ) < yt ≤ wt (η)
′ θ (τ ℓ+1)

}

+τ1λ1e
λ1(yt−wt(η)

′θ(τ1))1
{
yt ≤ wt (η)

′ θ (τ1)
}

+(1− τL)λLe
−λL(yt−wt(η)

′θ(τL))1
{
yt > wt (η)

′ θ (τL)
}
.

Similarly, the approximating density of individual effects is:

fη|X (η | x; ξB) =
L−1∑

ℓ=1

τ ℓ+1 − τ ℓ
z′ [δ (τ ℓ+1)− δ (τ ℓ)]

1
{
z′δ (τ ℓ) < η ≤ z′δ (τ ℓ+1)

}

+τ1λ
η
1e

λη
1
(η−z′δ(τ1))1

{
η ≤ z′δ (τ1)

}

+(1− τL)λ
η
Le

−λη
L
(η−z′δ(τL))1

{
η > z′δ (τL)

}
.

Update rules for exponential parameters. We adopt a likelihood approach to update the
parameters λ1, λL, λ

η
1, λ

η
L. This yields the following moment restrictions:

λ
η
1 =

−E
[∫

1
{
η ≤ Z ′

iδ(τ1)
}
f(η|Yi, Xi; ξ)dη

]

E
[∫ (

η − Z ′
iδ(τ1)

)
1
{
η ≤ Z ′

iδ(τ1)
}
f(η|Yi, Xi; ξ)dη

] ,

and:

λ
η
L =

E
[∫

1
{
η > Z ′

iδ(τL)
}
f(η|Yi, Xi; ξ)dη

]

E
[∫ (

η − Z ′
iδ(τL)

)
1
{
η > Z ′

iδ(τL)
}
f(η|Yi, Xi; ξ)dη

] ,

with similar equations for λ1, λL.
Hence the update rules in Step 2 of the algorithm (the “M”-step):

λ̂
η,(s+1)

1 =
−∑N

i=1

∑M
m=1 1

{
η
(m)
i ≤ Z ′

iδ̂(τ1)
(s)
}

∑N
i=1

∑M
m=1

(
η
(m)
i − Z ′

iδ̂(τ1)
(s)
)
1
{
η
(m)
i ≤ Z ′

iδ̂(τ1)
(s)
} ,

and:

λ̂
η,(s+1)

L =

∑N
i=1

∑M
m=1 1

{
η
(m)
i > Z ′

iδ̂(τL)
(s)
}

∑N
i=1

∑M
m=1

(
η
(m)
i − Z ′

iδ̂(τL)
(s)
)
1
{
η
(m)
i > Z ′

iδ̂(τL)
(s)
} .

E Monte Carlo illustration

The data generating process is as follows:

Yit = β0 (Uit) + β1 (Uit)X1it + β2 (Uit)X2it + β3 (Uit)X3it + γ (Uit) ηi,

and:
ηi = δ0 (Vi) + δ1 (Vi)X1i + δ2 (Vi)X2i + δ3 (Vi)X3i.

The covariates Xi1 (smoking status), Xi2 (age), and Xi3 (gender) are taken from the data
set of the empirical illustration. T = 3, and we extract a random subsample of 1000 mothers
from the original data set. The true parameter values correspond to estimates on the full sample.
Parameters β’s, γ’s and δ’s are taken to be piecewise-linear on an equidistant grid with L = 11
knots, with exponential specifications in the tails of intercept coefficients. For computation we use
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the same method as in the application to select starting values, and we let the EM algorithm run for
100 iterations, with 100 random-walk Metropolis-Hastings draws within each iteration, reporting
averages over the last 50 iterations. We report the results of 500 simulations.

The results in Figure E1 show moderate biases and relatively precise estimates. For example,
the confidence intervals of the quantile parameters β1(τ) corresponding to the effect of smoking are
quite tight, even though the sample size is about 12 times smaller than the one of the application.
Overall the results provide encouraging evidence on the finite sample performance of the estimator.
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Figure E1: Monte Carlo results
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Note: Data generating process with L = 11 knots, N = 1000, T = 3. The x-axis shows τ percentiles.

True parameter values (solid lines), Monte Carlo means (thick dashed lines), and 95% pointwise

confidence intervals (thin dashed lines). 500 simulations.

44


