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Abstract
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1 Introduction

In this paper we propose a method to nonparametrically estimate a class of models with latent

variables. We focus on linear factor models whose latent factors are mutually independent.

These models have a wide array of applications, including measurement error models, models

with repeated measurements, and error components models. We mention some applications

in Section 2. In many empirical settings, such as in our economic application to the study

of the cyclical behavior of income shocks, it is appealing not to restrict the functional form

of the distributions of latent variables and adopt a nonparametric approach.

Nonparametric estimation based on empirical characteristic functions has been exten-

sively studied in the literature; see Carroll and Hall (1988) and Stefanski and Carroll (1990),

among many other contributions. However, while such Fourier-based methods apply to

general mutivariate linear factor models with independent components (e.g., Horowitz and

Markatou, 1996; Li and Vuong, 1998; Delaigle et al., 2008, Bonhomme and Robin, 2010,

Comte and Kappus, 2015), they tend to be sensitive to the choice of regularization parame-

ters, and they do not guarantee that the estimated densities be non-negative and integrate

to one. Recently, Efron (2016) motivated his “parametric g-modeling” approach by the diffi-

culties of nonparametric estimation in this context; see also Efron and Hastie (2016, Chapter

21) and Koenker and Gu (2019).

In this paper we propose a novel nonparametric estimator, and provide evidence that it

performs well even in relatively small samples. Our approach differs from the literature in two

main aspects. First, we generate a sample of pseudo-observations that may be interpreted

as the order statistics of the latent variables. Moments, densities, or other functionals can

then be estimated based on them. In particular, densities will be non-negative and integrate

to one by construction. Means or other features of the distribution of the latent variables

conditional on the data, such as optimal predictors, can also be directly estimated.

The second main feature of our approach is that it is based on matching. Specifically, we

generate pseudo-observations from the latent variables so that the Euclidean distance be-

tween the model’s predictions and their matched counterparts in the data is minimized. The

model predictions are computed as independent combinations of the pseudo latent observa-

tions. This “observation matching” estimation approach can be interpreted as a nonpara-

metric counterpart to (simulated) method-of-moments estimators, which are commonly used

in parametric econometric models. Our nonparametric approach, which amounts to mini-
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Figure 1: Illustration of the estimation algorithm

Data and matched predicted observations
1st iteration 2nd iteration 5th iteration

-5 -4 -3 -2 -1 0 1 2 3 4 5

first period Y
1

-5

-4

-3

-2

-1

0

1

2

3

4

5

se
co

n
d

 p
e
ri
o

d
 Y

2

-5 -4 -3 -2 -1 0 1 2 3 4 5

first period Y
1

-5

-4

-3

-2

-1

0

1

2

3

4

5

se
co

n
d

 p
e
ri
o

d
 Y

2

-5 -4 -3 -2 -1 0 1 2 3 4 5

first period Y
1

-5

-4

-3

-2

-1

0

1

2

3

4

5

se
co

n
d

 p
e
ri
o

d
 Y

2

True versus estimated latent values
1st iteration 2nd iteration 5th iteration
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Notes: The graphs correspond to one simulation from a model with two independent measurements (or

“periods”) Y1 = X1 + X2, Y2 = X1 + X3, with X1, X2, X3 mutually independent (Kotlarski, 1967). In the

data generating process the X’s are standardized Beta(2,2), and there are N = 100 observations. The top

panel shows the observations Y1, Y2 (crosses) and the predicted observations Y pred1 , Y pred2 (circles), with a

link between them when they are matched to each other. The bottom panel shows the estimates of X1 values

sorted in ascending order on the y-axis against the population values on the x-axis (dashed), and the 45

degree line (solid). See Section 3 for details about the algorithm.

mizing a quadratic Wasserstein distance between empirical distribution functions, exploits

linearity and independence to provide a tractable estimator.

As an illustration, in Figure 1 we show the results of several iterations of our algorithm,

in a model with two independent measurements and 100 individuals. We start the algorithm

from parameter values that are far from the true ones (in the left column). As shown in the

top panel, the outcome observations in the data (in crosses) are first matched to model-based

predictions (in circles). Pseudo-observations of the latent variables are then updated based

on the matched outcome values. The objective function we aim to minimize is the sum of

squares of the segments shown in the top panel. The bottom panel shows the estimates

of the latent individual-specific effect sorted in ascending order (on the y-axis), against the
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true values (on the x-axis). We see that, within a few iterations, the model’s predictions

and the empirical observations tend to agree with each other (in the top panel), and that

the distribution of the pseudo latent observations gets close to the population distribution

(in the bottom panel).

Our approach builds on and generalizes an important idea due to Colin Mallows (2007),

who proposed a “deconvolution by simulation” method based on iterating between sorts of

the data and random permutations of pseudo-observations of a latent variable. Mallows

(2007) focused on the classical deconvolution model with scalar outcome and known error

distribution. Our main goal in this paper is to extend Mallows’ insight and propose a

framework to analyze estimators based on matching predicted values from the model to data

observations.

In particular, as an extension of Mallows’ (2007) original idea, we show how our method

can handle multivariate outcomes, hence extending the scope of application to repeated

measurements models and multi-factor models. While a number of estimation methods are

available for scalar nonparametric deconvolution with known error distribution, the mul-

tivariate case — which is of interest in many applications — remains challenging. Our

estimator exploits that the multi-factor models we consider are linear in the independent

latent variables, even though they imply nonlinear restrictions on density functions.

A key step in our analysis is to relate the estimation problem to optimal transport theory.

Optimal transport is the subject of active research in mathematics, see for example Villani

(2003, 2008). In our context, optimal transport provides a natural way to estimate models

with multivariate outcomes via “generalized sorting” algorithms (i.e., matching algorithms)

based on linear programming.

To establish the consistency of our estimator we use that, in large samples, our estimator

minimizes the Wasserstein distance between the population distribution of the data and the

one implied by the model. This problem has a unique solution under suitable conditions

on the characteristic functions of the factors (Székely and Rao, 2000). Consistency then

follows from verifying the conditions for the consistency of sieve extremum estimators (e.g.,

Chen, 2007) in this setting. When analyzing the multivariate case, our arguments rely on

properties of Wasserstein distances established in the optimal transport literature.

We illustrate the performance of our estimator on simulated data. Under various spec-

ifications of a nonparametric repeated measurements model, we find that our estimator
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recovers accurately the true underlying quantile functions and densities, even for samples

with only 100 individual observations. This finite-sample performance is remarkable in a

fully nonparametric model with multiple latent variables. In addition, we find that our

estimator outperforms a characteristic-function based estimator in our simulations, particu-

larly due to improved estimation of the tails of the distributions. In contrast with Fourier

methods, our estimator imposes that quantile functions be monotone, and that densities be

non-negative. In the related problem of nonparametric instrumental variables estimation,

Chetverikov and Wilhelm (2017) show that imposing monotonicity in estimation can help

alleviating ill-posedness issues. We conjecture that this feature contributes to explain the

finite-sample performance of our estimator.

We then apply our method to study the cyclicality of permanent and transitory income

shocks in the US. Answering this question is important, since a well-calibrated cyclical income

process is a key input to many economic models of business cycle dynamics. Storesletten et

al. (2004) estimate using the Panel Study of Income Dynamics (PSID) that the dispersion

of persistent shocks is countercyclical. However, using a nonparametric descriptive analysis,

Guvenen et al. (2014) find using administrative data that the dispersion of log-income

growth is acyclical, whereas skewness is procyclical, and Busch et al. (2018) find similar

results using the PSID.

We revisit this debate by working with a permanent-transitory model of log-income dy-

namics, and estimating the annual densities of permanent and transitory shocks nonpara-

metrically. Using the PSID, we estimate that income shocks are not normally distributed,

confirming previous evidence using other nonparametric methods. Our main finding is that

the dispersion of income shocks is approximately acyclical, whereas the skewness of perma-

nent shocks is procyclical. By comparison, our nonparametric estimates suggest that the

dispersion and skewness of shocks to hourly wages vary little with the business cycle.

Our matching-based, minimum Wasserstein distance estimator is related to recent work

on the estimation of parametric generative models (see Bernton et al., 2017; Genevay et

al., 2017; Bousquet et al., 2017). In contrast with this emerging literature, the models we

consider here are nonparametric. In an early theoretical contribution, Bassetti et al. (2006)

study consistency in minimum Wasserstein distance estimation. Recently, Rigollet and Weed

(2019) develop a minimum Wasserstein deconvolution approach for uncoupled isotonic re-

gression, and Rigollet and Weed (2018) relate maximum-likelihood scalar deconvolution un-
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der Gaussian noise to entropic regularized optimal transport. Lastly, our general estimation

strategy is also related to Galichon and Henry’s (2011) analysis of partially identified models.

As we show at the end of the paper, our matching approach can be generalized to non-

parametric estimation of other latent variables models. We describe how to extend our

approach to estimate linear factor models where blocks of factors are independent of each

other, but factors are not independent within blocks. To do so, we exploit the vector quan-

tile representation of Carlier et al. (2016). In addition, in the conclusion we outline several

generalizations: to random coefficients models with exogenous covariates (Beran and Hall,

1992), nonparametric deconvolution under heteroskedasticity (Delaigle and Meister, 2008),

and nonparametric finite mixture models (Hall and Zhou, 2003).

The outline of the paper is as follows. In Section 2 we describe linear independent

factor models, and we briefly review applications and existing estimation approaches. In

Section 3 we introduce our matching estimator. In Sections 4 and 5 we study computation

and consistency, respectively. In Sections 6 and 7 we present the simulation exercises and

empirical application. In Section 8 we describe how to extend the approach to estimate

block-independent factor models. Lastly, we conclude in Section 9 and outline additional

extensions. Proofs and additional material are collected in the appendix.

2 Independent factor models: some applications

We focus on linear independent factor models of the form Y = AX, where Y = (Y1, ..., YT )′,

X = (X1, ..., XK)′, A is a known or consistently estimable T×K matrix, and the components

X1, ..., XK are mutually independent. In this section we review several examples of models

and applications that have such a structure. We focus on the case K > T , so the system

is singular and the realizations of the latent variables are not identifiable, although under

suitable conditions their distributions will be.

Nonparametric deconvolution. When T = 1, Y = X1 + X2, and X2 has a known

or consistently estimable distribution, one obtains the scalar nonparametric deconvolution

model. Nonparametric deconvolution is often used to deal with the presence of measurement

error. In such settings, Y is an error-ridden variable, X1 is the true value of the variable,

and X2 is an independent, classical measurement error (e.g., Carroll et al., 2006; Chen et al.,
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2011; Schennach, 2013a).1 The literature on nonparametric deconvolution provides condi-

tions under which the distribution of X1 is nonparametrically identified, alongside numerous

estimation approaches such as kernel deconvolution estimators (Carroll and Hall, 1988; De-

laigle and Gijbels, 2002; Fan, 1991), wavelet methods (Pensky and Vidakovic, 1999; Fan

and Koo, 2002), regularization techniques (Carrasco and Florens, 2011), and nonparametric

maximum likelihood methods (Kiefer and Wolfowitz, 1956; Gu and Koenker, 2017).

Repeated measurements. A leading example of a linear independent factor model is:

Yt = α︸︷︷︸
≡X1

+ εt︸︷︷︸
≡Xt+1

, t = 1, ..., T, (1)

where Y1, ..., YT are observed outcomes and α, ε1, ..., εT are latent and mutually independent.

Working with T = 2, Kotlarski (1967) provided simple conditions under which the density

functions of the latent factors are nonparametrically identified in model (1). This structure

arises frequently in applications: α can be a latent skill of an individual measured with error

(as in Cunha et al., 2010), or a teacher- or bank-specific effect, for example. Compared to

commonly used Gaussian specifications, a nonparametric estimator of the distribution of α

in (1) will be robust to functional form assumptions under the maintained assumption of

mutual independence. Non-Gaussianity, such as skewness or fat tail behavior, is relevant

in many empirical settings. In model (1), nonparametric estimators based on empirical

characteristic functions can be constructed by mimicking and extending Kotlarski’s proof

(e.g., Li and Vuong, 1998; Li, 2002; Horowitz and Markatou; 1996, Comte and Kappus,

2015).

Error components. A prominent error component model in economics is the permanent-

transitory model for the dynamics of log-income: Yt = ηt + εt, where ηt = ηt−1 + vt is a

random walk with independent innovations, and all εt’s and vt’s are independent over time

and independent of each other and of the initial η0 (e.g., Hall and Mishkin, 1982; Blundell

et al., 2008). Identification is established in Székely and Rao (2000). Bonhomme and Robin

(2010) propose nonparametric characteristic-function based estimators of factor densities.

1Additional applications of nonparametric deconvolution in economics include the estimation of the het-
erogeneous effects of an exogenous binary treatment under the assumption that the potential outcome in
the absence of treatment is independent of the gains from treatment (Heckman et al., 1997; Wu and Perloff,
2006), and the estimation of the distribution of time-invariant random coefficients of binary treatments in
panel data models (Arellano and Bonhomme, 2012).
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In such settings, a nonparametric approach is able to capture the skewness and kurtosis of

income shocks.2

3 Latent variable estimation by matching

In this section, to introduce the main ideas we start by describing our estimator in the scalar

nonparametric deconvolution model. We then show how the same approach can be used to

estimate linear multi-factor models with independent factors.

3.1 Nonparametric deconvolution

Let Y = X1 +X2 be a scalar outcome, where X1 and X2 are independent, X1 is unobserved

to the analyst, and its distribution is unspecified. We assume that Y , X1 and X2 are

continuously distributed, and postpone more specific assumptions until Section 5. Let FZ

denote the cumulative distribution function (cdf) of any random variable Z. We assume

that two random samples, Y1, ..., YN and X12, ..., XN2, drawn from FY and FX2 , respectively,

are available.3

Our goal is to estimate a sample of pseudo-observations X̂11, ..., X̂N1, whose empirical

cdf is asymptotically distributed as FX1 as N tends to infinity. To do so, we minimize a

distance between the sample of observed Y ’s and a sample of Y ’s predicted by the model.

We rely on the quadratic Wasserstein distance (see, e.g., Chapter 7 in Villani, 2003), which

is the minimum Euclidean distance between observed Y ’s and predicted Y ’s with respect to

all possible reorderings of the observations.

Formally, assume without loss of generality that Yi ≤ Yi+1 and Xi2 ≤ Xi+1,2 for all i. Let

ΠN denote the set of permutations π of {1, ..., N}. Moreover, let CN > 0 and CN > 0 be

two constants, and let XN be the set of parameter vectors X1 = (X11, ..., XN1) ∈ RN such

2See also Botosaru and Sasaki (2015). Quantile-based estimation in linear and nonlinear factor models
is introduced in Arellano and Bonhomme (2016), and applied in Arellano et al. (2017) to document income
dynamics in the PSID. An important application of error components models is to relax independence in
repeated measurements models such as (1). This can be done provided T is large enough. Modeling εt in (1)
as a finite-order moving average or autoregressive process with independent innovations preserves the linear
independent factor structure of the model (Arellano and Bonhomme, 2012; see also Hu et al., 2019). Ben
Moshe (2017) shows how to allow for arbitrary subsets of dependent factors, and proposes characteristic-
function based estimators. In Section 8 we show how to extend our approach to block-independent factor
models. In addition, in model (1) Schennach (2013b) points out that full independence between the factors
is not necessary, and that sub-independence suffices to establish identification.

3The sample sizes being the same for Y and X2 is not essential and can easily be relaxed. In a setting
where the cdf FX2 is known, one can draw a sample from it, or alternatively work with an integral counterpart
to our estimator.
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that |Xi1| ≤ CN and CN ≤ (N + 1)(Xi+1,1−Xi1) ≤ CN for all i. The constants CN and CN

play a role in our consistency argument below, and we will study how their choice affects

our estimator in simulations. We propose to compute:

X̂1 = argmin
X1∈XN

{
min
π∈ΠN

N∑
i=1

(
Yπ(i) −Xσ(i),1 −Xi,2

)2

}
, (2)

where σ is a random permutation in ΠN (i.e., a uniform draw on ΠN), independent of

Y1, ..., YN , X12, ..., XN2.

To interpret the objective function in the right-hand side of (2), note that, for any random

permutation σ, Zi ≡ Xσ(i),1+Xi,2, i = 1, ..., N , are N draws from the model. Predicted values

from the model could be generated in other ways. For example, one could instead compute

Xi1 + X̃i2, where X̃i2 are i.i.d. draws from the empirical distribution of Xi2. Alternatively,

one could generate R > 1 predictions per observation i, although here we take R = 1 to

minimize computation cost.4

A simple way to reduce the dependence of the estimator on the random σ draw is to

compute X̂
(m)
i1 , for i = 1, ..., N and m = 1, ...,M , where σ(1), ..., σ(M) are independent random

permutations drawn from ΠN , and to report the averages: X̂i1 = 1
M

∑M
m=1 X̂

(m)
i1 , for i =

1, ..., N . For fixed M , such averages will be consistent as N tends to infinity under similar

conditions as our baseline estimator.

The estimator X̂1 in (2) minimizes the Wasserstein distance between the empirical dis-

tributions of the model predictions Zi = Xσ(i),1 +Xi2 and the outcome observations Yi. The

Wasserstein distance is defined as:

W2(F̂Y , F̂Z) =

{
min
π∈ΠN

N∑
i=1

(
Yπ(i) − Zi

)2

} 1
2

. (3)

Since Yi and Zi are scalar, the Hardy-Littlewood-Pólya rearrangement inequality implies

that the solution to (3) is to sort Yi’s and Zi’s in the same order. That is, letting π̂ denote

the minimum argument in (3), π̂(i) = Rank(Zi) ≡ NF̂Z(Zi) is the rank of Zi.

3.2 Nonparametric factor models

We now apply the same idea to a general linear independent multi-factor model Y = AX,

where A is a T ×K matrix with generic element atk, and X = (X1, ..., XK)′ with X1, ..., XK

4Specifically, one could compute Xσ(i,r),1 +Xi2, with σ(·, 1), ...σ(·, R) being R independent permutations.
In that case, π would be a generalized permutation (or “pure matching”), mapping {1, ..., N}R to {1, ..., N}.
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mutually independent. For simplicity we assume that X and Y have zero mean.5 We seek to

compute pseudo-observations X̂11, ..., X̂N1, ..., X̂1K , ..., X̂NK , which minimize the Wasserstein

distance between the sample of observed Y ’s, which here are T × 1 vectors, and the sample

of Y ’s predicted by the factor model.

As before, let CN > 0 and CN > 0 be two constants, and let XN be the set of

(X1, ..., XN) ∈ RNK such that |Xi,k| ≤ CN and CN ≤ (N + 1)(Xi+1,k − Xik) ≤ CN for

all i and k, and
∑N

i=1Xik = 0 for all k. We define:

X̂ = argmin
X∈XN

min
π∈ΠN

N∑
i=1

T∑
t=1

(
Yπ(i),t −

K∑
k=1

atkXσk(i),k

)2
 , (4)

where σ1, ..., σK are independent random permutations in ΠN , independent of Y11, ..., YNT .

As in the scalar case, Zit ≡
∑K

k=1 atkXσk(i),k, i = 1, ..., N , t = 1, ..., T , are NT predicted

values from the factor model. Hence, as before, the vector X̂ minimizes the Wasserstein

distance between the empirical distributions of the data (Yi1, ..., YiT ) and of the model pre-

dictions (Zi1, ..., ZiT ). A difference with the scalar deconvolution model is that, when Yi are

multivariate, the minimization with respect to π inside the brackets in (4) does not have an

explicit form in general. However, from optimal transport theory it is well-known that the

solution can be obtained as the solution to a linear program. We will exploit this feature in

our estimation algorithm.

Densities and expectations. In Section 5 we will provide conditions under which X̂ik,

i = 1, ..., N , consistently estimate the quantile function of Xk. More precisely, we will

show that maxi=1,...,N |X̂ik − F−1
Xk

( i
N+1

)| tends to zero in probability asymptotically. This

provides uniformly consistent estimators of the quantile functions of the latent variables,

which can in turn be used for density estimation under a slight modification of the parameter

space XN . Indeed, let us restrict the parameter space to elements X = (X1, ..., XN) in

XN which satisfy the following additional restrictions on second-order differences: (N +

1)2 |Xi+2,k − 2Xi+1,k +Xi,k| ≤ CN , for all i and k. Let us then define, for a bandwidth

parameter b > 0 and a kernel function κ ≥ 0 that integrates to one:

f̂Xk
(x) =

1

Nb

N∑
i=1

κ

(
X̂ik − x

b

)
, x ∈ R. (5)

5It is common in applications to assume that some of the Xk’s have zero mean while leaving the remaining
means unrestricted. For example, in the repeated measurements model, assuming that E(X1) = 0 suffices
for identification. Our algorithm can easily be adapted to such cases.
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We will show that f̂Xk
is uniformly consistent for the density ofXk, under standard conditions

on the kernel κ and bandwidth b.

In addition, our estimator delivers simple consistent estimators of unconditional and

conditional expectations, as we show in Appendix B. As an example of practical interest,

in the repeated measurements model (1) the best predictor of X1 under squared loss can be

estimated as:

Ê(X1 |Y = Yi) =
N∑
i=1

ω̂iX̂i1, (6)

where the weights ω̂i are given by:

ω̂i =

∏T
t=1 f̂Xt+1(Yit − X̂i1)∑N

j=1

∏T
t=1 f̂Xt+1(Yjt − X̂j1)

, i = 1, ..., N.

4 Computation

The optimization problems in (2) and (4) are mixed integer quadratic programs. Although

the literature on mixed integer programming has recently made substantial progress (e.g.,

Conforti et al., 2014), exact algorithms are currently limited in the dimensions they can

allow for. Here we describe a simple, practical method to minimize (2) and (4).

4.1 Algorithm

The algorithm we propose is based on the observation that, for given X11, ..., XNK values,

(4) is a linear assignment (or discrete optimal transport) problem, hence it can be solved by

any linear programming routine. In turn, given π, (4) is a monotone least squares problem.

Our estimation algorithm is as follows. Here we focus on the general form (4), since the

estimator for the scalar deconvolution model (2) is a special case of it.

Algorithm.

• Start with initial values X̂
(1)
1 , ..., X̂

(1)
N in RK. Iterate the following two steps on s =

1, 2, ... until convergence.
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• (Matching step) Given X̂
(s)
1 , ..., X̂

(s)
N , compute:6

π̂(s+1) = argmin
π∈ΠN

N∑
i=1

T∑
t=1

(
Yπ(i),t −

K∑
k=1

atkX̂
(s)
σk(i),k

)2

= argmax
π∈ΠN

N∑
i=1

T∑
t=1

(
K∑
k=1

atkX̂
(s)
σk(i),k

)
Yπ(i),t. (7)

• (Update step) Compute:

X̂(s+1) = argmin
X∈XN

N∑
i=1

T∑
t=1

(
Yπ̂(s+1)(i),t −

K∑
k=1

atkXσk(i),k

)2

. (8)

Starting from a given set of parameter values, iterating between (7) and (8) is guaranteed

to weakly decrease the value of the objective function in (4). In all our experiments we used a

tolerance of at most 10−4 for the difference in objective functions, and we never observed any

failure of convergence. Both steps in the algorithm are straightforward to implement. The

matching step (7) can be computed by a linear programming routine, due to the fact that the

linear programming relaxation of a discrete optimal transport problem has integer-valued

solutions.7 Formally, π̂(s+1) in (7) is a solution to the following linear program:

max
P∈PN

N∑
i=1

T∑
t=1

(
K∑
k=1

atkX̂
(s)
σk(i),k

)(
N∑
j=1

PijYjt

)
,

where PN denotes the set of N × N matrices with non-negative elements, whose rows and

columns all sum to one. In the scalar nonparametric deconvolution case (2), this gives

π̂(s+1)(i) = R̂ank
(
X̂

(s)
σ(i),1 +Xi2

)
for all i.

Remark 1. It is possible to write X̂ = (X̂1, ..., X̂N) in (4) as the solution to a quadratic

program:

(X̂, P̂ ) = argmin
X∈XN , P∈PN

N∑
i=1

T∑
t=1

{(
K∑
k=1

atkXσk(i),k

)2

− 2

(
K∑
k=1

atkXσk(i),k

)(
N∑
j=1

PijYjt

)}
,

which is not convex in general. Our estimation algorithm is a method to solve this non-convex

quadratic program. However, the algorithm is not guaranteed to reach a global minimum in

(4). Our implementation is based on starting the algorithm from multiple random values.

We will assess the impact of starting values on simulated data.

6Notice that, since π is a permutation,
∑N
i=1

∑T
t=1 Y

2
π(i),t =

∑N
i=1

∑T
t=1 Y

2
it does not depend on π.

7See for example Chapter 3 in Galichon (2016) on discrete Monge-Kantorovitch problems.
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Remark 2. In dual form, the matching step involves of the order of N parameters. In our

implementation we use a standard linear programming solver (in Gurobi). In larger samples

than the ones we consider in our simulations and application, an alternative possibility would

be to rely instead on entropic-regularized optimal transport methods (Cuturi, 2013; Genevay

et al., 2016; Peyré and Cuturi, 2019), which can take advantage of smooth optimization

techniques. An entropic-regularized counterpart to (4) is, for εN > 0:

X̂ = argmin
X∈XN

min
P∈PN

N∑
i=1

T∑
t=1

(
N∑
j=1

PijYjt −
K∑
k=1

atkXσk(i),k

)2

+ εN

N∑
i=1

N∑
j=1

Pij (ln(Pij)− 1)

 .

4.2 Comparison to Mallows (2007)

Our algorithm may be seen as a generalization of Mallows’ (2007) “deconvolution by simula-

tion” method. To highlight the connection, consider the scalar nonparametric deconvolution

model. The two steps in our algorithm take the following form:

π̂(s+1)(i) = R̂ank
(
X̂

(s)
σ(i),1 +Xi2

)
, i = 1, ..., N,

X̂
(s+1)
1 = argmin

X1∈XN

N∑
i=1

(
Yπ̂(s+1)(i) −Xσ(i),1 −Xi2

)2

.

The Mallows (2007) algorithm is closely related to this algorithm. The main difference is

that, instead of minimizing an objective function for fixed values of the random permutation

σ, random permutations are re-drawn in each step of the algorithm. In addition, the ordering

of the Xi1’s is not restricted, and neither are the values and increments of the Xi1’s. Formally,

the sub-steps of the Mallows algorithm are the following:

• Draw a random permutation σ(s) ∈ ΠN .

• Compute π̂(s+1)(i) = R̂ank
(
X̂

(s)

σ(s)(i),1
+Xi2

)
, i = 1, ..., N .

• Compute X̂
(s+1)

σ(s)(i),1
= Yπ̂(s+1)(i) −Xi2, i = 1, ..., N .8

To provide intuition about this algorithm, Mallows (2007) observes that, starting with

draws from the true latent X1, one expects the iteration to continue to draw from that

8Strictly speaking, Mallows (2007) redefines X̂
(s+1)
i1 ≡ X̂

(s+1)

σ(s)(i),1
for all i = 1, ..., N at the end of step

s, and then applies the random permutation σ(s+1) to the new X̂(s+1) values. This difference with the
algorithm outlined here turns out to be immaterial, since the composition of σ(s+1) and σ(s) is also a random
permutation of {1, ..., N}.

12



distribution. However, starting from different values, the X̂1 vectors implied by the algorithm

will follow a complex, N -dimensional Markov Chain. Moreover, the consistency properties of

the Mallows estimator are currently unknown. Lastly, note that the methods introduced in

this paper naturally deliver counterparts to the Mallows algorithm for other models beyond

deconvolution, such as general linear independent factor models.

5 Consistency analysis

In this section we provide conditions under which the estimators introduced in Section 3 are

consistent.

For k ∈ {1, ..., K}, let us denote the quantile function of Xk as:

F−1
Xk

(τ) = inf {x ∈ Supp(Xk) : FXk
(x) ≥ τ}, for all τ ∈ (0, 1).

In addition, for any candidate quantile function Hk that maps the unit interval to the real

line, let us define the following Sobolev sup-norms:

‖Hk‖∞ = sup
τ∈(0,1)

|Hk(τ)|, and ‖Hk‖ = max
m∈{0,1}

sup
τ∈(0,1)

|∇mHk(τ)|,

where ∇mHk denotes the m-th derivative of Hk (when it exists). We will simply denote

∇ = ∇1 for the first derivative.

To a solution X̂k to (4),9 we will associate an interpolating quantile function Ĥk such

that Ĥk

(
i

N+1

)
= X̂ik for all i. We will then show that ‖Ĥk − F−1

Xk
‖∞ = op(1). This result

will be obtained as an application of the consistency theorem for sieve extremum estimators

in Chen (2007).

We make the following assumptions.

Assumption 1.

(i) (Continuity and support) Y and X have compact supports in RT and RK, respec-

tively, and admit absolutely continuous densities fY , fX that are bounded away from zero

and infinity. Moreover, fY is differentiable.

(ii) (Identification) The densities fXk
, k = 1, ..., K, are identified given fY .

9It is not necessary for X̂k to be an exact minimizer of (4). As we show in the proof, it suffices that

the value of the objective function at (X̂1, ..., X̂K) be in an εN -neighborhood of the global minimum, for εN
tending to zero as N tends to infinity.
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(iii) (Penalization) CN is increasing and CN is decreasing with limN→+∞ CN = C and

limN→+∞ CN = C, where C and C < C are such that, for all k, ‖F−1
Xk
‖ ≤ C and ∇F−1

Xk
(τ) ≥

C for all τ ∈ (0, 1).

(iv) (Sampling) (Yi1, ..., YiT ), i = 1, ..., N , are i.i.d.

Though convenient for the derivations, the compact supports assumption in part (i) is

strong. This could be relaxed by working with weighted norms, at the cost of achieving

a weaker consistency result. The simulation experiments we report below suggest that the

estimator continues to perform well when supports are unbounded. For identification in part

(ii), it suffices that the characteristic functions of Xk do not vanish on the real line, and the

vectors vecAkA
′
k are linearly independent (Székely and Rao, 2000); moreover, the assumption

that characteristic functions are non-zero can be relaxed (Evdokimov and White, 2012). The

constants CN and CN appearing in part (iii) ensure that the X̂ik values are bounded and

of bounded variation. In Section 6 we check impact of CN and CN in simulations, and

we provide a simple data-driven approach. Lastly, the independent random permutations

σ1, ..., σK in (4) depend on N , although we have omitted this dependence for conciseness.

Consistency is established in the following theorem. Proofs are in Appendix A.

Theorem 1. Consider the independent factor model Y = AX. Let Assumption 1 hold.

Then, as N tends to infinity:

max
i∈{1,...,N}

∣∣∣∣X̂ik − F−1
Xk

(
i

N + 1

)∣∣∣∣ = op(1), for all k = 1, ..., K.

While Theorem 1 does not formally cover the scalar deconvolution model, the same proof

arguments can be used to show the following result, under similar assumptions to those of

Theorem 1.

Corollary 1. Consider the scalar deconvolution model Y = X1 + X2, where one observes

two samples Y1, ..., YN and X21, ..., X2N from Y and X2, respectively. Let Assumption A1 in

Appendix A hold. Then, as N tends to infinity:

max
i∈{1,...,N}

∣∣∣∣X̂i1 − F−1
X1

(
i

N + 1

)∣∣∣∣ = op(1).

An important step in the proof of Theorem 1 is to define the population counterpart to

the estimation problem (4). Let µY denote the population measure of Y . Moreover, for any

candidate quantile functions H = (H1, ..., HK), let µAH denote the population measure of
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the random vector Z ≡
∑K

k=1AkHk(Vk), where V1, ..., VK are independent standard uniform

random variables on the unit interval. Finally, let M(µY , µAH) denote the set all possible

joint distributions of the random vectors Y and
∑K

k=1 AkHk (Vk), with marginals µY and

µAH . The population objective function is then:

Q(H) ≡ inf
π∈M(µY , µAH)

Eπ

 T∑
t=1

(
Yt −

K∑
k=1

atkHk (Vk)

)2
 , (9)

which is the quadratic Wasserstein distance between the population distribution of the data

and the one implied by the model. Under part (ii) in Assumption 1, Q(H) is minimized at

the true quantile functions Hk = F−1
Xk

.

In the scalar deconvolution model, the population objective takes the explicit form:

Q(H1) ≡ E

[(
F−1
Y

(∫ 1

0

FX2

(
H1(V1) + F−1

X2
(V2)−H1(τ)

)
dτ

)
−H1(V1)− F−1

X2
(V2)

)2
]
,

where the expectation is taken with respect to independent standard uniform random vari-

ables V1 and V2. Note that the integral in this expression is simply the population rank of

H1(V1) + F−1
X2

(V2).

Densities and expectations. Under slightly stronger assumptions, Theorem 1 can be

modified to obtain consistent estimators of both F−1
Xk

and its derivative, which can then be

used for density estimation. To see this, let us denote as X (2)
N the set of X in XN which satisfy

the restrictions on second-order differences: (N + 1)2 |Xi+2,k − 2Xi+1,k +Xik| ≤ CN , for all

i and k, and replace the minimization in (4) by a minimization with respect to X ∈ X (2)
N .

Imposing in Assumption 1 that the densities of Xk have bounded second-order derivatives,

and modifying the proof of Theorem 1 accordingly, we obtain that:

max
i∈{1,...,N}

∣∣∣∣(N + 1)(X̂i+1,k − X̂ik)−∇
(
F−1
Xk

)( i

N + 1

)∣∣∣∣ = op(1), for all k = 1, ..., K. (10)

We then have the following result.

Corollary 2. Let b in (5) be such that b → 0 and Nb → +∞ as N tends to infinity. Let

κ be a Lipschitz kernel that integrates to one and has finite first moments. Then, provided

Theorem 1 and equation (10) hold, we have:

sup
x∈R

∣∣∣f̂Xk
(x)− fXk

(x)
∣∣∣ = op(1), for all k = 1, ..., K. (11)
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Lastly, given Corollary 2 it can readily be checked that conditional expectations estima-

tors, such as (6) and those in Appendix B, are consistent in sup-norm for their population

counterparts.

Remark 3. It follows from existing convergence rates in nonparametric deconvolution models

(e.g., Fan, 1991; Hall and Lahiri, 2008) that neither X̂ik (as an estimator of the quantile

function of Xk) nor its functionals will converge at the root-N rate in general. Bertail et al.

(1999) propose an inference method under the condition that the estimator is Nβ-consistent

with a continuous asymptotic distribution, for some β > 0. Their rate-adaptive method is

attractive in our setting, although polynomial convergence rates may rule out cases of severe

ill-posedness. Completing the characterization of the asymptotic behavior of our estimator is

an important task for future work.

6 Performance on simulated data

In this section we illustrate the finite-sample performance of our estimator on data simulated

from a nonparametric model with two independent measurements. In Appendix C we report

additional results for a scalar nonparametric deconvolution model.

6.1 Setup

We focus on the model Y1 = X1+X2, Y2 = X1+X3, where X1, X2, X3 are independent of each

other and have identical distributions. We consider four specifications for the distribution

of Xk for all k: Beta(2, 2), Beta(5, 2), normal, and log-normal, all standardized so that Xk

has mean zero and variance one. To restrict the maximum values of X̂ik, its increments,

and its second-order differences, we consider two choices for the penalization constants:

(CN , CN) = (.1, 10) (“strong constraint”), and (CN , CN) = (0, 10000) (“weak constraint”).

To minimize the objective function in (4) we start with 10 randomly generated starting

values, drawn from widely dispersed mixtures of five Gaussian distributions, and keep the

solution corresponding to the minimum value of the objective. Lastly, we draw M = 10

independent random permutations in ΠN , and average the resulting M sets of estimates

X̂
(m)
i1 , for i = 1, ..., N .

In Appendix C we study the sensitivity of the estimates to the penalization constants,

the starting values, and the number M of σ draws, in a nonparametric deconvolution model.
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Figure 2: Monte Carlo results for X1 in the model with repeated measurements, N = 100,
T = 2
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(X1, X2, X3) ∼ N (0, 1)
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Notes: Simulated data from the repeated measurements model, results for the first factor X1. The mean

across simulations is shown in solid, 10 and 90 percent pointwise quantiles are shown in dashed, and the true

quantile function or density is shown in dashed-dotted. 100 simulations. 10 random starting values. M = 10

averages over σ draws.
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We find that the estimator is quite robust to these choices. In particular, we document that

taking conservative choices for CN and CN (such as in the “weak constraint” case) results

in a well-behaved estimator, suggesting that our matching procedure induces an implicit

regularization, even in the absence of additional constraints on parameters. At the same

time, we find that such a conservative choice may not be optimal in terms of mean squared

errors of quantile estimates.

The optimal choice of penalization constants is an interesting question for future work. A

simple recommendation for practice is based on a truncated normal distribution. Let σ̂k de-

note a consistent estimate of the standard deviation of Xk, e.g. obtained by covariance-based

minimum distance, and let c > 0 be a tuning parameter. Possible penalization constants

are: 2.3cσ̂k (upper bound on quantile values), 2.5c−1σ̂k and 37cσ̂k (lower and upper bounds

for first derivatives), and 3275cσ̂k (upper bound on second derivatives).10

6.2 Results

In the first two columns in Figure 2 we show the estimates of the quantile functions X̂i1 =

F̂−1
X1

(
i

N+1

)
, for the four specifications and both penalization parameters. The results for the

other two factors are similar and omitted for brevity. The solid and dashed lines correspond

to the mean and 10 and 90 percentiles across 100 simulations, respectively, while the dashed-

dotted line corresponds to the true quantile function. The sample size is N = 100. Even

for such a small sample size, our nonparametric estimator performs well, especially under

a weaker constraint on the parameters (second column). In the last two columns of Figure

2 we show density estimates for the same specifications. We take a Gaussian kernel and

set the bandwidth based on Silverman’s rule. Although there are some biases in the strong

constraint case, our nonparametric estimator reproduces the shape of the unknown densities

well.

In Table 1 we report the mean integrated squared and absolute errors (MISE and MIAE,

respectively) of our density estimators, for the four distributional specifications and N = 100.

We see that the estimator performs better under the weak constraint. Moreover, interest-

ingly, as shown by the last two columns of Table 1 our estimator outperforms a characteristic-

function based density estimator: here the “Fourier” results are based on the estimator of

Bonhomme and Robin (2010) — where the non-negativity and integral constraints are en-

10When c = 1, these constants are binding when Xk follows a normal truncated at the 99th percentiles.
As a default choice one may take c = 2.
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Table 1: Monte Carlo simulation, mean integrated squared and absolute errors of density
estimators in the repeated measurements model, results for X1

MISE MIAE MISE MIAE MISE MIAE
(X1, X2, X3) ∼ Beta(2,2)

Strong constraint Weak constraint Fourier
0.0036 0.0654 0.0035 0.0631 0.0123 0.2274

(X1, X2, X3) ∼ Beta(5,2)

Strong constraint Weak constraint Fourier
0.0050 0.0750 0.0042 0.0677 0.0249 0.2979

(X1, X2, X3) ∼ N (0, 1)

Strong constraint Weak constraint Fourier
0.0056 0.0796 0.0040 0.0674 0.0122 0.2372

(X1, X2, X3) ∼ exp[N (0, 1)]

Strong constraint Weak constraint Fourier
0.1003 0.2415 0.0536 0.1492 0.3344 0.8613

Notes: Mean integrated squared and absolute errors across 100 simulations from the repeated measurements

model. N = 100, T = 2. “Fourier” is the characteristic-function based estimator of Bonhomme and Robin

(2010). Results for the first factor X1.

forced ex-post— and we use their recommended choice to set the regularization parameter in

each replication. Inspection of the estimates suggests that the differences are mainly driven

by estimates of the tails of the densities, since the values of the characteristic-function based

estimator tend to oscillate in the left and right tails. From results in Chetverikov and Wil-

helm (2017), we conjecture that finite-sample performance benefits from the fact that our

estimator directly enforces monotonicity of quantile functions and non-negativity of densi-

ties. However, proving this conjecture would require deriving additional theoretical results

beyond our consistency analysis.

Lastly, in Appendix C we present numerical calculations of the rate of convergence of our

estimator of latent quantiles, in data simulated from a nonparametric scalar deconvolution

model. The results suggest the rate ranges between N−
3
10 and N−

7
10 in the data generating

processes that we study. We also compare the performance of our method to Mallows’ (2007)

“deconvolution by simulation” estimator.
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7 Empirical application: income risk over the business

cycle

In this section we use our nonparametric method to study the cyclical behavior of income

risk in the US.

7.1 Setup

In an influential contribution, Storesletten et al. (2004) report using the PSID that the

dispersion of idiosyncratic income shocks increases substantially in recessions. Guvenen et

al. (2014) re-examine this finding, using US administrative data and focusing on log-income

growth. They find that the dispersion of log-income growth is acyclical, and that its skewness

is procyclical. Recently, Busch et al. (2018) find similar results using the PSID and data

from Sweden and Germany. Nakajima and Smyrnyagin (2019) use an approach similar to the

one in Storesletten et al. (2004), making use of a larger PSID sample and different measures

of income, and find that log-income shocks exhibit countercyclical dispersion and procyclical

skewness. This literature is motivated by the key quantitative role of the cyclical behavior

of the income process when calibrating models of business cycle dynamics.

Here we revisit this question, by estimating a nonparametric permanent-transitory model

using the PSID, in the period 1969–1991. We model log-income, net of the effect of some

covariates, as the sum of a random walk ηit = ηi,t−1 + vit and an independent innovation εit.

In first-differences we have, denoting log-income growth as ∆Yit = Yit − Yi,t−1:

∆Yit = vit + εit − εi,t−1, t = 1, ..., T. (12)

Model (12) is a linear factor model with 2T − 1 independent factors. Indeed, we have:


∆Y1

∆Y2

∆Y3

...
∆YT


︸ ︷︷ ︸

≡Y

=


1 0 ... 0 1 0 ... 0
0 1 ... 0 −1 1 ... 0
0 0 ... 0 0 −1 ... 0
... ... ... ... ... ... ... ...
0 0 ... 1 0 0 ... −1


︸ ︷︷ ︸

≡A



v1 − ε0

v2

...
vT + εT
ε1

ε2

...
εT−1


︸ ︷︷ ︸

≡X

.

We leave the distributions of vit and εit unrestricted. Our aim is to document the behavior

of these distributions over the business cycle.
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Table 2: Descriptive statistics

Period Observations Dispersion Skewness Kurtosis Covariance Recession
months

1969–1972 1451 0.6495 -0.0303 6.7512 -0.0400 12
1970–1973 1511 0.7055 0.0222 7.0672 -0.0651 13
1971–1974 1555 0.7167 0.0304 7.1692 -0.0662 13
1972–1975 1605 0.7347 0.0239 6.5708 -0.0553 17
1973–1976 1649 0.7469 -0.0270 6.8749 -0.0506 17
1974–1977 1680 0.7493 -0.0500 6.8490 -0.0564 16
1975–1978 1776 0.7448 -0.0140 7.7408 -0.0808 4
1976–1979 1820 0.7108 0.0586 7.5271 -0.0627 0
1977–1980 1883 0.7308 0.0460 7.1757 -0.0467 7
1978–1981 1942 0.7383 0.0031 6.9209 -0.0674 12
1979–1982 2000 0.7584 -0.0557 7.0484 -0.0615 24
1980–1983 2038 0.7898 -0.0807 7.6125 -0.0619 24
1981–1984 2040 0.8049 -0.0782 8.0327 -0.0831 17
1982–1985 2062 0.8481 -0.0337 7.6789 -0.0824 12
1983–1986 2077 0.8314 0.0094 7.7976 -0.0877 0
1984–1987 2137 0.8196 0.0234 7.3038 -0.0703 0
1985–1988 2191 0.7829 0.0177 7.6650 -0.0659 0
1986–1989 2189 0.7655 0.0326 7.8191 -0.0472 0
1987–1990 2212 0.7342 0.0307 7.9466 -0.0670 5
1988–1991 2227 0.7494 -0.0229 7.8631 -0.0686 9

Notes: PSID, 1969–1991. Log-household annual income growth net of indicators for age (of head), education,

gender, race, marital status, state of residence, number of children, and family size. Dispersion is the quantile

difference P90−P10, Bowley-Kelley skewness is [(P90−P50)−(P50−P10)]/(P90−P10), Crow-Siddiqui kurtosis

is (P97.5−P2.5)/(P75−P25), and covariance is the first-order autocovariance of log-income growth. Recession

months are computed according to the classification of the National Bureau of Economic Research (NBER).

Compared to the existing literature, a substantive difference is that we estimate the

densities of the shocks nonparametrically, as opposed to relying on a parametric model.11

This is important, since estimates of non-Gaussian models (e.g., Horowitz and Markatou,

1996; Geweke and Keane, 2000; Bonhomme and Robin, 2010; Arellano et al., 2017) and

descriptive evidence (e.g., Guvenen et al., 2014; Guvenen et al., 2016) both suggest that

income shocks are strongly non-Gaussian in the US.

Studying aggregate dynamics using survey panel data like the PSID is complicated by

11For example, Storesletten et al. (2004) estimate an AR(1) process for the persistent component, whose
baseline value for the autoregressive coefficient is 0.96. While they estimate the model in levels, our moti-
vation for estimating model (12) in first-differences is that differences are robust to heterogeneity between
cohorts.
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Figure 3: Quantile functions and densities of income shocks, averaged over years
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Notes: Sequence of balanced four-year subpanels from the PSID, 1969-1992. Nonparametric estimates of the

quantile functions and densities of permanent and transitory income shocks to log-household annual labor

income residuals, averaged over years. Normal fits are shown in dashed.

attrition and confounding age effects. To minimize the impact of these factors, we follow

the approach pioneered by Storesletten et al. (2004) and construct a sequence of balanced,

four-year subpanels. In every subpanel, we require that households have non-missing data

on income and demographics and comply with standard selection criteria: the household

has positive annual labor income during the four years, the head is between 23 and 60 years

old, and is not part of the SEO low-income sample or the immigrant sample. We estimate

model (12) on 20 subpanels, whose base years range between 1969 and 1988. Log-household

income growth is net of indicators for age (of head), education, gender, race, marital status,

state of residence, number of children, and family size.

We provide descriptive statistics on the 20 four-year subpanels in Table 2. In the last

column, we report the number of recession months during the corresponding period according

to the NBER classification. Dispersion of log-income growth residuals, as measured by the

quantile difference P90 − P10, tends to increase around the two recession periods in the mid-
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Figure 4: Dispersion and skewness of income shocks over the business cycle

Permanent shocks
Dispersion Skewness

Transitory shocks
Dispersion Skewness

Notes: See notes to Figure 3. Dispersion (P90 − P10) and skewness (Bowley-Kelley) are indicated in solid,

log-real GDP growth is in dashed.

1970’s and early 1980’s. Skewness, as measured by the Bowley-Kelley ratio [(P90 − P50) −

(P50 − P10)]/(P90 − P10), tends to become negative in recessions. Kurtosis, as measured by

the Crow-Siddiqui ratio (P97.5−P2.5)/(P75−P25), suggests substantial excess kurtosis relative

to the Gaussian throughout the period. Lastly, the first-order autocovariance is consistently

negative, and it tends to be larger in absolute value during recessions.

7.2 Results

To estimate the model, as suggested by our Monte Carlo simulations, we set conservative

values for the penalization constants (that is, we use the “weak constraint” values of the

simulation section), we use a single starting value in the algorithm, and we average the

results of M = 10 draws. Our first finding is that income shocks are strongly non-Gaussian.
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Table 3: Cyclicality of the distributions of income shocks

Income
Permanent Transitory

Dispersion Skewness Upper Lower Dispersion Skewness Upper Lower
Coeff. -0.2528 3.0752 0.4647 -0.7175 0.0752 2.3612 0.4133 -0.3381
St. Er. 0.3011 0.7576 0.2023 0.2167 0.2380 0.6239 0.1536 0.1568

Wages
Permanent Transitory

Dispersion Skewness Upper Lower Dispersion Skewness Upper Lower
Coeff. 0.1629 0.5235 0.1680 -0.0051 0.2374 0.7793 0.2594 -0.0220
St. Er. 0.3750 0.5558 0.2627 0.1295 0.2453 0.7093 0.2150 0.1351

Notes: See notes to Figure 3. The coefficients are obtained from a regression of P90 − P10 dispersion

(respectively, Bowley-Kelley skewness, upper tail P90−P50, or lower tail P50−P10) on log-real GDP growth

and a linear time trend. Newey-West standard errors (one lag).

In Figure 3 we report the estimated quantile functions and densities of permanent shocks

vit and transitory shocks εit, averaged over years (in solid), together with normal fits (in

dashed). The excess kurtosis of both shocks is in line with previous evidence reported in the

literature (e.g., Geweke and Keane, 2000; Bonhomme and Robin, 2010).

We are interested in how features of these distributions vary with the business cycle. In

the left column of Figure 4 we plot the 90/10 percentile difference of log-income P90 − P10

(a common measure of dispersion, in solid) together with log-GDP growth (in dashed), both

of them net of a linear time trend. While permanent and transitory shocks tend to move

countercyclically in the first part of the period, the relationship tends to become procyclical

in the 1980’s. As we report in Table 3, the coefficient of log-GDP growth in a regression of the

dispersion of permanent income shocks on log-GDP growth and a time trend is -0.25, with

a Newey-West standard error of 0.30.12 Hence, overall we do not find significant evidence

that the dispersion of permanent shocks varies systematically with the business cycle. In

addition, we neither find that the dispersion of transitory shocks varies with the cycle.

Next, in the right column of Figure 4 we plot the Bowley-Kelley quantile measure of skew-

ness [(P90−P50)− (P50−P10)]/(P90−P10). The graphs of permanent and transitory income

shocks suggest that skewness is procyclical. This is confirmed in Table 3, which shows that

12We compute the Newey-West formula with one lag. Using two or three lags instead has little impact.
In the computation we do not account for the fact that the quantiles are estimated, our rationale being that
the cross-sectional sizes are large relative to the length of the time series.
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Figure 5: Quantiles over the business cycle
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Notes: See notes to Figure 3. On the y-axis we report estimates of the coefficient of log-real GDP growth in

the regression of quantiles of permanent or transitory shocks in a regression that includes a time trend. The

quantiles are shown on the x-axis. Newey-West 95% confidence intervals are shown in dashed.

the coefficient of log-GDP growth in the skewness regression is 3.07 for permanent shocks,

and 2.36 for transitory shocks, significant at the 5% level in both cases. Our nonparametric

estimates of a permanent-transitory model of income dynamics thus suggest that dispersion

is approximately acyclical, and skewness is procyclical, in line with the conclusions of the

descriptive evidence in Guvenen et al. (2014) and Busch et al. (2018).

As graphical way to illustrate the distributional dynamics of income over the business

cycle, in Figure 5 we plot the coefficients of log-GDP growth in regressions of the quantiles of

permanent or transitory income shocks on log-GDP growth and a time trend. The estimates

suggest a U-shape pattern along the distribution, both for permanent and transitory shocks.

Expansions are associated with increases at the top and bottom of the distribution, while

recessions are associated with the opposite pattern and a relative increase of the middle

quantiles. In the upper panel of Figure 6 we show how the model fits the distributions of

log-income growth, suggesting that our model is able to reproduce the density and quantile

cyclicality of log-income growth that we observe in the data.

We performed several exercises to probe the robustness of these findings, using the “strong

constraint” penalization of Section 6, measuring business cycle conditions using the unem-

ployment rate instead of log-GDP growth, and varying the choice of starting values in the

algorithm. While we found the year-to-year variation in Figure 4 to depend on the cho-

sen specification, in all our checks we found a lack of systematic cyclical variability of the

25



Figure 6: Fit to densities and quantile cyclicality of log-income/wage growth
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Notes: See notes to Figure 3. In the upper left panel we show the density of log-income growth in the data

(in solid), and as predicted by our model (in dashed), with a normal fit (in dotted). In the upper right panel

we show a measure of quantile cyclicality similar to the one in Figure 5 for log-income growth, in the data

(in solid), and as predicted by the model (in dashed). In the bottom panels we show results for hourly wages.

dispersion of income shocks, and a significant procyclicality of the skewness of permanent

shocks. Among the results reported in Table 3, we found the procyclicality of the skewness

of transitory shocks to be most sensitive to specification changes.

Hourly wages. We next use the information in the PSID about hours worked to compute

similar measures of cyclicality based on hourly wages of household heads. Evidence from

Italy and France (Hoffmann and Malacrino, 2019; Pora and Wilner, 2019) suggests that days

and hours worked may contribute significantly to the observed cyclical patterns of skewness.

For the US, Nakajima and Smyrnyagin (2019) obtain similar conclusions. In contrast, Busch

et al. (2018) find a moderate role of hours worked in Germany. In the bottom panel of Table

3 we see that the skewnesses of permanent and transitory shocks to hourly wages do not vary

significantly with the cycle, and that the point estimates are greatly reduced compared to the
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case of total income. This suggests that hours worked largely contribute to the distributional

income dynamics that we document. In the lower panels in Figure 6 we show the model fit

to log-hourly wage growth. The estimates show that quantiles of log-hourly wage growth

vary little with the business cycle in our sample, and that our model is able to reproduce

this pattern.13

8 Extension: block-independent factor models

In this section we now suppose that the T -dimensional outcome vector Y can be written

as Y =
∑L

`=1 A`X`, where X1, ..., XL are mutually independent random vectors. For all

` ∈ {1, ..., L}, X` has n` scalar components X`k — which are not assumed independent of

one another — and A` is a known T ×n` matrix. Allowing for dependent components within

independent blocks of latent factors is of interest in a variety of models, such as the following

model for longitudinal data:

Yit = αi + βit+ εit, t = 1, ..., T,

where (αi, βi), εi1, ..., εiT are mutually independent, yet the unit-specific intercept αi and

slope βi can depend on each other.

To extend our approach to block-independent factor models, we exploit the vector quan-

tile representation given in Carlier et al. (2016). Under regularity conditions, one has

X` = G`(V`), where V` is a vector of n` independent standard uniform random variables,

and G` — a Brenier map, obtained by optimal transport — is the gradient of a convex

function. The functions G` satisfy a cyclical monotonicity condition analogous to the usual

monotonicity of univariate quantile functions (see, e.g., Chapter 2 in Villani, 2003):

For all m ≥ 2 and v1, ..., vm, vm+1 = v1 ∈ [0, 1]n` :
m∑
j=1

G`(vj)
′ (vj+1 − vj) ≤ 0.

Using the vector quantile representation, we define the population objective function for

block-independent factor models in a similar way to the independent case (9); that is:

Q(G1, ..., GL) ≡ inf
π∈M

(
µY , µ∑L

`=1
A`G`

)Eπ
 T∑
t=1

(
Yt −

L∑
`=1

A′`tG` (V`)

)2
 , (13)

13In addition, it is interesting to compare the performance of our estimator to alternative, Fourier-based
nonparametric methods on real data. In Appendix E, we revisit the empirical application to income dynamics
in Bonhomme and Robin (2010). While they used a Fourier-based estimator, we report results based on our
estimator using the same data set.
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where A′`t is the t-th row of A`, and V` are n`-dimensional vectors of independent standard

uniform random variables.

An empirical counterpart to (13) then leads to the estimator:

(X̂1, ..., X̂L) = argmin
(X1,...,XL)∈Xblocks

N

min
π∈ΠN

N∑
i=1

T∑
t=1

(
Yπ(i),t −

L∑
`=1

n∑̀
k=1

a`tkX`,i,k

)2
 , (14)

where the vectors (X1, ..., XL) ∈ X blocks
N are restricted to be cyclically monotone in the

following sense (for σ`k independent random permutations of {1, ..., N}):

For all m ≤ N and i1, ..., im, im+1 = i1 ∈ {1, ..., N} :
m∑
j=1

n∑̀
k=1

X`,ij ,k (σ`k(ij+1)− σ`k(ij)) ≤ 0.

(15)

The cyclical monotonicity condition (15) generalizes the univariate monotonicity condition

we imposed on Xi,k in (4).14

For all ` ∈ {1, ..., L}, X̂` can then be interpreted as an empirical counterpart to the vector

quantile representation of X` based on the function G`, subject to a suitable rearrangement.

More formally, a consistency statement for X̂` will take the form:

max
i∈{1,...,N}

∥∥∥∥X̂`i −G`

(
σ`1(i)

N + 1
, ...,

σ`K(i)

N + 1

)∥∥∥∥ = op(1), for all ` = 1, ..., L.

As in the independent case, one can compute a local minimum in (14) using an algorithm

that iterates between matching and update steps. Note that (15) is linear in X`,i,k’s, as in

the univariate case. However, it may be impractical to enforce all restrictions in (15) in the

update step. In applications, a possibility is to select SN restrictions at random, where SN

depends on the sample size.

9 Summary and further extensions

In this paper we have proposed an approach to nonparametrically estimate linear models

with independent latent variables. The method is based on matching predicted values from

the model to the empirical observations. We have provided a simple algorithm for compu-

tation, and established consistency. We have also documented remarkable performance of

our nonparametric estimator in small samples, and we have used it to shed new light on the

cyclicality of permanent and transitory shocks to income and wages in the US. An important

14Indeed, in the univariate case Xi+1,k ≥ Xi,k for all i is equivalent to
∑m
j=1Xσk(ij),k (σk(ij+1)− σk(ij)) ≤

0 for all m ≤ N and length-m cycle i1, ..., im, im+1 = i1.
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question for future work will be to characterize rates of convergence and asymptotically valid

confidence sets for our estimator.

Before concluding, we note that our approach can be extended to estimate other mod-

els, beyond linear independent and block-independent factor models. Here we list several

extensions, and we provide additional detail in the appendix.

Random coefficients. Consider the linear cross-sectional random coefficients model:

Y = X1 +
K∑
k=2

WkXk, (16)

where (W2, ...,WK) is independent of (X1, ..., XK), the scalar outcome Y and the covariates

W2, ...,WK are observed, and (X1, ..., XK) is a latent vector with an unrestricted joint dis-

tribution (e.g., Beran and Hall, 1992). To construct a matching estimator, one can augment

(16) with: Wk = Vk, k = 2, ..., K, where the Vk’s are auxiliary latent variables independent

of the Xk’s. In this augmented model, the joint distributions of (X1, ..., XK) and (V2, ..., VK)

can be estimated by minimizing the Euclidean distance between the model’s predictions of

Y,W observations, and their matched values in the data.

Finite mixtures. Consider next a finite mixture model with G groups, for a T -dimensional

outcome Y :

Yt =
G∑
g=1

ZgXgt, t = 1, ..., T, (17)

where Z1, ..., ZG and X11, ..., XGT are unobserved, Zg ∈ {0, 1} with
∑G

g=1 Zg = 1, and

(Z1, ..., ZG) and all X11, ..., XGT are mutually independent (e.g., Hall and Zhou, 2003;

Hu, 2008; Allmann et al., 2009; Levine et al., 2011; Bonhomme et al., 2016). To construct a

matching estimator, let µ = (µ1, ..., µG−1) and V standard uniform such that Zg = Zg(V, µ),

where Z1(V, µ) = 1 if V ≤ µ1, Zg(V, µ) = 1 if µg−1 < V ≤ µg for g = 2, ..., G − 1,

and ZG(V, µ) = 1 if µG−1 < V . Let MG−1 be the set of vectors µ ∈ RG−1 such that

0 ≤ µ1 ≤ µ2 ≤ ... ≤ µG−1 ≤ 1. We define the following estimator:

(X̂, µ̂) = argmin
X∈XN , µ∈MG−1

{
min
π∈ΠN

N∑
i=1

T∑
t=1

(
Yπ(i),t −

G∑
g=1

Zg(Vi, µ)Xσgt(i),gt

)2}
, (18)

where V1, ..., VN are standard uniform draws, and σgt are random permutations in ΠN for all

g = 1, ..., G, t = 1, ..., T , all independent of each other. For given µ, one can use an algorithm
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analogous to the one described in Section 4 to compute X̂. The outer minimization with

respect to µ can be performed using simulated annealing or other methods to minimize

non-differentiable objective functions. In Appendix D we report simulation results for a

nonparametric two-component mixture model. In that case grid search is a viable option.

Heteroskedastic deconvolution. Finally, consider the model

Y = X1 + SX2, (19)

where (X1, S) is independent of X2, and X2 ∼ F , where F is known and has zero mean. The

analyst observes a sample Y1, S̃1, ..., YN , S̃N from (Y, S̃), where S̃i is a consistent estimator

of Si for all i. To motivate this setup, consider the estimation of income neighborhood

effects in Chetty and Hendren (2018), where i is a commuting zone or county, and Yi is a

neighborhood-specific estimate of the “causal effect” of place i. Within-i, a central limit

theorem-type argument suggests that Yi is approximately normally distributed, with mean

Xi1 and standard deviation Si. Chetty and Hendren report, alongside Yi estimates, standard

deviation estimates S̃i. In this example F is the standard normal distribution. To estimate

the distribution of X1 by matching, we minimize the following objective:

(X̂1, Ŝ) = argmin
(X1,S)∈XN×SN

{
min
π∈ΠN

N∑
i=1

(
Yπ(i) −Xi1 − SiXσ(i),2

)2
+ λ

N∑
i=1

(
S̃π(i) − Si

)2
}
, (20)

where σ is a random permutation of {1, ..., N}, SN is the parameter space for S, and λ > 0

is a constant. The algorithm again consists in alternating optimal transport steps and least

squares steps. As an illustration, in Appendix D we estimate the density of neighborhood

effects across US commuting zones using the data from Chetty and Hendren (2018).

References

[1] Allman, E. S., C. Matias, and J. A. Rhodes (2009): “Identifiability of Parameters in Latent
Structure Models with Many Observed Variables,” Annals of Statistics, 3099–3132.

[2] Arellano, M., R. Blundell, and S. Bonhomme (2017): “Earnings and Consumption Dynamics:
A Nonlinear Panel data Framework,” Econometrica, 85(3), 693–734.

[3] Arellano, M., and S. Bonhomme (2012): “Identifying Distributional Characteristics in Random
Coefficients Panel Data Models”, Review of Economic Studies, 79, 987–1020.

[4] Arellano, M., and S. Bonhomme (2016): “Nonlinear Panel Data Estimation via Quantile
Regressions,” Econometrics Journal, 19, C61-C94.

30



[5] Bassetti, F., A. Bodini, and E. Regazzini (2006): “On Minimum Kantorovich Distance Esti-
mators,” Statistics and probability letters, 76(12), 1298–1302.

[6] Ben-Moshe, D. (2017): “Identification of Joint Distributions in Dependent Factor Models,” to
appear in Econometric Theory.

[7] Beran, R., and P. Hall (1992): “Estimating Coefficient Distributions in Random Coefficient
Regressions,” Annals of Statistics, 20(4), 1970–1984.

[8] Bernton, E., P. E. Jacob, M. Gerber, and C. P. Robert (2017): “Inference in Generative Models
Using the Wasserstein Distance,” arXiv preprint arXiv:1701.05146.

[9] Bertail, P., D. N. Politis, and J. P. Romano (1999): “On Subsampling Estimators with Un-
known Rate of Convergence,” Journal of the American Statistical Association, 94(446), 569–
579.

[10] Blundell, R., L. Pistaferri, and I. Preston (2008): “Consumption Inequality and Partial Insur-
ance,” American Economic Review, 98(5): 1887–1921.

[11] Bonhomme, S., K. Jochmans, and J.M. Robin (2016): “Nonparametric Estimation of Finite
Mixtures from Repeated Measurements,” Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 78(1), 211–229.

[12] Bonhomme, S., and J. M. Robin (2010): “Generalized Nonparametric Deconvolution with an
Application to Earnings Dynamics,” Review of Economic Studies, 77(2), 491–533.

[13] Bonhomme, S., and M. Weidner (2019): “Posterior Average Effects,” arXiv preprint
arXiv:1906.06360.

[14] Bousquet, O., S. Gelly, I. Tolstikhin, C. J. Simon-Gabriel, and B. Schoelkopf (2017):
“From Optimal Transport to Generative Modeling: The VEGAN Cookbook,” arXiv preprint
arXiv:1705.07642.

[15] Botosaru, I., and Y. Sasaki (2015): “Nonparametric Heteroskedasticity in Persistent Panel
Processes: An Application to Earnings Dynamics,” unpublished manuscript.

[16] Busch, C., D. Domeij, F. Guvenen, and R. Madera (2018): “Asymmetric Business-Cycle Risk
and Social Insurance” (No. w24569). National Bureau of Economic Research.

[17] Carlier, G., V. Chernozhukov, and A. Galichon (2016): “Vector Quantile Regression: An
Optimal Transport Approach,” The Annals of Statistics, 44(3), 1165–1192.

[18] Carrasco, M., and J.P. Florens (2011): “Spectral Method for Deconvolving a Density,” Econo-
metric Theory, 27(3), 546–581.

[19] Carrasco, M., J.P. Florens, and E. Renault (2007): “Linear Inverse Problems in Structural
Econometrics Estimation Based on Spectral Decomposition and Regularization,” Handbook of
Econometrics, vol. 6, 5633–5751.

[20] Carroll, R. J., and P. Hall (1988): “Optimal rates of Convergence for Deconvoluting a Density,”
Journal of the American Statistical Association, 83, 1184-1186.

[21] Carroll, R. J., D. Ruppert, L. A. Stefanski, C. M. Crainiceanu (2006): Measurement Error in
Nonlinear Models: A Modern Perspective. CRC press.

31



[22] Chen, X. (2007): “Sieve Methods in Econometrics,” Handbook of Econometrics, vol. 6, 5549–
5632.

[23] Chen, X., H. Hong, H., and D. Nekipelov, D. (2011): “Nonlinear Models of Measurement
Errors,” Journal of Economic Literature, 49(4), 901–937.

[24] Chetty, R., and N. Hendren (2018): “The Impacts of Neighborhoods on Intergenerational
Mobility: County-Level Estimates,” Quarterly Journal of Economics, 133(2), 1163-1228.

[25] Chetverikov, D., and D. Wilhelm (2017): “Nonparametric Instrumental Variable Estimation
under Monotonicity,” Econometrica, 85(4), 1303–1320.

[26] Comte, F., and J. Kappus (2015): “Density Deconvolution from Repeated Measurements
without Symmetry Assumption on the Errors,” Journal of Multivariate Analysis, 140, 31–46.
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APPENDIX

A Proofs

A.1 Proofs of Theorem 1 and Corollary 1

Before proving Theorem 1 for multi-factor models, we first prove Corollary 1 for the scalar decon-

volution case where explicit expressions for Wasserstein distances are available.

A.1.1 Scalar deconvolution: Corollary 1

We first state the following assumption, where for conciseness we denote H ≡ H1.

Assumption A1.

(i) (Continuity and support) Y , X1 and X2 have compact supports in R, and admit absolutely

continuous densities fY , fX1 , fX2 that are bounded away from zero and infinity. Moreover, fY is

differentiable.

(ii) (Identification) The density fX1 is identified given fY and fX2.

(iii) (Penalization) CN is increasing and CN is decreasing with limN→+∞ CN = C and

limN→+∞ CN = C, where C and C < C are such that ‖F−1
X1
‖ ≤ C and ∇F−1

X1
(τ) ≥ C for all

τ ∈ (0, 1).

(iv) (Sampling) Y1, ..., YN and X12, ..., XN2 are i.i.d.

A sufficient condition for Assumption A1 (ii) is that the characteristic function of X2 does not

vanish on the real line; moreover, this condition can be relaxed by allowing for the presence of

isolated zeros in the characteristic function (Carrasco and Florens, 2011).

We now prove Corollary 1. Define the empirical objective function, for any candidate quantile

function H, as:

Q̂(H) = min
π∈ΠN

1

N

N∑
i=1

(
Yπ(i) −H

(
σ(i)

N + 1

)
−Xi2

)2

=
1

N

N∑
i=1

(
F̂−1
Y

(
1

N
R̂ank

(
H

(
σ(i)

N + 1

)
+Xi2

))
−H

(
σ(i)

N + 1

)
−Xi2

)2

,

where F̂−1
Y (τ) = inf {y ∈ Supp(Y ) : F̂Y (y) ≥ τ}, and R̂ank(Zi) = NF̂Z(Zi). The second equality

follows from Hardy-Littlewood-Pólya. With some abuse of notation, for all X ∈ RN we will denote

Q̂(X) = Q̂(H) for any function H such that H
(

i
N+1

)
= Xi for all i.
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Define the population counterpart to Q̂, for any H ∈ H, as:

Q(H) = E

[(
F−1
Y

(∫ 1

0
FX2 (H(V ) +X2 −H(τ)) dτ

)
−H(V )−X2

)2
]
,

where the expectation is taken with respect to pairs (V,X2) of independent random variables, where

V is standard uniform and X2 ∼ FX2 .

Parameter space. Let H be the closure of the set {H ∈ C1 : ∇H ≥ C, ‖H‖ ≤ C} under the

norm ‖ · ‖∞. H is compact with respect to ‖ · ‖∞ (Gallant and Nychka, 1987).15

Sieve construction. For any N , let us define the sieve space:

HN =

{
H ∈ H :

∣∣∣∣H ( i

N + 1

)∣∣∣∣ ≤ CN , CN ≤ (N + 1)

(
H

(
i+ 1

N + 1

)
−H

(
i

N + 1

))
≤ CN

}
.

Let X̂ ∈ XN be such that:

Q̂(X̂) ≤ min
X∈XN

Q̂(X) + εN .

We first note that there exists an Ĥ ∈ HN such that Ĥ
(

i
N+1

)
= X̂i for all i.16 Hence:

Q̂(Ĥ) = Q̂(X̂) ≤ min
X∈XN

Q̂(X) + εN ≤ min
H∈HN

Q̂(H) + εN . (A1)

Let H0 = F−1
X1

. To show Corollary 1 it is thus sufficient to show that, when Ĥ satisfies (A1),

we have ‖Ĥ − H0‖∞ = op(1). This will follow from verifying conditions (3.1”), (3.2), (3.4), and

(3.5(i)) in Chen (2007).

H is compact under ‖ · ‖∞ and Q(H) is upper semicontinuous on H. Compactness

holds as indicated above. (3.4) in Chen (2007) follows, since HN is a closed subset of H. To show

that Q(H) is continuous on H under ‖ · ‖∞, let H1, H2 in H. By Assumption A1 (i), F−1
Y and FX2

are Lipschitz. It follows that, for some constant C̃, |Q(H2)−Q(H1)| ≤ C̃‖H2−H1‖∞. This implies

continuity of Q. This shows (3.1”) in Chen (2007).

HN ⊂ HN+1 ⊂ H for all N , and there exists a sequence HN ∈ HN such that

‖HN −H0‖∞ = op(1). Since C > C there is an ε > 0 such that C > C + ε. Let G0 be linear

with slope C + ε, such that G0(1/2) = 0. For an increasing sequence λN tending to one as N

15Compactness can be preserved when sup-norms are replaced by weighted Sobolev sup-norms (e.g., using
polynomial or exponential weights); see for example Theorem 7 in Freyberger and Masten (2015).

16Take a smooth interpolating function of the X̂i’s, arbitrarily close in sup-norm to the piecewise-linear
interpolant of the X̂i’s extended to have slope (C +C)/2 on the intervals [0, 1/(N + 1)] and [N/(N + 1), 1].
This is always possible since CN < C and CN > C.
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tends to infinity, let HN = λNH0 + (1− λN )G0. Taking 1− λN ≥ max
{
CN−C

ε , C−CN

C−(C+ε)

}
, we have

|HN | ≤ CN and CN ≤ ∇HN ≤ CN , hence HN ∈ HN . Moreover:

‖HN −H0‖∞ ≤ (1− λN )‖H0‖∞ + (1− λN )‖G0‖∞ = o(1).

This shows (3.2) in Chen (2007).

Q(H) is uniquely minimized at H0 on H, and Q(H0) < +∞. We have Q(H) ≥

Q(H0) = 0 for all H ∈ H. Suppose that Q(H) = 0. Then, (V,X2)-almost surely we have:

F−1
Y

(∫ 1

0
FX2 (H(V ) +X2 −H(τ)) dτ

)
= H(V ) +X2.

Since the left-hand side in this equation is distributed as FY , it thus follows that, almost surely:

FH(V )+X2
(H(V ) +X2) = FY (H(V ) +X2) .

It follows that FH(V )+X2
= FY almost everywhere on the real line. Since Y and X2 have densities

fY and fX2 , this also implies that fY (y) =
∫ 1

0 fX2(y −H(τ))dτ , y-almost everywhere. Now, since

H ∈ H, the function f
X̃

(x) ≡ 1/∇H(H−1(x)) is well-defined, continuous and bounded. We then

have by a change of variables, fY (y) =
∫ +∞
−∞ fX2(y − x)f

X̃
(x)dx. Since fX1 is identified given fY

and fX2 , it thus follows that fX1 = f
X̃

, hence that H = H0. This shows (3.1”(ii)) in Chen (2007).

plimN→+∞ supH∈H |Q̂(H)−Q(H)| = 0. First, notice that since H consists of Lipschitz

functions its ε-bracketing entropy is finite for any ε > 0 (e.g., Corollary 2.7.2 in van der Vaart and

Wellner, 1996). Hence H is Glivenko Cantelli for the ‖ · ‖∞ norm.

Let now:

GH(v, x) ≡
(
F−1
Y

(∫ 1

0
FX2 (H(v) + x−H(τ)) dτ

)
−H(v)− x

)2

.

Notice that, for all H ∈ H and as N tends to infinity:

1

N

N∑
i=1

GH

(
σ(i)

N + 1
, Xi2

)
=

1

N

N∑
i=1

GH

(
i

N + 1
, Xσ−1(i),2

)
=

∫ 1

0
E (GH (τ ,X2)) dτ + op(1) = Q(H) + op(1). (A2)

Moreover, as H 7→ GH is Lipschitz on H (since fY is bounded away from zero and fX2 is bounded

away from infinity), and as H is Glivenko Cantelli, the set of functions {GH : H ∈ H} is also

Glivenko Cantelli. Hence:

sup
H∈H

∣∣∣∣∣ 1

N

N∑
i=1

GH

(
σ(i)

N + 1
, Xi2

)
−Q(H)

∣∣∣∣∣ = op(1).
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Next, we are going to show that:

sup
H∈H

∣∣∣∣∣ 1

N

N∑
i=1

1

N
R̂ank

(
H

(
σ(i)

N + 1

)
+Xi2

)
−
∫ 1

0
FX2

(
H

(
σ(i)

N + 1

)
+Xi2 −H(τ)

)
dτ

∣∣∣∣∣ = op(1).

(A3)

From (A3) and the fact that F−1
Y is Lipschitz we will then have:

sup
H∈H

∣∣∣∣∣ 1

N

N∑
i=1

(
F−1
Y

(
1

N
R̂ank

(
H

(
σ(i)

N + 1

)
+Xi2

))
−H

(
σ(i)

N + 1

)
−Xi2

)2

−Q(H)

∣∣∣∣∣ = op(1).

To show (A3) we are going to show that:

sup
H∈H, a∈R

∣∣∣∣∣ 1

N

N∑
i=1

1

{
H

(
σ(i)

N + 1

)
+Xi2 ≤ a

}
−
∫ 1

0
FX2 (a−H(τ)) dτ

∣∣∣∣∣ = op(1). (A4)

Pointwise convergence in (A4) is readily verified (similarly to (A2)). Uniform convergence follows

provided we can show that G = {gH,a : H ∈ H, a ∈ R} is Glivenko Cantelli, where gH,a(v, u) ≡

1{H(v) + u ≤ a}. We are going to show this using a bracketing technique from empirical process

theory. Fix an ε > 0. Since H has finite ε-bracketing entropy there exists a set of functions Hj ,

j = 1, ..., J , such that for all H ∈ H there is a j such that Hj(τ) ≤ H(τ) ≤ Hj+1(τ) for all τ , and

‖Hj −Hj−1‖∞ < ε for all j. Moreover, there exists a set of scalars ak, k = 1, ...,K, such that the

real line is covered by the intervals [ak, ak+1], and FX2(ak+1)−FX2(ak) < ε for all k. Since X2 has

bounded support we can assume without loss of generality that ak+1−ak < ε. Hence for all H and

a there exist j and k such that 1{Hj+1(v) + u ≤ ak} ≤ gH,a(v, u) ≤ 1{Hj(v) + u ≤ ak+1} for all

(u, v). Since
∫ 1

0 FX2(ak+1−Hj(τ))dτ −
∫ 1

0 FX2(ak −Hj+1(τ))dτ < C̃ε, where C̃ > 0 is finite as fX2

is bounded away from infinity, G is Glivenko Cantelli and (A4) has been shown.

Lastly, since fY is bounded away from zero and infinity and differentiable, the empirical quantile

function of Y is such that (e.g., Corollary 1.4.1 in Csörgö, 1983):∥∥∥F̂−1
Y (τ)− F−1

Y (τ)
∥∥∥
∞

= op(1).

Hence:

sup
H∈H

∣∣∣∣∣ 1

N

N∑
i=1

(
F̂−1
Y

(
1

N
R̂ank

(
H

(
σ(i)

N + 1

)
+Xi2

))
−H

(
σ(i)

N + 1

)
−Xi2

)2

−Q(H)

∣∣∣∣∣ = op(1).

This shows (3.5(i)) in Chen (2007), and ends the proof of Corollary 1.
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A.1.2 Factor models: Theorem 1

We now prove Theorem 1. For any H = (H1, ...,HK), let us denote the empirical objective function

as:

Q̂(H) = min
π∈ΠN

1

N

N∑
i=1

∥∥∥∥∥Yπ(i) −
K∑
k=1

AkHk

(
σk(i)

N + 1

)∥∥∥∥∥
2

,

where Yi = (Yi1, ..., YiT )′ is a T ×1 vector for all i, A = (A1, ..., AK) with Ak a T ×1 vector for all k,

and ‖ · ‖ is the Euclidean norm on RT . Denote as µ̂Y the empirical measure of Yi, i = 1, ..., N , with

population counterpart µY , and as µ̃AH the empirical measure of
∑K

k=1AkHk

(
σk(i)
N+1

)
, i = 1, ..., N ,

with population counterpart µAH . Then Q̂(H)
1
2 = W2 (µ̂Y , µ̃AH) is the quadratic Wasserstein

distance between µ̂Y and µ̃AH . See Chapter 7 in Villani (2003) for some properties of Wasserstein

distances.

Likewise, let us define the population counterpart to Q̂, for any H = (H1, ...,HK), as:

Q(H) = inf
π∈M(µY , µAH)

Eπ

∥∥∥∥∥Y −
K∑
k=1

AkHk (Vk)

∥∥∥∥∥
2
 ,

where the infimum is taken over all possible joint distributions of the random vectors Y and∑K
k=1AkHk (Vk), with marginals µY and µAH . In this case Q(H)

1
2 = W2 (µY , µAH) is the Wasser-

stein distance between the two population marginals.

The proof follows the steps of the proof of Corollary 1. The differences are as follows.

Parameter space. Let H be the closure of the set {H ∈ C1 : ∇H ≥ C, ‖H‖ ≤ C} under

‖ · ‖∞. Then, let us define:

HK ≡

{
(H1, ...,HK) : Hk ∈ H and

N∑
i=1

Hk

(
i

N + 1

)
= 0 for all k

}
.

HK is compact with respect to ‖ · ‖∞. The sieve construction is then similar to the scalar case.

Q(H) is continuous on HK. Let H1 and H2 in HK . Since Y has bounded support, and H1k

and H2k are bounded for all k, we have:

|Q(H2)−Q(H1)| ≤ C̃
∣∣∣Q(H2)

1
2 −Q(H1)

1
2

∣∣∣ = C̃
∣∣W2

(
µY , µAH2

)
−W2

(
µY , µAH1

)∣∣ ,
for some constant C̃ > 0. Hence, since W2 satisfies the triangle inequality (see Theorem 7.3 in

Villani, 2003):

|Q(H2)−Q(H1)| ≤ C̃W2

(
µAH1

, µAH2

)
.
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Next, we use that, since supports are bounded, W2

(
µAH1

, µAH2

)
is bounded (up to a multi-

plicative constant) by the Kantorovich-Rubinstein distance:

W1(µAH1
, µAH2

) = inf
π∈M(µAH1

, µAH2
)
Eπ

(∥∥∥∥∥
K∑
k=1

AkH1k (V1k)−
K∑
k=1

AkH2k (V2k)

∥∥∥∥∥
)
.

Now, using the dual representation of the Kantorovich-Rubinstein distance, W1 can be equiva-

lently written as (see Theorem 1.14 in Villani, 2003):

W1(µAH1
, µAH2

) = sup
ϕ1-Lipschitz

E

(
ϕ

(
K∑
k=1

AkH1k (V1k)

))
− E

(
ϕ

(
K∑
k=1

AkH2k (V2k)

))
,

where ϕ are 1-Lipschitz functions on RT ; that is, such that |ϕ(y2) − ϕ(y1)| ≤ ‖y2 − y1‖ for all

(y1, y2) ∈ RT × RT .

Hence:

W1(µAH1
, µAH2

) = sup
ϕ1-Lipschitz

∫
...

∫ [
ϕ

(
K∑
k=1

AkH1k (τk)

)
− ϕ

(
K∑
k=1

AkH2k (τk)

)]
dτ1...dτK

≤
∫
...

∫ ∥∥∥∥∥
K∑
k=1

AkH1k (τk)−
K∑
k=1

AkH2k (τk)

∥∥∥∥∥ dτ1...dτK

≤
K∑
k=1

‖Ak‖ ‖H1k −H2k‖∞.

This implies that H 7→ Q(H) is continuous on HK .

Q(H) is uniquely minimized at H0 on HK. Let H be such that Q(H) = 0. Then

W2 (µY , µAH) = 0. By Theorem 7.3 in Villani (2003) this implies that µY = µAH . Hence the cdfs

of Y =
∑K

k=1AkH0k (Vk) and
∑K

k=1AkHk (Vk) are equal. By Assumption 1 (ii), it follows that

Hk = H0k for all k.

plimN→+∞ supH∈HK
|Q̂(H)−Q(H)| = 0. Using similar arguments to the ones we used

to show the continuity of Q(H), we have:

sup
H∈HK

|Q̂(H)−Q(H)| ≤ C̃ sup
H∈HK

|W2 (µ̂Y , µ̃AH)−W2 (µY , µAH) |

≤ C̃ sup
H∈HK

(W2 (µY , µ̂Y ) +W2 (µAH , µ̃AH)) ,

where we have used the triangle inequality.

Now, there is a positive constant C̃ (different from the previous one) such that:

W2 (µY , µ̂Y ) ≤ C̃W1 (µY , µ̂Y ) = C̃ sup
ϕ1-Lipschitz

[
E (ϕ (Y ))− 1

N

N∑
i=1

ϕ (Yi)

]
= op(1),
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where the last equality follows from the set of 1-Lipschitz functions ϕ being Glivenko Cantelli.

Next, we have:

sup
H∈HK

W2 (µAH , µ̃AH) ≤ C̃ sup
H∈HK

W1 (µAH , µ̃AH)

= C̃ sup
H∈HK

sup
ϕ1-Lipschitz

[
E

(
ϕ

(
K∑
k=1

AkHk (Vk)

))
− 1

N

N∑
i=1

ϕ

(
K∑
k=1

AkHk

(
σk(i)

N + 1

))]
= op(1),

where the last equality follows from the fact that the following set of functions is Glivenko Cantelli:{
ϕ ◦

(
K∑
k=1

AkHk

)
: ϕ is 1-Lipschitz, H = (H1, ...,HK) ∈ HK

}
.

This concludes the proof of Theorem 1.

A.2 Proof of Corollary 2

Let H(2)
K denote the set of functions (H1, ...,HK) ∈ HK which additionally satisfy ‖∇2Hk‖∞ ≤ C

for all k. Let k ∈ {1, ...,K}. Let Ĥk ∈ H
(2)
N be such that Ĥk

(
i

N+1

)
= X̂ik for all i, where

H(2)
N =

{
H ∈ H(2)

K :
{
Hk

(
i

N+1

)
: i = 1, ..., N, k = 1, ...,K

}
∈ X (2)

N

}
. We have:∣∣∣∣∣∣ 1

Nb

N∑
i=1

κ

Ĥk

(
i

N+1

)
− x

b

− 1

b

∫ 1

0
κ

(
Ĥk (u)− x

b

)
du

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

Nb

N∑
i=1

∫ i
N

i−1
N

κ
Ĥk

(
i

N+1

)
− x

b

− κ(Ĥk (u)− x
b

) du
∣∣∣∣∣∣

≤ C

Nb2

N∑
i=1

∫ i
N

i−1
N

∣∣∣∣Ĥk

(
i

N + 1

)
− Ĥk (u)

∣∣∣∣ du
≤ C̃

Nb2

N∑
i=1

∫ i
N

i−1
N

∣∣∣∣ i

N + 1
− u
∣∣∣∣ du = O(N−2b−2) = o(1),

where C > 0 and C̃ > 0 are constants, and we have used that κ is Lipschitz, ∇Ĥk is uniformly

bounded, and Nb→ +∞.

Now, using the change of variables ω = Ĥk(u)−x
b , we obtain:

1

b

∫ 1

0
κ

(
Ĥk (u)− x

b

)
du =

∫ +∞

−∞
κ(ω)

1

∇Ĥk

(
Ĥ−1
k (x+ bω)

)dω =
1

∇Ĥk

(
Ĥ−1
k (x)

) + o(1),

where we have used that x 7→ 1/∇Ĥk(Ĥ
−1
k (x)) is differentiable with uniformly bounded derivative,

κ has finite first moments, b→ 0, and κ integrates to one.

Lastly, note that fXk
(x) = 1/∇H0k(H

−1
0k (x)), where by Theorem 1 and equation (10) we have

‖Ĥk −H0k‖∞ = op(1), ‖Ĥ−1
k −H

−1
0k ‖∞ = op(1), and ‖∇Ĥk −∇H0k‖∞ = op(1).

This shows Corollary 2.
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ONLINE APPENDIX

B Expectations

For any Lipschitz function h, the expectation E(h(Xk)) can be consistently estimated as:

1

N

N∑
i=1

h
(
X̂ik

)
.

Likewise, for all t, the expectation E(h(Xk, Yt)) is consistently estimated as:

1

N

N∑
i=1

h

(
X̂σk(i),k,

K∑
`=1

at`X̂σ`(i),`

)
,

for independent random permutations σ1, ..., σK in ΠN .

Conditional expectations are of particular interest in prediction problems. Given the X̂ik’s and

the f̂Xk
’s, a consistent estimator of the conditional expectation E (Xk |Y = y) is readily constructed.

To see this, suppose the matrix formed by all the columns of A except the k-th one has rank T

(which ensures that the conditional density of Y given Xk is not degenerate). Partition A into a

T × (K − T ) submatrix Bk and a non-singular T × T submatrix Ck, where the k-th column of A

is one of the columns of Bk. Denote as XBk (resp., X̂Bk

σ(i)) and XCk (resp., X̂Ck

σ(i)) the subvectors of

X (resp., (X̂σ1(i), ..., X̂σK(i))
′) corresponding to Bk and Ck. An estimator of E (Xk |Y = y) is then:

Ê (Xk |Y = y) =

∑N
i=1 f̂XBk

(
X̂Bk

σ(i)

)
f̂XCk

(
C−1
k

[
y −BkX̂Bk

σ(i)

])
X̂σk(i),k∑N

i=1 f̂XBk

(
X̂Bk

σ(i)

)
f̂XCk

(
C−1
k

[
y −BkX̂Bk

σ(i)

]) . (B5)

As an example, in the repeated measurements model (1), a consistent estimator of E (X1 |Y = y)

is, for y = (y1, ..., yT ):

Ê (X1 |Y = y) =

∑N
i=1

∏T
t=1 f̂Xt+1

(
yt − X̂σ1(i),1

)
X̂σ1(i),1∑N

i=1

∏T
t=1 f̂Xt+1

(
yt − X̂i1

) =

∑N
i=1

∏T
t=1 f̂Xt+1

(
yt − X̂i1

)
X̂i1∑N

i=1

∏T
t=1 f̂Xt+1

(
yt − X̂i1

) .

(B6)

More generally, the densities f̂XBk and f̂XCk in (B5) are products of marginal densities of individual

latent factors.

Remark: constrained prediction. In the present setting, an alternative to the usual pre-

diction problem consists in minimizing expected square loss subject to the constraint that the

cross-sectional distribution of the predicted values coincide with the population distribution of
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the latent variable. The resulting constrained optimal predictor can be estimated as: X̃ik =

X̂π∗(i),k, i = 1, ..., N , where the X̃i’s are equal to the X̂j ’s sorted in the same order as the

Ê(Xk |Y = Yi)’s; that is: π∗ = argminπ∈ΠN

∑N
i=1

(
Ê(Xk |Y = Yi)− X̂π(i)

)2
. In a similar spirit,

one can construct a matching-based alternative to Ê(Xk |Y = Yi) as: 1
M

∑N
j=1

∑M
m=1 1{π̂

(m)(j) =

i}X̂
σ
(m)
k (j),k

, where σ
(m)
k , m = 1, ...,M , are independent random permutations in ΠN , and π̂(m) =

argminπ∈ΠN

∑N
i=1

∑T
t=1

(
Yπ(i),t −

∑K
k=1 atkXσk(i),k

)2
. We leave the characterization of the prop-

erties of such constrained predictors to future work.

C Additional simulation results

In this section of the appendix we show simulation results for two a scalar nonparametric decon-

volution model. Consider the model Y = X1 +X2, where X1 and X2 are scalar, independent, and

follow identical distributions. As for the repeated measurements model in the main text, we consider

four specifications: Beta(2, 2), Beta(5, 2), normal, and log-normal, and we consider two choices for

the penalization constants: (CN , CN ) = (.1, 10) (“strong constraint”), and (CN , CN ) = (0, 10000)

(“weak constraint”). We use 10 randomly generated starting values, and average M = 10 sets of

estimates.

In the first two columns in Figure C1 we show the estimates of the quantile functions X̂i1 =

F̂−1
X1

(
i

N+1

)
, for the four specifications and both penalization parameters. The solid and dashed

lines correspond to the mean, 10 and 90 percentiles across 100 simulations, respectively, while the

dashed-dotted line corresponds to the true quantile function. The sample size is N = 100. In the

last two columns of Figure C1 we show density estimates for the same specifications. The results

reproduce the shape of the unknown quantile functions and densities rather well.

In Figure C2 we report additional results for the Beta(2, 2) specification, for N = 100 (columns

1 and 3) and N = 500 (columns 2 and 4). In the first two rows we report the results based on a

single σ draw per estimate (i.e., M = 1), whereas in the next two rows we show the results for the

estimator averaged over M = 10 different σ draws. While we see that averaging seems to slightly

increase the precision of estimated quantile functions and densities, the results based on one σ

draw are comparable to the ones based on 10 draws. In the last row of Figure C2 we show results

when using a single starting parameter value in our algorithm, instead of 10 values in our baseline

estimates. We see that the results are very little affected, suggesting that the impact of starting

values on the performance of the estimator is moderate.

In Table C1 we attempt to quantify the rate of convergence of our quantile function estimator

43



Figure C1: Monte Carlo results, deconvolution model, N = 100

Quantile functions Densities
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Notes: Simulated data from the deconvolution model Y = X1 +X2. The mean across simulations is in solid,

10 and 90 percent pointwise quantiles are in dashed, and the true quantile function or density of X1 is in

dashed-dotted. 100 simulations. 10 averages over σ draws.
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Figure C2: Monte Carlo results, deconvolution model, Beta(2,2), N = 100, 500

Quantile functions Densities
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Notes: Simulated data from the deconvolution model Y = X1 +X2. The mean across simulations is in solid,

10 and 90 percent pointwise quantiles are in dashed, and the true quantile function or density of X1 is in

dashed-dotted. 100 simulations.
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Figure C3: Monte Carlo simulation, mean squared error of estimated quantiles of X1 as a
function of the penalization parameter

N = 100
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Notes: Simulated data from the deconvolution model Y = X1 +X2. Log of penalization CN (x-axis) against

mean squared error (y-axis). CN is set to C
−1
N . Solid corresponds to the median, dashed to the 25% quantile,

dotted to the 75% quantile. No average, single starting value, weak constraint. N = 100 (top panel) and

N = 500 (bottom panel), 500 simulations.

in a simulation experiment. We report the mean squared error at various quantiles (25%, median,

and 75%) for the four distributional specifications. We focus on the weak constraint case, and rely

on a single σ draw and single starting parameter value in each replication. We report the results of

500 simulations. In the last column of Table C1 we report a numerical rate of convergence based

on these results, which we compute by regressing the log-mean squared error on the log-sample

size. The results suggest the rate ranges between N−
3
10 and N−

7
10 . From Theorem 3.7 in Hall and

Lahiri (2008), when characteristic functions of X1 and X2 are converging at polynomial rates of

order b and a, respectively, the optimal rate of convergence for quantile estimation is N−
2b

2a+2b−1 .

As an example, in the case of the Beta(2,2) and Beta(5,2) distributions, characteristic functions

converge at the quadratic rate, so the corresponding optimal rate is N−
4
7 .

Next, we assess the impact of the penalization parameters CN and CN on the mean squared

error of quantile estimates, at the median and 25% and 75% percentiles. In Figure C3 we show the

results for the four specifications, when varying the logarithm of CN between 0 and 150 and setting

CN = C
−1
N , for two sample sizes: N = 100 (top panel) and N = 500 (bottom panel). Two features
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Figure C4: Monte Carlo results, deconvolution model, Efron-Koenker-Gu specification, N =
1000
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Notes: Simulated data from the specification of the deconvolution model Y = X1 +X2 used in Koenker and

Gu (2019), which is a slight variation on a DGP used in Efron (2016). The mean across simulations is

in solid, 10 and 90 percent pointwise quantiles are in dashed, and the true quantile function of X1 is in

dashed-dotted. Weak constraint. 100 simulations.

emerge. First, setting CN to a very large number, which essentially fully relaxes the constraints,

still results in a well-behaved estimator. This is in contrast with popular regularization methods

for ill-posed inverse problems such as Tikhonov regularization or spectral cut-off (e.g., Carrasco et

al., 2007), for which decreasing the amount of penalization typically causes large increases in vari-

ance. The high sensitivity of characteristic-function based estimators to the choice of regularization

parameters is also well documented. We interpret this feature of our estimator as reflecting the

fact that the matching-based procedure induces an implicit regularization, even in the absence of

additional constraints on parameters. Second, the results show that fully removing the penalization

may not be optimal in terms of mean squared error. This raises the question of the optimal choice

of the penalization parameters.

We next consider a data generating process (DGP) which has been previously used to assess

the finite-sample behavior of several estimators in the nonparametric deconvolution model. This

DGP was used in Koenker and Gu (2019), and it is a slight variation of a DGP introduced by Efron

(2016). Let Y = X1 +X2, where X2 is distributed as a standard normal, and X1 is distributed as a

mixture of two distributions: a normal
(
0, 1

2

)
with probability 6

7 , and a uniform on the [0, 6] interval

with probability 1
7 . Koenker and Gu report that the Stefanski and Carroll (1990) characteristic-

function based estimator performs quite poorly on this DGP, distribution functions estimated on

a sample of 1000 observations showing wide oscillations. In Figure C4 we apply our estimator to
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Figure C5: Monte Carlo results, deconvolution model, Beta(2,2), Mallows’ (2007) algorithm
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Notes: Simulated data from the deconvolution model. The mean across simulations is in solid, 10 and 90

percent pointwise quantiles are in dashed, and the true density is in dashed-dotted. Mallows’ (2007) algorithm.

100 simulations.

this DGP, and report the results of 100 simulations. In the left graph we show quantile function

estimates averaged 10 times, whereas in the right the results correspond to a single σ draw per

estimation. We see that nonparametric estimates are very close to the true quantile function. This

performance stands in sharp contrast with that of characteristic-function based estimates, and is

similar to the performance of the parametric estimator analyzed in Efron (2016).

Lastly, in Figure C5 we report simulation results for Mallows’ (2007) stochastic estimator, in

the case of the Beta(2, 2) specification. As we pointed out in Section 4, this algorithm is closely

related to ours, with the key difference that new random permutations are re-drawn in every step.

We draw 100 such permutations, and keep the results corresponding to the last 50. The results

are similar to the ones obtained using our estimator under the weak constraint, as can be seen by

comparing Figures C2 and C5.

D Extensions

In this section of the appendix we show simulation results for a nonparametric finite mixture model,

and an empirical application of heteroskedastic deconvolution to the estimation of neighborhood

effects in Chetty and Hendren (2018).

D.1 Simulations in a nonparametric finite mixture model

In Figure D6 we report the results of 100 simulations, for two DGPs, both of which are finite mixture

models with G = 2 components with independent measurements. We consider a normal DGP and

a log-normal DGP. To fix the labeling across simulations, we order the components by increasing
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Figure D6: Monte Carlo results, finite mixture model with two components
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Notes: Simulated data from a finite mixture model with G = 2 components. The mean across simulations

is in solid, 10 and 90 percent pointwise quantiles are in dashed, and the true density is in dashed-dotted.

The two components have means −1 and 1 and unitary variances. Gaussian (top panel) and log-Gaussian

(bottom panel) components. N = 100, T = 3, 100 simulations. R = 10 simulations per observation.

means. We use a version of (18) with multiple draws σgt(i, r) for all i, with R = 10 simulations

by observation. We use 3 starting values in every inner loop, and perform an outer loop for 10

equidistant values of the first group’s probability. The results in Figure D6 are encouraging, and

suggest that matching estimators can perform well in nonparametric finite mixture models too.

D.2 Neighborhood effects in the US

Here we estimate the density of neighborhood effects across US commuting zones, using data

made available by Chetty and Hendren (2018). For every commuting zone, Chetty and Hendren

report an estimate Yi of the causal income effect of i, alongside an estimate S̃i of its standard

error. We compute a heteroskedastic Gaussian deconvolution estimator of the density of the latent

neighborhood effects. As a by-product, we obtain an estimate of the joint density of neighborhood

effects and their standard errors. To implement the calculation we set λ = 10, trim the top 1%

percentile of S̃i, and weigh all results by population weights. To accommodate the presence of
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Figure D7: Density of neighborhood effects
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Notes: In the left graph we show the density of commuting zone effects Xi1 in model (19) in solid, and the

density of neighborhood estimates Yi in dashed. In the right graph we show contour plots of the joint density

of (Xi1, Si), where Si is the standard deviation of Yi. Calculations are based on statistics available on the

Equality of Opportunity website.

weights in a simple way, we draw subsamples of 500 observations from the weighted empirical

distribution of (Yi, S̃i). We then average the results across M = 10 subsamples.

We show the results in Figure D7. We see that neighborhood effects are not normally dis-

tributed. They show right skewness, and excess kurtosis. Estimates of Bowley-Kelley skewness

and Crow-Siddiqui kurtosis of Xi1 are 0.33 and 4.75, respectively. This evidence of non-normality

confirms results obtained by Bonhomme and Weidner (2019) using posterior estimators. The joint

density of neighborhood effects and standard errors suggests that less populated commuting zones

with less precise estimates tend to have higher income premia. The rank correlation between

neighborhood effects and standard errors is 0.39. The joint density also shows a high degree of

non-Gaussianity.

E Revisiting the empirical illustration in Bonhomme

and Robin (2010)

In this section of the appendix we estimate distributions of earnings shocks, based on a subsample

from the PSID for the years 1978 to 1987 constructed by Bonhomme and Robin (2010, BR here-

after). Following BR, we estimate a simple permanent-transitory model where log-earnings, net of
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the effect of some covariates, is the sum of a random walk ηit and an independent innovation εit.

In first differences we have, denoting log-earnings growth as ∆Yit = Yit − Yi,t−1:

∆Yit = vit + εit − εi,t−1, t = 1, ..., T,

which is a linear factor model with 2T − 1 independent factors. We use the same sample selection

as in BR, focusing on a balanced panel of 624 employed male workers. Log-earnings growth ∆Yit

is net of education, race, geographic and year dummies, and a quadratic polynomial in age. We

estimate the quantile functions of permanent shocks vit and transitory shocks εit for different years

t using our matching estimator.

In Figures E8 and E9 we show the estimated quantile functions of permanent and transitory

shocks, respectively. We report average estimates based on M = 10 σ draws, and use 10 different

starting values in the algorithm. The estimates in the graphs are based on (CN , CN ) = (.1, 10)

(strong constraint). The dotted line shows a fitted Gaussian quantile function. In dotted lines we

show 10%-90% bootstrap confidence bands.17 In Figures E12 and E13 we compare the estimated

quantile functions under strong and weak constraints. We see that both permanent and transitory

shocks are far from being normally distributed. This confirms the findings of strong non-Gaussianity

found in Horowitz and Markatou (1996), Geweke and Keane (2000), and BR, among others.

Next, in Figures E10 and E11 we show density estimates for permanent and transitory shocks.

The results obtained under a stronger penalization (strong constraint) are shown in solid lines,

whereas the results under a weaker penalization are in dashed lines. Density estimates confirm the

evidence of non-Gaussianity and suggest the presence of excess kurtosis in permanent and transitory

shocks. Moreover, while the effect of the penalization on the density estimates is stronger in the

tails, it does not affect much their central parts.

Lastly, in Figures E14 and E15 we show how the model fits distributions of log-earnings growth

Yit−Yi,t−s at various horizons s, and the distribution of year-to-year growth Yit−Yi,t−1 for different

years. We simulate the model 200 times for every individual in the sample and report the resulting

measures of fit. We see that the model produces a good fit both at different horizons and over time.

17Note that our theory does not provide asymptotic guarantees on the validity of the bootstrap.
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Figure E8: Estimated quantile functions of permanent shocks in different years
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Notes: PSID, 1978-1987. Permanent shock in every year (note: the first and last years are a

combination of permanent and transitory shocks). Sample selection and construction of log-earnings

growth residuals as in BR. Model estimation: strong constraint, 10 averages over permutation

draws. Point estimates in solid, 10 and 90 pointwise bootstrap confidence bands in dashed (100

replications), normal quantile function in dotted.

53



Figure E9: Estimated quantile functions of transitory shocks in different years
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Notes: PSID, 1978-1987. Transitory shock in every year. Sample selection and construction of

log-earnings growth residuals as in BR. Model estimation: strong constraint, 10 averages over

permutation draws. Point estimates in solid, 10 and 90 pointwise bootstrap confidence bands in

dashed (100 replications), normal quantile function in dotted.

54



Figure E10: Estimated density functions of permanent shocks in different years, weak con-
straints (dashed) and strong constraints (solid)
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Notes: PSID, 1978-1987. Permanent shock in every year (note: the first and last years are a

combination of permanent and transitory shocks). Sample selection and construction of log-earnings

growth residuals as in BR. Model estimation: strong (solid line) and weak (dashed line) constraint,

10 averages over permutation draws.
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Figure E11: Estimated density functions of transitory shocks in different years, weak con-
straints (dashed) and strong constraints (solid)
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Notes: PSID, 1978-1987. Transitory shock in every year. Sample selection and construction of

log-earnings growth residuals as in BR. Model estimation: strong (solid line) and weak (dashed

line) constraint, 10 averages over permutation draws.
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Figure E12: Estimated quantile functions of permanent shocks in different years, weak con-
straints (dashed) and strong constraints (solid)
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Notes: PSID, 1978-1987. Permanent shock in every year (note: the first and last years are a

combination of permanent and transitory shocks). Sample selection and construction of log-earnings

growth residuals as in BR. Model estimation: strong (solid line) and weak (dashed line) constraint,

10 averages over permutation draws.
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Figure E13: Estimated quantile functions of transitory shocks in different years, weak con-
straints (dashed) and strong constraints (solid)
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Notes: PSID, 1978-1987. Transitory shock in every year. Sample selection and construction of

log-earnings growth residuals as in BR. Model estimation: strong (solid line) and weak (dashed

line) constraint, 10 averages over permutation draws.
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Figure E14: Densities of earnings growth residuals at various horizons, data (solid) and
model (dashed)
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Notes: PSID, 1978-1987. Results pooled over all years. Sample selection and construction of

log-earnings growth residuals as in BR. Model estimation: strong constraint, 10 averages over

permutation draws. Model simulations: 200 simulations per individual observation.
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Figure E15: Densities of earnings growth residuals in different years, data (solid) and model
(dashed)
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Notes: PSID, 1978-1987. Log-earnings t/t + 1 growth residuals in every year. Sample selection

and construction of log-earnings growth residuals as in BR. Model estimation: strong constraint, 10

averages over permutation draws. Model simulations: 200 simulations per individual observation.
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