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L.Iniroduction.

In a previous paper { ] we suggested that an alternative to the
Edgevworth approximation for the distribution of a general econometric
estimator of a linear model with normally distributed errors might be used
which derives from the Imhof method of calculating the distribution of the
first order expansion of the estimator as a function of the sample data
second moments . In the notation of the previous article suppose that ¢, the
econometric estimator, can be written

g = elp,

where p =m» - pz , and m: is a vector of sample data second moments,
and p= =E (m=), and where e(,> is a scalar function which has cantinuous
first derivatives at the origin and e(0) = 0.

The simple Imhof approximation is then obtained by considering the
distribution of 4% = e.'p, where

eo = (e/splomn.

Since p is a quadratic function of the original date and e. is a
constant vector, g* is a scalar quadratic in a set of normally distributed
variables. The distribution of g# can then be calculated using the Imhof
algorithm. If F# is the cumulative distribution function of g* then we
consider approximations of the form F#(y(r)), where y(r) is an increasing
function of r. More exactly since ¢ and ¢% are both stochastically of order
T-%, where T is the sample size, we consider

Pr(T*g ¢ r) = FGYW(r)) , where F = Pr( T¥g#ir),



and where for finite r , y(r-r = O(T"",

If we take the Taylor series expansion of y(r) at the origin so that
its first three derivatives have values which make the first four moments
equal to the corresponding moments of the exact distribution to O(1/T) then
both the exact and the approximating distribution will differ from the
second order Edgeworth approximating distribution by o(1/T). It then
follows that for finite r the Imhof approximation has errors of order
0(1/T), and so is a second order approximation.

The argument is similar to that of our previous paper where a similar
first order approximation was used. The new approximation can be expected
to be of similar accuracy to the second order Edgeworth expansion at least
for large T, and can be expected to be better in some models, particularly
those where g% has a far from normal distribution and e(p) is well
approximated by a linear function of p near the origin.
2.General Theory.

Suppose as in the last section that we wish to approximate Pr(T*g¢ r
by F(h#{(r/e)), where

h#(x) = x + ( ho# +ha® x* ) T"" + x(h# + bz x= OT ',

and ¢ is the asymptotic standard deviation defined by o¢* = yi, ey ey,
where the notation is similar to that of [ ], yan..a representing the
cumulant,defined as the derivative of the cumulant generating function
differentiated at the origin with respect to p.,ps,...,ps and rescaled by an
appropriate power of T so as to be 0(1), and ean...s representing the
derivative of e(p) at the origin with ré\pect to the same set of variables.
It is possible to approximate F(x) by its second order Edgeworth expansion
with errors of o(T~'), so that, defining x = r/o, we can write

F(x = IC Yo ) + oI,
!
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where I1(.) is the cumulative distribution function for the N<0,1)
normally distributed variable, and

¥ = x +( Yo + Y2 XOHT™ +x( ¥+ 2T,
and so we can write the Imhof second order approximation as
(1> F#) = IQhEG) + o) .

Expanding the two cubic functions appropriately

@ Yh#(x)) = h(x) + o(T™") ,
where we can write

2”‘ PR E)V
hixo = x 4+ (ho + hax)Tn + xChy  + hax)T V. e ]

If we choose h#(x) so that ICh(x)) is the slecycn;d‘order Edgeworth
-
approximation to the distribution function of r, which has errors of order
o(T—?!>, then from (1) and ¢2) the second order Imhof approximation has
errors of the same order.
Y<h#(x)) = x + (ho# + ha#x® DT% + x(¥ + ha# )T' + YoT™™

+ Y=l X + 2x(ho® + BaX®)T% IT" + x(¥) + Yax* )T

+0(T""), so that,

3 b, = h.¥ o,
&) bz = h=% +¥z,
K h = he +¥ + 2¥=ho#,
3> by = ha%  #¥3 4+ 2¥z2ha¥,

Then for given hi and ¥: we can solve for the A% the equations

) h.* = ho Yo
) bo% = b Yz,
4 h+ = h =¥ - 2¥z2{bs ¥,
4) bat = ba ~Ys - 2¥a(hz ~Y2),

In the appendix we have extended the ideas of [ ] to allow E(p) to be

nonzero but of 0(1/T). The required h: are defined in terms of the

W i,

3+ ﬁ' -"-4I2 K



« &

1
cumulants of the p and the derivatives of e(p) using the intermediate “’/

parameters defined in the Appendix as follows:- o, = wies, o1 = wJ:m/eja; én,
Oz SWipem €108 By, O = S1WIaCnWni€), Ka = Cublus 06~ Ganlat )€, O
=Gt cWal CAWLICIWeK By AT Gupclatlc €1, O T€1WiatabWic O €, Ko
ZWab G cWeadBia, X1o = CiWiabanliyx €., §1 = eiwt,ey, §2 = ewwiseawe, and 6
=§1+6z,where in these definitions the repeated suffix summation convention
is used.
Then h. = [l + 3az)/e® -3( aat+2a.)/01/6,
h: ==(a1 + 3oz) /607,
720 by = =14y + 3az)F + ¢Z2[9¢a= tdas + 120s +12a10 )
+12(xa+20) (cr +3az) 1 -18 04 (2(as + ar +6) + as),
720% hs = 8¢ty + Ba=)2 - 30={(oz + dos +120a +12010).
Since ¢* is a linear approximation to ¢, it has the same first
derivatives with respect to p at the origin, but all the higher order
derivatives are zero so that in calculating the Y. we put eun=@mwc =0. This
makes 0z =q4 =0z = de =0y =0 =0s =tha =8z =0, and so

Yo = (o - B0Fan) /6o,

Y= =-o3 /6077,
720%%, = -=1ldon® + 0% (Qaz + 240.01) -18046:,
7205y = 8012 - 3¢% o=,

So, from equations (4),

bh.¥% = (/02 - aale)/2,

v
*
n

—-Q=/207,
4o hi % = -—aeldoy + 7as ) + 209 ({ae + Bos + 3oh1e) toz(@at2a.))
- r* Qlas +tary +6z) + az),

60Chs* = 3az(ar + 20x) - 0<{ae +30s + 3ai10) .
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Note that these coefficients do not depend on «=, and so do not depend
on the fourth cumulants, but that they do depend on the third cumulants
through as and oi1o. Note also that if ean and eame are all small then all
the h#* are proportionally small.

3. Models to b Simulated.

e

1.

Appendix A. /G

In [ 1 it was assumed that the vector p had the property E{(p)=0, and
the function g{p)> had the property g(0)=0, This had the advantage of
leading to somewhat simpler formulae and was justified by noting that the
first property could be ensured by merely changing the origin of p, and the
second property by a trivial change in the definition of g. However the
previous argumments are not perfect if E{(p) Is O(1/T), when the alternative
treatment of this Appendix is considerably simpler to use. At the same time
it was pointed out in [ 1 that o might depend upon T, and in the
particular case where

e = ro® + O/

then again a more useful form of approximation can be developed. Similar
formulae have already been given in { 1 for the x*® approximation. It is

assumed throughout this paper that the function g(p) does not vary with T.
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Suppose that E(p) = p./T, and define p* = p -p-/T, so that p#* has
E(p#)=0, and then define g#(p*) = g(p) -g{(p>/T). Then the theorem of [ 1
can be applied to p#* and g#(p*). Define a. = Tg(p./*.'? and then

Pr({ T™g <r) = Pr( T*g* { r - T %a, )

(A1) = Il (r ~-T"%as )Mo + ho/Tz- + hir/Tor + ha(r -T"%ao)2/T"e=
+har¥ T8 )
Suppose also that E(pipPs) = ¥is = Yoy + y#*:1,/T, where youy is
independent of T and y#.; is 0(1). then
o® = e#; yis et,, where e¥, is the first derivative

(Bg*/8p*1spmmo = (6g/8pi)pmposT

6g/8p1ipme  + T ( §%g/8p1bépsdpay  +0(1/T)
= gt gupes /T

from which it follows that

02 = gi¥oiig4 + giy¥isgs/T + 2 ga¥ossganPor /T + 0(1/T).
Define 61 = gi1y*i1s84, 8z = 2(g1¥otyBuxPor), 6=61+62, and vo® = gi¥orsg.
Then 2 = 0a® + 8§/T + o(l/D),
and o = g - %oo®§/T  +o(l/T)
Then substituting in (A1) ,
Pr(T*g <r) = Ilr/ovo +h#=/T¥ +h#,r/Toe + h2r2/Tgo* + har®/Teo®] +0(1/T),
where

h#.,

ho =0o = ~[3(0a +202) =-(or +3as)/0a=1/60o,

h*, h, -¥f/vs® -2 oo hz/0e, oOr
7205 = —14 {1 +30u)* +[9 (a2 +4ae +12 (astaio))

+12{xat20:) (01 +3az) Joo® - 18 2{astar +6) +asldeot.

and ,as in [ 1],
hae = -{ov +30=)/60.*, and

72050z =8 (a1 +30:)®  =3loax +4os +12{(xa +oro)loa®,



