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This article develops tests of covariance restrictions after estimating by three-stage least 
squares a dynamic random effects model from panel data. The asymptotic distribution of 
covariance matrix estimates under non-normality is obtained. It is shown how minimum chi-square 
tests for interesting covariance restrictions can be calculated from a generalised linear regression 
involving the sample autocovariances and dummy variables. Asymptotic efficiency exploiting 
covariance restrictions can also be attained using a GLS estimator. 

1. INTRODUCTION AND PRELIMINARIES 

A popular method of estimation for linear models from short panels including lags of 
the dependent variable and individual effects is three-stage least squares (3SLS) applied 
to the system of T equations corresponding to each time period available in the sample. 
A desirable feature of this technique is that the resulting estimates are robust to residual 
autocorrelation of arbitrary form, since the T x T autocovariance matrix of the errors is 
left unrestricted. However, in a model with lagged dependent variables and sufficient 
strictly exogenous variables, if the autocovariances satisfy some set of restrictions, more 
efficient estimates of the regression parameters can be obtained. This is so because of 
lack of orthogonality between slope and covariance parameters in the autoregressive 
model. In addition, in a typical situation the number of constraints under consideration 
will be large. For example, an error components structure with a first-order moving 
average scheme is characterised by 3 parameters which, for T = 10, imposes 52 restrictions 
on the autocovariance matrix. On the other hand, it can be argued that often the economic 
model suggests restrictions in the autocorrelation properties of the errors (e.g. white noise 
shocks) and that finding the converse could be interpreted as an indication of mis- 
specification. Therefore, it is of interest to be able to perform tests of covariance restrictions 
after estimation by 3SLS or asymptotically equivalent techniques, and also to obtain more 
efficient estimates of the parameters if a set of restrictions is accepted. 

The model we consider is 
yit= yt+ayi(t - ,8zit+uit (i= 1, .. ., N; t=2, ... , T) 

Uit = 7ri + Vit (1) 

We assume that zi = (1 zil ... ZiT)Y is strictly exogenous conditional on the individual 
effect mj 

E (vit Izi, 7j) = 0 

and that uit is homoskedastic across individuals. To complete the model the distributions 
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of yi, and qi conditional on zi are assumed to satisfy 

E (yiI |zi) = zi 

E (z,i Zi) = A'zi 

The coefficient yt represents a time effect and a and a are both scalar for simplicity of 
presentation. 

The basic discussion on this model is due to Chamberlain (1984), where the following 
facts are shown.' The model can be written as a multivariate regression of T equations 
subject to restrictions and, provided plim N- ' ziz is nonsingular and T_ 3, a, 3, , 
and A are identified. In the absence of covariance restrictions an efficient minimum 
distance estimator is readily available. In addition, Chamberlain shows that an asymptoti- 
cally equivalent estimator of a and 8 can be obtained by 3SLS in the system of (T-2) 
equations (1) in first-difference form. This alternative is more convenient because in this 
form the cross-equation restrictions are linear and ,u and A need not be explicitly estimated. 
If A = 0, rqi and zit are uncorrelated in which case 3SLS in the system of the (T- 1) 
equations (1) in levels is efficient. Since A is a vector of regression coefficients, conventional 
tests of A = 0 can easily be implemented. 

Bhargava and Sargan (1983) have developed maximum likelihood estimators for a 
similar model with normal errors. They propose likelihood ratio (LR) tests of the error 
components structure. One problem with this approach is that LR tests of covariance 
restrictions are not robust to non-normality (see MaCurdy (1981) and Arellano (1985)) 
and thus are bound to reject too often when the distribution of the errors has long tails. 
Another problem is that enforcing covariance restrictions by quasi-ML methods does not 
necessarily represent an efficiency improvement over unrestricted covariance QML when 
the errors are non-normal (see Arellano (1989a)). MaCurdy (1982) has proposed to use 
time-series methods for selecting autoregressive moving-average schemes for vi, in static 
models. While his approach could be extended to dynamic models, the possibility of 
obtaining consistent estimates of the covariances in the absence of restrictions suggests 
basing a formal specification search on a sequence of tests of particular schemes against 
the unrestricted autocovariance matrix. 

Section 2 states the limiting distribution of the elements of the estimated covariance 
matrix under non-normality and presents robust Wald and minimum chi-square (MCS) 
tests of covariance restrictions. Section 3 discusses how to calculate MCS tests for 
particular useful cases in the form of a generalised regression involving the sample 
autocovariances and dummy variables. Section 4 provides a summary and some conclud- 
ing remarks on how the GLS estimator of Arellano (1989b) can be applied to obtain 
efficient estimates of a, / and yt imposing covariance restrictions. Proofs are collected 
in an Appendix. 

2. THE LIMITING DISTRIBUTION OF UNRESTRICTED COVARIANCE 
MATRIX ESTIMATES 

It is convenient to write model (1) in the form 

Yil = ' Zi + Uii 

Yi=X,8+u, (i=l,...,N) (2) 

1. Chamberlain's model is more general since he does not assume homoskedasticity and replaces condi- 
tional expectations by hnear predictors. 
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With uncorrelated individual effects (A = 0), (2) is the notation for the levels model so 
that 8 = (a,8 Y2 ... YT), ui = (ui2 ... UiT), Yi = (Yi2 ... YiT)' and Xi is a matrix containing 
the time series of Yi(t-i), zit and time dummies for the ith unit. While with correlated 
effects, (2) represents the model in first differences (yi , yi, Xi and ui-but not zi-represent 
first-differences of the original variables and the time series are one period shorter). In 
either case let Q* be the covariance matrix of the complete system given by 

*= Var u"I = (01l (012 
Ui \021 f 

In the levels model, fl will typically contain an error-component structure while in the 
first-differences model fl may be expected to contain a moving average unit root. 

Theorem. Assume (i) (Uil ... UiT) is an iid random vector with E(uit) = 0 (t= 
1N 1, .. ., T) and finite moments up to the fourth order; (ii) plim N' Ei>jlzizz exists and is 

non-singular. Let C'ts be an estimate of the (t, s) covariance based on the 3SLS residuals 
Uit and a i: 

Wtts = N Ei =1 uituis (t. s=1,.., T) (3) 1 

and let Ct be a T( T + 1)/2 vector of the distinct elements CtAts. Then VN(O3 - cv) has a limiting 
multivariate normal distribution with zero mean and covariance matrix with elements 

acov ( Zts 5 Ct t's') = avar ( a )atsa t's + sU tst's - Ct)tsct) t's' (4) 

where Wtsts' = E(uituisuit,uis) aA is the 3SLS estimator of a and 

= at = E k-1i a (k -i) +( E+s-1 at (I-1)(s) (t, s = 2, . T), 

at, = alt=k-1a (k-)(tk) (t =2, ... , T), (5) 

all = 0. 

Proof. See Appendix. II 

Note that third-order moments of uit, though unrestricted, are absent from (4). 
However, this result does not hold when the intercepts yt are constrained unless the 
third-order moments vanish. 

Natural estimates of the elements given in (4) can be obtained replacing a, Cits and 
/1tst's' by a, 3Ats and Ai tst's' = N-1 i= ' Uituisu it,u is,, and avar(a&) by the square of the standard 
error of a. Having obtained such estimates, we can construct Wald and MCS tests of 
covariance restrictions. Suppose f(cv) = 0 is a vector of r restrictions on the elements of 
cv, which can alternatively be parameterised as Cv = Ct(4) where 4i is a T( T+ 1)/2 - r 
vector of constraint parameters. A Wald test is 

W = Nf(&65)'(FVF')1f(ct) -x (6) 

where F = af(c&))/act' and V is a consistent estimate of the covariance matrix of cA. Let 
4' be the minimizer of 

s(4') = [c& - cv)(4/)]'H'(41)(HVH')-HH(4)[ct - c)(4)] (7) 
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where H(q1) is a nonsingular transformation matrix and H is H(uf) evaluated at some 
preliminary consistent estimate 4' (cf. Chamberlain (1984)). An MCS test is 

Ad2 MCS= N s(qi)-+X,. (8) 

Under normality the form for the asymptotic covariance matrix of cW simplifies since 
fourth-order moments are no longer required. Indeed we can write g tst's' as 

/1 tst's' = t)tst t 's' + Wtt'W Ss, + Ct tsW S!' (9) 

so that 

acov (Ctotss C it) 6s) = avar (ca ) atsa ty + Ct) tt,Ct) ss' + Ct ts, o) st' (10) 

However, Wald and MCS tests based on (10) will not be distributed as a x2 under the 
null unless (9) holds. 

3. THE MCS TEST FOR SOME USEFUL CASES 

In some cases of interest, like error-components or first-differences structures with a 
moving average scheme, the restrictions implied on the elements Cots are linear and the 
calculation of the Wald test is straightforward.2 However for the majority of useful cases, 
the MCS statistic can be calculated as the residual sum of squares from an auxiliary 
generalised linear regression in which the elements cA,s and dummy variables are the 
observations. This makes the MCS test particularly attractive in this context. Below we 
give the details for particular cases. 

(i) Error components with a white noise or moving average scheme. 

Let Cov (vit, vi(t-)) = gj, Var (i) = c and hj = c + gj. The white noise specification is 

st = {c+g if s =t 
(t=2, ..., T; s=2,... t) 

Ic if s< t 

and the MCS test (8) with H equal to an identity matrix can be obtained as the generalised 
sum of squares from the regression 

(t)st= hod(s = t) +cd(s< t)+ Est (t= 2, ... ., T; s =2, . .. t) 

using V with elements Ists't' = acov (C)st, CW's't) as the weighting matrix. The variable d(A) 
takes the value 1 if A is true and 0 otherwise. Similarly, for the first-order moving-average 
specification, the associated regression is 

Ast= hod(s= t)+h,d(s= t-1)+cd(s <t-1)+Est 

(ii) First differences with white noise or moving average errors in levels. 

Let Cov (Ait, Avi(tj)] = gj. The white noise case is equivalent to a simple first-order 
moving-average scheme with the restriction go + 2g, =0. The relevant regression is 

,^st =_[ds Ato-_1)-2d(s= t)] Es 

2. Wald tests of moving average errors have been independently studied by Arellano (1985) and Bhargava 
(1987), including applications to empirical earnings functions estimated from the Michigan PSID data. 
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with a similar weighting matrix as for the cases in (i). On the same lines, for a first-order 
moving-average scheme for the error in levels we have 

cs= gl[d(s = t- 1) -2d(s = t)]+g2[d(s = t-2) -2d(s= t)]+ st 

(iii) Error components with an autoregressive scheme. 

The structure is 
c go if s=t 

{ P( oS(t-,l)- c) if s<t. 

This specification suggests the regression 

Wst= hod (s = t) + cd(s < t) + pSA)s(t-l)d(s < t) + Est 

with c = (1 - p) c. However, this regression corresponds to the criterion function of the 
form (7) that uses H = I - pD, where I is an identity matrix and D is a 0-1 matrix that 
maps the vector wl, say, of elements ws(t-l)d(s < t) into the vector w of elements c)ts: 
w = Dwl. Hence the appropriate weighting matrix in this case is 

V* (I -p-D) V(I -p-D)' 

with elements 
A* A -~A (S 

,sts't' = sts,t' - p's(t-,l)s,td(s < t) - ,5sts' (t,'l)d(s' < t') 

+ A2 
A 

'_1) d(s < t)d(s'< t') 

where p is the OLS estimate of p in the regression above. 

(iv) First differences with autoregressive errors in levels. 

This is the ARMA (1, 1) scheme 
rgo if s=t 

Oist 91 gl if s = t-1 

P)S (t-l if s < t - I 

with the restriction (1 - p)go + 2g, = 0, which is nonlinear. However the distance function 
can be suitably transformed to produce linearity. We can write: 

go if s=t 

?Ost = pj (P(t-1) - go)/2 if s = t - 1 

lPWs(t-1) if s< t-1 

which gives rise to the linear regression 

cost = go[d(s = t) - jd(s = t -1)] + pSt _l)[d(s < t- 1) + d(s = t- 1)] + Est 

In this case we use 

acv (ASt - A(_ AS't' -AS,(,_J) 

with d* = d(s < t -1) + d(s = t - 1)/2, as the elements of the weighting matrix. 
The previous discussion has assumed that the elements in the first row of Q, WI, 

and 12 have been left unrestricted and are not used in performing the calculation of 
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MCS or Wald statistics. However a T degrees of freedom test of 012 = is a test of the 
exogeneity of yil: 

Wl = N6312 [avar (w2l)] P021- 

This seems an odd hypothesis to test in the presence of individual effects, since the model 
postulates correlation between yi, and qi (W1 is effectively measuring whether small T 
biases are statistically significant). It would be more natural to test the exogeneity of yi 
by testing the absence of individual effects and the lack of serial correlation in vi. 

4. SUMMARY AND CONCLUDING REMARKS CONCERNING 
EFFICIENT ESTIMATION 

This paper has developed tests for specific schemes of autocorrelation after estimating 
by three-stage least squares a dynamic random effects model. We have derived the 
asymptotic distribution of unrestricted autocovariance matrix estimates without imposing 
the assumption of normal errors. In particular we have shown how MCS tests for various 
error schemes commonly found in practical applications can be calculated from simple 
generalised linear regressions involving the sample autocovariances and dummy variables. 

If Q* is found to satisfy a set of restrictions cv = cw(4i), 3SLS estimates are inefficient. 
However a GLS estimator can be used to achieve asymptotic efficiency. The form of a 
GLS estimator of , and 8 is 

= ~ ~~ 
X~~Zifk2 XiJ 

JZy 1~(1 t - [ [ Z~J 1 1 z ziz, j 
2X 1 1 N Ziyi I + Zi61 Yi 

\8J-LLi=lX,(21Z, xi22xJ i1 xf621)YiJ+X-22YiJ 

where 

fl* = 21 - 
22] 

is some estimate of Q*. As before, let c5 be a vector containing the elements in the upper 
triangle of W. GLS estimates of triangular systems like (2) are only consistent if c63 is 
consistent and they are asymptotically equivalent to 3SLS if c6 is an efficient estimator 
in the absence of restrictions (cf. Lahiri and Schmidt (1978)). In Arellano (1989b) it is 
proved that under normality the GLS estimator that uses C5 = cv (4) is asymptotically 
efficient, and that more generally an optimal choice of c6 is a matrix weighted average 
of c5 and cv(q/) given by 

= (I - V l)c0 + VO V-($) (12) 

where V is as defined earlier and V0 is an estimate of avar(c5) under normality, that is, 
its elements are sample counterparts of those in (10). The GLS estimator based on (12) 
is asymptotically efficient in the sense of attaining the same limiting distribution as the 
optimal joint minimum distance estimator of slope and covariance parameters. 

APPENDIX 

The following conventions are adopted: for any m x n matrix B, vec (B) is obtained by stacking the rows of 
B. The mn x mn commutation matrix K performs the transformation K vec (B) = vec (B'). For a square n x n 
matrix A, v(A) is the n(n + 1)/2 column vector obtained stacking by rows the upper triangle of A. If A is 
symmetric v(A) and vec(A) can be connected by mean of a n2 x n(n + 1)/2 duplication matrix D that maps 
v(A) into vec (A), i.e. Dv(A) = vec (A). Furthermore, since (D'D) is non-singular we also have v(A) = L 
vec(A) with L=(D'D)-1D'. For any nxn matrix A we have L vec(A)=v(A+A')/2 (cf. Magnus and 
Neudecker (1980)). 
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Lemma. Let u (i= 1,...,N) be an iid random vector sequence with E(uj)=0, E(uju9)=f, 
E(uiu0u)L'=A3 and LE(uiW0uiu!)L'=A4, and let z, be a random vector independent of ui such that 
plim(N-1 E ,) = Z and plim(N- N ziz) = M. Letting = v(fl), C1i = ui0zi, f2i = L(ui0ui,)-w and i = 

(, 2i)' we have 

-12N d Cl0M (I0f)A3\ 

NN[ A3(I0gf) A4- / J] 

Proof Since ei is independently distributed, the Lemma follows from the Liapunov central limit 
theorem. 11 

We first obtain the distribution of structural covariance estimates in a linear simultaneous equations 
system with unrestricted constant terms and then specialise the result to our model. Let 

B(6)yi +F(6)zi + y = A(O)xi = ui (A.1) 

where k = (O'y')'and xi = (y'z'1)'. We are concerned with statistics of the form 

Q = A(+( 0 i xiiA'(0). (A.2) 

A first-order expansion of vec (Q) about the true value k gives 

1 a vecfl A 

vec (Q) = - E i ui.0ui + {, * ( - ) + o, (1) N 

1 avecBA 

=N ', u, ui + 
('I 

+ K (Iof3QB'- ) aD' ( 0) + op(l)- 

This is so in view of 

a vec (fk) ( I a\Ovec A avec A 
d.gr= (I+K) IN Eiuiux' ( I+ K)[I(CB' : 

'?)] gt 

and the fact that the partial derivatives of vec (B) with respect to y vanish. Finally 

VN( 3 -,w) = N-'2 ., [L(ui,0ui) -w]+2L(I0CB'-') ao V(0- )+ oP(l) (A.3) 

where we have used the fact that L(I + K) = 2L 
If 0 is the 3SLS estimator, it minimises 

N (I I 
(9.)(() i Z, Z.) i u*i3* 

where u and z* are deviations from sample means of ui and zi respectively, and Ql is the 2SLS estimate of 
Ql. Note that s(0) is the 3SLS criterion function concentrated with respect ta y. Expanding Os(0)/dO about 
the true value 0 we obtain 

of (0-0) = avar (0)(a4/a0')(f _i z*sz*'N) N-12 E, (u 0z4)+ op(1) (A.4) 

where; = N` i u*g)z*' and we have made use of 

N-112 Ei (u* 8z)) = N-1/2 EZi(uOZi)+ o (1) 

Combining (A.3) and (A.4), a limiting normal distribution for VN( - w) can be obtained using the 
Lemma. Moreover, since plim N-' iz =O, the two terms on the R.H.S. of(A.3) are asymptotically independent 
so that 

avar (c) = H avar (O)H'A4 - wa' (A.5) 

with 

H = 2L(IOClB'-')(a vec B/aG') 

Note that a similar result can be obtained if the constant terms are restricted but A3 =0. The elements of 
avar (O) in (A.5) have the form 

acov (c c) Yljkacov (Oj, Ok)hjhshk's'+tst's' (OtsZt's' (A.6) 
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where hj,, is the (t, s) element of the matrix 

Hj = (aB/daj)B-1f1 + 1B'-'(8B/aOj)'. 

Turning now to the random effects model (2), in this case the elements of the matrix B are given by 

[1 if t=s 

bts= -a if t=s+1 

0 otherwise 

and the elements of B-' are 

(i if t=s 

b ts = Ca(t-S) if t> s 

0 otherwise 

Hence, only derivatives of B with respect to a are retained in (A.6), thus obtaining 

acov (',S, c5,s) = avar (a")atsaty'+ Atstfs - s 

where a,s is the (t, s) element of the matrix: 

Ha = -(oB/aa)B-1 l-QB'-1(B/aa)' 

which completes the proof of the Theorem. 11 
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