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ABSTRACT We discuss a modified objective function strategy to obtain estimators without bias to
order 1/T in nonlinear dynamic panel models with multiple effects. Estimation proceeds from a
bias-corrected objective function relative to some target infeasible criterion. We consider a
determinant-based approach for likelihood settings, and a trace-based approach, which is not
restricted to the likelihood setup. Both approaches depend exclusively on the Hessian and the
outer product of the scores of the fixed effects. They produce simple and transparent corrections
even in models with multiple effects. We analyze the asymptotic properties of both types of
estimators when n and T grow at the same rate, and show that they are asymptotically normal
and centered at the truth. Our strategy is to develop a theory for general bias-corrected
estimating equations, so that we can obtain asymptotic results for a specific bias correction
method using the first-order conditions.
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1. Introduction

It is now well understood that maximum likelihood (ML) estimates of the panel data
models with fixed effects can be severely biased when the time series dimension T is
small relative to the cross-sectional dimension n. Such bias is often discussed
through asymptotic results such as the fixed-T inconsistency of the ML estimator
for some models. A useful practical question is to ask how much heterogeneity can
be given empirical content in a particular panel model and data set. From this perspec-
tive, it is natural to choose a population framework that does not rule out the possi-
bility of statistical learning from individual time series in panel data, so that both T
and n tend to infinity.
Such is the goal of the recent literature on bias-adjusted estimation methods for

nonlinear panel data models with fixed effects. Three different approaches can be

© 2016 Institute of East and West Studies, Yonsei University, Seoul

Correspondence Address: Jinyong Hahn, UCLA, Los Angeles, USA. Email: hahn@econ.ucla.edu

Global Economic Review, 2016
Vol. 45, No. 3, 251–274, http://dx.doi.org/10.1080/1226508X.2016.1211811

mailto:hahn@econ.ucla.edu
http://www.tandfonline.com


distinguished in this literature. One approach is to construct and analytical or numeri-
cal bias correction of a fixed effects estimator. Hahn and Newey (2004) considered
corrections of this type for static nonlinear panel data models, and Hahn and Kuerstei-
ner (2004) provided a similar analysis for dynamic models. A second approach is to
consider estimators from bias-corrected moment equations. Estimators of this type
have been discussed in Woutersen (2002), Arellano (2003), Carro (2007), and Fernán-
dez-Val (2005), among others. Finally, a third approach is to consider estimation from
a bias-corrected objective function relative to some target criterion. Adjustments of
this type were discussed in Pace and Salvan (2006) for a generic concentrated likeli-
hood with independent observations, and in Arellano and Hahn (2006) for static non-
linear panel models.1

In this paper, we consider a modified objective function strategy to obtain estima-
tors without bias to order 1/T in nonlinear dynamic panel models with multiple
effects. Analytic formulae for estimator correction as in Hahn and Newey (2004) or
Hahn and Kuersteiner (2004) do not exist in the literature for models with multiple
effects. Although derivation of such formulae does not present any conceptual chal-
lenge, the multiplicity of fixed effects is expected to make the derivation tedious and
the resultant formulae complicated. Our approach produces estimators with the
same asymptotic properties as that of the (yet non-existent) estimator correction
approach. The advantage of our approach is the convenience in that it requires only
a simple adjustment to the objective function. We consider two approaches to bias
correct the objective function, both of which depend on a Hessian term and an
outer product of score term, the latter depending on the dynamic dependence of the
score. One approach uses a determinant-based correction, which we argue later is
appropriate in likelihood settings. When the model fully specifies the distribution of
the data, it is possible to obtain the expected outer product term and we discuss this
possibility. The other approach uses a trace-based correction, which we show later
is not restricted to the likelihood setup, and is based on a trimmed outer product
matrix of the sample score vector. The trace-based approach has been independently
discussed in a recent paper by Bester and Hansen (2009) as the integral of a bias-
corrected moment equation. To be more precise, Bester and Hansen (2009) proposed
objective Bayesian priors to reduce the bias in the posterior mode and posterior mean
in a time series context. They show that the trace-based approach is asymptotically
equivalent to using the data-dependent bias reducing prior, but it is not exactly iden-
tical in the finite sample. We show that their intuition carries over to panel context by
explicitly adopting the alternative asymptotics.
Aside from being criterion based, an advantage of these estimators is the great sim-

plicity and transparency of the required corrections by comparison with bias correc-
tions of estimators or moment equations, especially in models with multiple effects.
Another benefit of our approach is that bias-corrected objective functions can be
related to various modifications of the concentrated likelihood suggested in the statisti-
cal literature as approximations to conditional or marginal likelihood functions. For
example, the determinant-based approach is analogous to the Cox and Reid’s
(1987) adjusted profile likelihood approach when fixed effects are information orthog-
onal to common parameters.
We analyze the asymptotic properties of both trace-based and determinant-based

estimators when n and T grow at the same rate, and show that they are asymptotically
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normal and centered at the truth. Our strategy is to develop a theory for general
bias-corrected estimating equations, so that we can obtain asymptotic results for a
specific bias correction method using the first-order conditions.
We acknowledge that correcting the objective function may require solving a highly

nonlinear optimization problem, whereas an estimator correction approach would
only require to estimate a correction term once. Computational element of our
approach can be non-trivial as the adjusted objective functions are generally non-
convex. As noted above, though, analytic formula for the estimator correction
approach does not yet exist in the literature for models with multiple effects. Although
it does not present any conceptual difficulty, we anticipate the correction term to take
a rather complicated form. Practitioners should therefore weigh the convenience of
simple analytic nature of our correction term against the potential computational
difficulty.
The paper is organized as follows. Section 2 explains how bias correction of the

objective function works. Section 3 presents some examples. Section 4 gives the asymp-
totic theory. Finally, a brief conclusion is in Section 5. Proofs and technical details are
given in the Appendix.

2. Correcting the Objective Function

Let the data be denoted by xit (t = 1, . . . ,T ; i = 1, . . . , n). Suppose that we are given a
panel data model with a common parameter of interest u0 and potentially vector-
valued individual specific fixed effects gi0, i = 1, . . . , n, where the fixed effects gi0
are considered to be nonstochastic constants. We consider a maximization estimator
defined by

(û , ĝ1, . . . , ĝn) ; argmax
u,g1 ,...,gn

∑n
i=1

∑T
t=1

c(xit; u, gi) (1)

for some criterion function c(·) that does not depend on T. Here, ψ is a sensible func-
tion in the sense that, if n is fixed, and T � 1, the estimator (û, ĝ1, . . . , ĝn) is consist-
ent for (u0, g10, . . . , gn0). In a likelihood setup, we assume that
xit = (yit, yi,t−1, . . . , yi,t−q) and

c(xit; u, gi) = ln pc(yit | yi,t−1, . . . , yi,t−q; u, gi),

where pc denotes the conditional density of yit.
2

Letting ĝi(u) ; argmaxa
∑T

t=1c(xit; u, a), we can characterize û as the estimator that
maximizes the concentrated objective function

û = argmax
u

1
n

∑n
i=1

�ci(u, ĝi(u)),
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where

�ci(u, gi) ;
1
T

∑T
t=1

c(xit; u, gi).

Now, let uT be the value that maximizes the limiting expected concentrated objec-
tive function for fixed T:

uT ; argmax
u

lim
n�1

1
n

∑n
i=1

E[�ci(u, ĝi(u))],

where the expectation is taken with respect to the distribution of xit. Due to the noise in
estimating ĝi(u), in general uT = u0 (Neyman Scott’s 1948 incidental parameters
problem). This problem would not occur if the quantities ĝi(u) were replaced by
gi(u) defined as3

gi(u) ; argmax
c

lim
T�1

1
T

∑T
t=1

E[c(xit; u, c)]. (2)

So we could think of the infeasible concentrated objective function
∑n

i=1
�ci(u, gi(u))/n

as a target criterion and
∑n

i=1
�ci(u, ĝi(u))/n as a plug-in estimate with a bias of order

1/T. The source of incidental parameter bias is that the concentrated objective function
is itself a biased estimate of the target criterion. This suggests maximizing a modified
objective function that has no bias up to a certain order in T.
For smooth objective functions, the bias in the expected concentrated function at an

arbitrary θ can be usually expanded in orders of magnitude of T:

lim
n�1E

1
n

∑n
i=1

�ci(u, ĝi(u)) −
1
n

∑n
i=1

�ci(u, gi(u))
[ ]

= 1
T
B(u) + o

1
T

( )
(3)

for some B(u).
A bias-corrected concentrated objective function is to plug into the formula for B(u)

estimators of its unknown components to construct B̂(u), and then obtain an estimator
that maximizes the adjusted criterion:

ũ ; argmax
u

1
n

∑n
i=1

�ci(u, ĝi(u)) −
1
T
B̂(u)

( )
. (4)

The resulting estimator removes the leading term of the incidental parameters bias
and, unlike û, it may give correct asymptotic confidence intervals when T grows as
fast as n.
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In order to gain intuition, consider an expansion for the first-order conditions
around the truth

−1
n

∑n
i=1

∂2

∂u∂u′
�ci(u0, ĝi(u0))

( ) 




nT

√
(ũ− u0) ≈






nT

√ 1
n

∑n
i=1

∂

∂u
�ci(u0, ĝi(u0))

−




n
T

√
∂B̂(u0)
∂u

,

and suppose that n/T tends to a constant,





nT

√ ∑n
i=1(∂/∂u)�ci(u0, gi(u0))/n�

d N(0,V),






nT

√ 1
n

∑n
i=1

∂

∂u
�ci(u0, ĝi(u0)) =






nT

√ 1
n

∑n
i=1

∂

∂u
�ci(u0, gi(u0)) +





n
T

√
∂B(u0)
∂u

+ op(1)

and that

∂B̂(u0)
∂u

= ∂B(u0)
∂u

+ op(1).

Thus, also






nT

√ 1
n

∑n
i=1

∂

∂u
�ci(u0, ĝi(u0)) −





n
T

√
∂B̂(u0)
∂u

d�N(0,V),

which suggests that as n,T � 1,





nT

√ (ũ− u0) is asymptotically normal with zero
mean and the same asymptotic variance as the fixed effects estimator. We will give
precise conditions for this result to hold.

2.1. Formulae for the Bias Correction: Intuition

In this section, we provide an intuitive derivation of the bias formulae. The derivation
is not meant to be a rigorous asymptotic argument, but is meant to provide a heuristic
intuition. For example, we make an assumption that the expectations operator and the
stochastic order symbols can be interchanged, which is clearly invalid in general. Rig-
orous asymptotic argument is provided later in Section 4 and Appendix.
Let us introduce the notation:

�Vi(u, gi) ;
∂�ci(u, gi)

∂gi
,

�Hi(u) ; − lim
T�1

E
∂ �Vi(u, gi(u))

∂gi
′

[ ]
,

�Yi(u) ; lim
T�1

TE[ �Vi(u, gi(u)) �Vi(u, gi(u))′].
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A first-order stochastic expansion for an arbitrary fixed θ gives4

ĝi(u) − gi(u) = �Hi(u)−1 �Vi(u, gi(u)) +Op
1
T

( )
.

Next, expanding �ci(u, ĝi(u)) around gi(u) for fixed θ, we get

�ci(u, ĝi(u)) − �ci(u, gi(u)) = �Vi(u, gi(u))′[ĝi(u) − gi(u)]

− 1
2
[ĝi(u) − gi(u)]′ �Hi(u)[ĝi(u) − gi(u)] +Op

1
T3/2

( )
,

and combining the two expansions,

�ci(u, ĝi(u)) − �ci(u, gi(u)) =
1
2
�Vi(u, gi(u))′ �Hi(u)−1 �Vi(u, gi(u)) +Op

1
T3/2

( )
.

Finally, taking expectations and assuming that the expectations operator and the
stochastic order symbols can be interchanged, we obtain

E[�ci(u, ĝi(u)) − �ci(u, gi(u))] =
1
T
bi(u) +O

1
T3/2

( )
,

where

bi(u) ;
1
2
trace[ �Hi(u)−1 �Yi(u)] = 1

2
trace{ �Hi(u)Var(





T

√
[ĝi(u) − gi(u)])}. (5)

In the likelihood setup, the information identity is satisfied at the truth so that
�Hi(u0)−1 �Yi(u0) = I . Moreover, Vi(xit; u0, gi(u0)) is a martingale sequence with the
implication that

�Yi(u0) = lim
T�1

1
T

∑T
t=1

E[Vi(xit; u0, gi0)Vi(xit; u0, gi0)′].

When evaluated at other values of θ, the score vector Vi(xit; u, gi(u)) still has zero
mean but, in general, it will be serially correlated:

�Yi(u) =
∑1
l=−1

�Gl(u),
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where �Gl(u) denotes the steady-state covariance matrix between Vi(xit; u, gi(u)) and
Vi(xit−l; u, gi(u)):

�Gl(u) ; lim
T�1

1
T

∑T
t=l+1

E[Vi(xit; u, gi(u))Vi(xit−l; u, gi(u))′] l . 0.

2.2. Estimation of the Bias

An estimator for the bias term in the modified concentrated likelihood (4) can be
formed using

B̂(u) =
∑n
i=1

b̂i(u)/n,

where b̂i(u) is a sample counterpart of the previous formulae.
Trace-based approach. One possibility is

b̂i(u) =
1
2
trace[Hi(u, ĝi(u))−1Yi(u, ĝi(u))], (6)

where

Hi(u, g) ; − 1
T

∑T
t=1

∂2cit(u, g)
∂g∂g′

, (7)

Yi(u, g) ;
∑m
l=−m

wT,lGl(u, g), (8)

Gl(u, g) ; 1
T

∑min(T,T+l)

t=max(1,l+1)

∂cit(u, g)
∂gi

∂cit−l(u, g)
∂g′i

. (9)

The quantity m is a bandwidth parameter and wT,l denotes a weight that guarantees
positive definiteness of Yi(u, g), for example, a Bartlett kernel weight such that
wT,l = 1− l/(m+ 1).5 Note that with m =T− 1 and wT,l = 1,Yi(u, g) ;
�Vi(u, gi(u)) �Vi(u, gi(u))′, so that in such a case Yi(u, ĝi(u)) ; 0.
The resulting modified concentrated likelihood function is

LT (u) =
∑n
i=1

∑T
t=1

c(xit; u, ĝi(u)) −
1
2

∑n
i=1

trace(Hi(u, ĝi(u))−1Yi(u, ĝi(u))). (10)

For the trace-based approach, we do not need to guarantee positive definiteness of
Yi(u, g), and can, in fact, use the unweighted truncated estimator as was done byHahn
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and Kuersteiner (2004). We use the positive-definite version solely for the purpose of
facilitating the comparison with other approaches.6

The adjustment term b̂i(u) does not depend on the likelihood setting, and so it is
valid for any fixed-effects estimation problem based on the objective function∑n

i=1

∑T
t=1 c(xit; u, gi). The trace-based approach can be regarded as an objective

function and estimating equation counterpart to the approach of bias correction of
the estimator in Hahn and Kuersteiner (2004). The choice of the bandwidth parameter
m is an important matter for practical implementation, but it requires a highly com-
plicated analysis, and as such, is beyond the scope of the current paper. We note
that Hahn and Kuersteiner (2007) developed such a method for correcting the estima-
tor in a panel model with scalar fixed effects.
Determinant-based approach. In the likelihood setting, we can consider a local

version of the estimated bias constructed as an expansion of b̂i(u) at u0 using that
at the truth �Hi(u0)−1 �Yi(u0) = I . To see this, note that

b̂i(u) =
1
2

∑p

j=1

[l̂ j(u) − 1] + 1
2
p = 1

2

∑p

j=1

ln l̂ j(u) + 1
2
p+O

1
T

( )
,

where l̂ j(u) denotes the jth eigenvalue of Hi(u, ĝi(u))−1Yi(u, ĝi(u)) and p = dim(u).
Since

∑ p
j=1 ln l̂ j(u) = ln det [Hi(u, ĝi(u))−1Yi(u, ĝi(u))], discarding constants, we can

consider the alternative adjustment

b̃i(u) = −1
2
ln det[Hi(u, ĝi(u))] +

1
2
ln det[Yi(u, ĝi(u))]. (11)

The resulting modified concentrated likelihood function is

LD(u) =
∑n
i=1

∑T
t=1

c(xit; u, ĝi(u)) +
1
2

∑n
i=1

ln det[Hi(u, ĝi(u))]

− 1
2

∑n
i=1

ln det[Yi(u, ĝi(u))], (12)

where c(xit; u, gi) = ln pc(yit | yi,t−1, . . . , yi,t−q; u, gi).
The criterion LD(u) is a multivariate and dynamic version of the adjusted concen-

trated likelihood considered by DiCiccio and Stern (1993), and DiCiccio et al. (1996).
Using the arguments in Pace and Salvan (2006), it can be related to the adjusted

profile likelihood considered by Cox and Reid (1987) as an approximation to the like-
lihood conditioned on the ML estimates of the fixed effects. In a model with indepen-
dent observations, Ferguson et al. (1991) showed that such a modification led to bias
reduction when the nuisance parameters were information orthogonal to the par-
ameters of interest.
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In our context, the Cox–Reid approach maximizes

LCR(u) =
∑n
i=1

∑T
t=1

c(xit; u, ĝi(u)) −
1
2

∑n
i=1

ln det[Hi(u, ĝi(u))],

and the connection with LD(u) can be expressed as

LD(u) = LCR(u) − 1
2

∑n
i=1

ln det V̂ar[





nT

√
(ĝi(u) − gi(u))],

where the variance term is given by the sandwich formula:

V̂ar[





nT

√
(ĝi(u) − gi(u))] = [Hi(u, ĝi(u))]−1Yi(u, ĝi(u))[Hi(u, ĝi(u))]−1.

The conclusion is that LD(u) can be regarded as a generalized Cox–Reid function with
an additional term to account for non-orthogonality. Under orthogonality, the extra
term is not needed because the variance of ĝi(u) does not change much with θ.
Determinant approach using expected quantities. In the likelihood setting, an

expected outer product function can be calculated for given values of (u, gi) and
(u0, gi0) analytically or numerically, because the density of the data is available. Specifi-
cally, we may consider

YTi(u, g; u0, gi0) ;
∑m
l=−m

wT,lGTl(u, g; u0, gi0), (13)

where, for l > 0, we have

GTl(u, g; u0, gi0) =
1

T − l

∑T
t=l+1

Eu0,gi0

∂c(xit; u, gi)
∂gi

∂c(xit−l; u, gi)
∂g′i

[ ]
. (14)

Alternatively, a centered covariance could be calculated:

G∗
Tl(u, g; u0, gi0) = GTl(u, g; u0, gi0) − mT0(u, g; u0, gi0)mTl(u, g; u0, gi0)′, (15)

where mTl(u, g; u0, gi0) = (T − l)−1 ∑T
t=l+1 Eu0,gi0 [Vi(xit−l; u, g)]. Note that when eval-

uated at g = gi(u) for arbitrary θ we have mTl(u, gi(u); u0, gi0) = 0, so that centered
and non-centered quantities coincide.
This leads to an alternative modified concentrated likelihood of the form

LED(u; û) =
∑n
i=1

∑T
t=1

c(xit; u, ĝi(u)) +
1
2

∑n
i=1

ln detHi(u, ĝi(u))

− 1
2

∑n
i=1

ln detYTi(u, ĝi(u); û, ĝi(û)). (16)
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Note that expectations can also be taken to simplify the expression of the Hessian
Hi(u, ĝi(u)).
Iterated adjusted likelihood estimation. An undesirable feature of the estimator

û1 = argmaxu LED(u; û) is its dependence on û, which may have a large bias. This
problem can be avoided by considering an iterative procedure. That is, once we have
û1, we use it to evaluate the expectations required in calculating a new estimate. Pursu-
ing the iteration

ûK = argmax
u

LED(u; ûK−1) (17)

until convergence, we obtain an estimator û1 that solves

SED(û1; û1) = 0, (18)

where SED(u; u∗) denotes the score of LED(u; u∗) for fixed u∗. Note that, in contrast
with the iterated procedure, a continuously updated method will not work in this
case (i.e. maximizing a criterion of the form LED(u; u)).
Although this approach is intuitive, we should remark that we have not developed a

rigorous theory to justify this approach.
Discussion. Both likelihood and pseudo-likelihood settings are important in

applications. For example, there are nonlinear likelihood models whose parameters
are no longer interpretable when the likelihood is only regarded as a pseudo-
likelihood.
In a likelihood situation, it seems natural to use the determinant form of the correc-

tion, but also an expectation-based estimate of the outer product term, especially if an
analytical calculation is available, hence avoiding semiparametric kernel estimation.
However, if expectations need to be evaluated by simulation, the conceptual advantage
of the expectation-based adjustment is less clear, because the number of simulations to
be chosen is an issue.
In contrast, in a pseudo-likelihood or an incomplete model setting, it is natural to

use the trace form of the correction and a kernel-based estimate of �Yi(u), which is
the only possibility available.

3. Examples

We consider four examples. The first one is a simple panel AR(1) model with
scalar fixed effects. This simple model has been researched heavily in the litera-
ture, and multiplicity consideration is irrelevant. We discuss the model only to
make it easier to compare various approaches. The rest of the examples do
include multiple fixed effects. The second one is static and linear, but illustrates
the differences between the two approaches in a familiar context. The third
one is a conditional volatility model, and the last one is a dynamic binary
choice formulation.
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Example 1 Consider the dynamic panel model with fixed effects with known var-
iance of the error term, where

c(xit; u, gi) = −1
2
lns2 − 1

2
(yit − uyit−1 − gi)2

s2 .

We will assume that the initial value is taken from a stationary distribution, so that
yit � N(gi0/(1− u0),s2/(1− u20)). In order to make it simple, we assume that
s2 = 1, and we obtain

c(xit; u, gi) = −1
2
(yit − uyit−1 − gi)2.

We note that

gi(u) = E[yit − uyit−1] = 1− u

1− u0
gi,

�Hi(u) = 1,

�Yi(u) = lim
T�1

TE �yi· −
gi

1− u0

( )
− u �yi·−1 −

gi
1− u0

( )( )2
[ ]

= (1− u)2
(1− u0)2

,

bi(u) =
1
2
�Yi(u),

where �yi· ;
∑T

t=1yit and �yi·−1 ;
∑T

t=1yit−1. We also note that

ĝi(u) = �yi· − u�yi·−1,

Hi(u, ĝi(u)) = 1,

Yi(u, ĝi(u)) =
1
T

∑m
l=−m

wT,l

∑min(T,T+l)

t=max(1,l+1)
(ỹit − ux̃it)(ỹit−l − ux̃it−l)

( )
,

b̂i(u) =
1
2
Yi(u, ĝi(u)),

where ỹit ; yit − �yi·, and x̃it ; yit−1 − �yi·−1. It follows that the trace-based approach
would maximize

− 1
2

1
nT

∑n
i=1

∑T
t=1

(ỹit − ux̃it)2

− 1
2

1
nT

∑n
i=1

1
T

∑m
l=−m

wT,l

∑min(T,T+l)

t=max(1,l+1)
(ỹit − ux̃it)(ỹit−l − ux̃it−l)

( )( )
.

A Likelihood-Based Approximate Solution 261



On the other hand, the determinant-based approach would maximize

− 1
2

1
nT

∑n
i=1

∑T
t=1

(ỹit − ux̃it)2

− 1
2

∑n
i=1

ln
1
T

∑m
l=−m

wT,l

∑min(T,T+l)

t=max(1,l+1)
(ỹit − ux̃it)(ỹit−l − ux̃it−l)

( )( )
.

If we use the expected quantities instead, we note that

Eu0,gi0[yityit−l] = gi0
1− u0

( )2

+ ul0
1− u20

,

from which we obtain

GTl(u,g;u0,gi0) = Eu0,gi0 [(yit− uyit−1−gi)(yit−l − uyit−1−l −gi)]

= gi0
1− u0

( )2

+ ul0
1− u20

− u
gi0

1− u0

( )2

+ ul−1
0

1− u20

( )
−gi

gi0
1− u0

− u
gi0

1− u0

( )2

+ ul+1
0

1− u20

( )
+ u2

gi0
1− u0

( )2

+ ul0
1− u20

( )
+giu

gi0
1− u0

−gi
gi0

1− u0
+giu

gi0
1− u0

+g2i

= (1− u)2
(1− u0)2

g2i0+
ul−1
0

1− u20
(u0− u)(1− u0u)+g2i − 2gi

gi0
1− u0

+ 2giu
gi0

1− u0

and

GTl(u, ĝi(u); û, ĝi(û)) =
(1− u)2
(1− û)2 ĝi(û)

2+ ûl−1

1− û2
(û− u)(1− ûu)

+ ĝi(u)2− 2ĝi(u)
ĝi(û)
1− û

+ 2ĝi(u)u
ĝi(û)
1− û

,

YTi(u, ĝi(u); û, ĝi(û)) =
∑m
l=−m

wT,lGTl(u, ĝi(u); û, ĝi(û))

the determinant-based approach would maximize

− 1
2

1
nT

∑n
i=1

∑T
t=1

(ỹit− ux̃it)2− 1
2

∑n
i=1

lndetYTi(u, ĝi(u); û, ĝi(û)).
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Example 2 Consider a simple multivariate model for an unconditional covariance
structure with heterogeneous means, where

c(xit; u, gi) = C − 1
2
ln detV(u) − 1

2
(xit − gi)′V(u)−1(xit − gi).

If V(u) is unrestricted, then u = vech[V(u)]. We have ĝi(u) = �xi and

∂c(xit; u, gi)
∂gi

= V(u)−1(xit − gi),
∂2c(xit; u, gi)

∂gi∂g
′
i

= −V(u)−1,

Hi(u, g) ; − 1
T

∑T
t=1

∂2cit(u, g)
∂g∂g′

= V(u)−1,

Yi(u, ĝi(u)) ;
∑m
l=−m

wT,lGl(u, ĝi(u)),

Gl(u, ĝi(u)) ; V(u)−1 1
T

∑min(T,T+l)

t=max(1,l+1)
(xit − �xi)(xit−l − �xi)′

[ ]
V(u)−1.

The determinant approach with m = 0 gives

LD(u) = C − nT
2

ln detV(u) − 1
2

∑n
i=1

∑T
t=1

(xit − �xi)′V(u)−1(xit − �xi)

+ n
2
ln det[V(u)−1] − 1

2

∑n
i=1

ln det V(u)−1 1
T

∑T
t=1

(xit − �xi)(xit − �xi)′V(u)−1

( )
.

Finally, collecting terms and discarding constants, we get

LD(u) = C − n(T − 1)
2

ln detV(u) − nT
2
trace[V(u)−1V̂],

where V̂ is the unrestricted fixed effects estimate:

V̂ = 1
nT

∑n
i=1

∑T
t=1

(xit − �xi)(xit − �xi)′.

Thus, the information adjustment performs the required degrees of freedom correction
(i.e. the corrected unrestricted estimate is Ṽ = (T/(T − 1))V̂).
The trace-based approach should provide bias reduction in the presence of neglected

serial correlation. It gives

b̂i(u) =
1
2
trace[G̃iV(u)−1],
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where

G̃i = 1
T

∑m
l=−m

wT,l

∑min(T,T+l)

t=max(1,l+1)
(xit − �xi)(xit−l − �xi)′.

Letting G̃ = n−1 ∑n
i=1 G̃i, we obtain

LTR(u) = C − nT
2

ln detV(u) − nT
2
trace[V(u)−1V̂] − n

2
trace[V(u)−1G̃].

Note that with m= 0, G̃ = V̂, so that in this case the corrected unrestricted estimate
is ṼTR = ((T + 1)/T)V̂, which removes the bias of order T−1, but is not fully
unbiased. In general, the trace-based unrestricted estimate is given by

ṼTR = V̂+ 1
T
G̃.

Example 3 The next example is a heteroskedastic autoregressive model with two
fixed effects, one in the conditional mean and another in the conditional variance.
Letting u = (u1, u2) and gi = (g1i, g2i), we have

c(xit; u, gi) = −1
2
ln h(yit−1, g2i) −

1
2
(yit − u1yit−1 − g1i)2

h(yit−1, g2i)
,

where

h(yit−1, g2i) = (g2i + u2yit−1)2.

A model of this type, but with an exponential ARCH formulation of the conditional
variance, is developed in Hospido (2012), where some of the estimators considered in
this paper, as well as simulation-based alternatives, are implemented and applied to
study individual wage dynamics.

Example 4 The next example is an autoregressive binary formulation of the form

c(xit; u, gi) = yit lnL(g1i + g2iyit−1 + uyit−2)
+ (1− yit) ln[1− L(g1i + g2iyit−1 + uyit−2)],

where L(r) is the logit or probit cdf.

This model was suggested in Chamberlain (1985) as a framework for testing dur-
ation dependence from binary panel data, by testing the restriction u = 0. Chamber-
lain showed that, in the absence of exogenous variables, a simple fixed-T consistent
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estimator for θ is available for the logistic specification of this model. A random effects
formulation of a model of this type has been recently applied by Card and Hyslop
(2005) to study the effects of earnings subsidies on welfare participation.

4. Asymptotic Theory

We first consider general conditions for a bias-corrected estimating equation to deliver
an asymptotic normality theorem for the estimation error centered at the truth.

NOTATION 1 We use the following additional notation throughout:

Ui(xit;u,gi);
∂c(xit;u,gi)

∂u
−ri0 ·

∂c(xit;u,gi)
∂gi

, Vi(xit;u,gi);
∂c(xit;u,gi)

∂gi
,

ri;E
∂2c(xit;u0,gi0)

∂u∂g′i

[ ]
E

∂2c(xit;u0,gi0)
∂gi∂g

′
i

[ ]( )−1

, I i;−E
∂Ui(xit;u0,gi0)

∂u′

[ ]
,

Ṽ it;− E
∂Vi

∂g′i

[ ]( )−1

Vit.

For simplicity of notation, we will occasionally write Uit;Ui(xit;u0,gi0) and
Vit;Vi(xit;u0,gi0). We will denote by Ugi

it ;∂Uit/∂g
′
i and Ugigi

it ; ∂2Uit/(∂g′i⊗∂g′i)
the first and second derivatives of Uit with respect to gi. Likewise, we will denote by
Vgi

it the derivative ∂Vit/∂g
′
i of Vit with respect to gi.

Using this notation, we can characterize û as the solution to the first-order condition

0 =
∑n
i=1

∑T
t=1

Ui(xit; û, ĝi(û)).

The normalized score (1/nT)∑n
i=1

∑T
t=1U(xit; u0, ĝi(u0)) has an asymptotic bias,

which renders the fixed effects estimator û biased. The asymptotic bias of the normal-
ized score can be shown7 to be equal to 1/T times C0(u0, {g10, g20, . . .}), where

C0(u0, {g10, g20, . . .}) = plim
1
n

∑n
i=1

1



T

√
∑T
t=1

Ugi
it

( )
1



T

√
∑T
t=1

Ṽ it

( )

+ plim
1
2
1
n

∑n
i=1

E[Ugigi
i ] 1




T
√

∑T
t=1

Ṽ it

( )
⊗ 1




T
√

∑T
t=1

Ṽ it

( )[ ]
.

Note that gi0 ; argmaxcE[c(xit; u0, c)]. Therefore, using gi(u) ;
argmaxcE[c(xit; u, c)], we can write

C0(u0, {g10, g20, . . .}) = C0(u0, {g1(u0),g2(u0), . . .}),
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which can be regarded as a function in u0. Such a function will be written as C0(u)
without loss of generality. We will approximate it by Cn(u0) ;
C0(u0, {ĝ1(u0), ĝ2(u0), . . .}). Letting Sn(u0) denote some sample counterpart of
Cn(u0), we may consider solving

0 = 1
nT

∑n
i=1

∑T
t=1

U(xit; ũ, ĝi(ũ)) −
1
T
Sn(ũ) (19)

instead. We will assume that there exists some Bn such that Sn(u) = ∂Bn(u)/∂u, in
which case our estimator ũ can be understood as a solution to

argmax
u,g1 ,...,gn

1
nT

∑n
i=1

∑T
t=1

c(xit; u, gi) −
1
T
Bn(u). (20)

Remark 1 Comparison of (10), (12), (16) with (20) implies that Bn(u) is equal to

Bn(u) = − 1
2n

∑n
i=1

ln detHi(u, ĝi(u)) +
1
2n

∑n
i=1

ln detYi(u, ĝi(u)) (21)

for a determinant approach,

Bn(u) = 1
2n

∑n
i=1

ln detHi(u, ĝi(u)) −
1
2n

∑n
i=1

ln detYTi(u, ĝi(u); û, ĝi(û)) (22)

for an expectation-based determinant approach and

Bn(u) = 1
2n

∑n
i=1

trace(Hi(u, ĝi(u))−1Yi(u, ĝi(u))) (23)

for a trace approach, where Hi(u, g) and Yi(u, g) are as defined in Equations (7)–(9).

We impose the following conditions:

CONDITION 1 Pr[supu |(1/T)Bn(u)| ≥ h] = o(T−1)for every h . 0.

CONDITION 2 supu(1/T)|∂Sn(u)/∂u′| = op(1).

CONDITION 3 Sn(u0) = (1/n)∑n
i=1

∑1
l=−1 E[Ugi

it Ṽ it−l]
+1
2
(1/n)∑n

i=1 E[Ugigi
i ]vec(∑1

l=−1 E[Ṽ itṼ
′
it−l]) + op(1).

Under these conditions and the regularity conditions in Appendix A, we can obtain
the asymptotic distribution of ũ as n and T grow at the same rate.
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THEOREM 2 Assume that Conditions 1–3 hold. Further assume that the regularity con-
ditions in Appendix A hold. Finally, assume that n/T � k, where 0 < k < 1. Then






nT

√
(ũ− u0) ⇒ N(0, I−1V(I ′)−1),

where I ; limn�1 n−1 ∑n
i=1 I i and Ω is the asymptotic variance of

(1/ 




nT

√ )∑n
i=1

∑T
t=1 U(xit; u0, gi0).

Proof See Appendix B. □

Following three results show that the Bn(u) in Equations (21)–(23) satisfy Con-
ditions 1–3, and as such the resultant estimator is asymptotically free of bias.

THEOREM 3 Assume that the model is given by the likelihood. Also assume that the
regularity conditions in Appendix A hold. Further assume that m = o(T2/5). Then,
Bn(u) as defined inEquation (21) satisfies Conditions 1–3.

Proof See Appendix C.8 □

THEOREM 4 Assume that the model is given by the likelihood. Also assume that the
regularity conditions in Appendix A hold. Further assume that m = o(T2/5). Then,
Bn(u) based on

�Yi(u, g) ;
∑m
l=−m

wT,lEû,ĝi

∂cit(u, g)
∂g

∂cit−l(u, g)
∂g′

[ ]
(24)

satisfies Conditions 1–3. (Here, Eû,ĝi
[·] denotes an expectation taken with respect to the

density evaluated at (û, ĝi).) The same result hold even when the preliminary estimates
(û, ĝi) in Equation (24) are replaced by some (u∗, g∗i ) such that ‖u∗ − u‖ = Op(T−2/5)
and supi ‖g∗i − gi0‖ = Op(T−2/5).

Proof The proof of Theorem 4 is similar to that of Theorem 3. It is available upon
request in Supplementary Appendix.9 □

THEOREM 5 Assume that the regularity conditions in Appendix A hold. Further
assume that m = o(T1/2). Then, Bn(u) as defined in Equation (23) satisfies Conditions
1–3.

Proof See Appendix D.10 □
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5. Concluding Remarks

We discussed a modified objective function strategy to obtain estimators without bias
to order 1/T in nonlinear dynamic panel models with multiple effects. Estimation pro-
ceeds from a bias-corrected objective function relative to some target infeasible cri-
terion. We considered a determinant-based approach for likelihood settings, and a
trace-based approach, which is not restricted to the likelihood setup. Both approaches
depend exclusively on the Hessian and the outer product of the scores of the fixed
effects. They produce simple and transparent corrections even in models with multiple
effects.
We analyzed the asymptotic properties of the new estimators when n and T grow at

the same rate, and showed that they are asymptotically normal and centered at the
truth.
These approaches are likely to be useful in applications where the value of T is not

negligible relative to n, as is the case with many household-, firm-, and country-level
panels. However, if T/n is too small, further refinements may be required, because the
sampling standard deviation of the 1/T bias-corrected estimators will be small by com-
parison with the bias.
Existing Monte-Carlo results and empirical estimates for binary choice and con-

ditional volatility models are very encouraging, but more needs to be known about
the properties of the new methods for other models and data sets.

Notes

1. See also Arellano and Hahn (2006) for a review of the literature.
2. We abstract away from strictly exogenous regressors. For shortness, we may write

cit(u,gi) = c(xit; u,gi).
3. Note that gi(u0) = gi0 and that in the likelihood setup gi(u) is fully determined by θ and the true values,

u0 and gi0.
4. We assume that all the Op(·) terms are uniform over i in this section.
5. For simplicity of exposition, we will assume that the wT,l are indeed Bartlett weights throughout the rest

of the paper.
6. The proof for asymptotic theory goes through with only one change: In place of Lemma 5 in the Sup-

plementary Appendix, we need to use Lemma 6 instead.
7. This is a standard result, but we do provide a rigorous derivation in Supplementary Appendix, which is

available upon request.
8. The proof of Theorem 3 uses the information equality. This explains why the likelihood setup is required

here.
9. The proof of Theorem 4 uses the information equality. This explains why we required the likelihood

setup.
10. The proof of Theorem 5 does not use the information equality. We therefore do not require the likeli-

hood setup here.
11. The consistency result is available as Theorem 8 in a Supplementary Appendix, which is available upon

request. Theorem 8 shows that, if Assumptions 1–3, and Condition 1 are satisfied, then
Pr[|ũ− u0| ≥ h] = o(T−1) for every h . 0.

12. See Lemma 7 in Supplementary Appendix A.
13. In Supplementary Appendix C, we provide a rigorous proof of the expansion (A3).
14. The proofs of Theorems 6 and 7 are in Supplementary Appendix, which is available upon request.
15. See Lemma 7 in Supplementary Appendix.
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Appendix A. Regularity Conditions

ASSUMPTION 1 For each h . 0, inf i[G(i)(u0,gi0) − sup{(u,g):|(u,g)−(u0,gi0)|.h} G(i)(u,g)] . 0, where
G(i)(u, g) ; E[c(xit; u, g)].

ASSUMPTION 2 n,T � 1 such that n/T � k, where 0 < k < 1.

ASSUMPTION 3 (i) For each i, {xit, t = 1, 2, . . .} is a stationary mixing sequence; (ii) {xit, t = 1, 2, . . .}
are independent across i; (iii) supi |ai(m)| ≤ Cam for some a such that 0 < a< 1 and some C . 0,
where Ai

t ; s(xit, xit−1, xit−2, . . .), Bi
t ; s(xit, xit+1, xit+2, . . .), and ai(m) ;

supt supA[Ai
t,B[Bi

t+m
|P(A> B) − P(A)P(B)|.

ASSUMPTION 4 Let c(xit,f) be a function indexed by the parameter f = (u,g) [ int F, where Φ is a
compact, convex subset of Rp, p ; dim(f), and R = dim(u). Let n = (n1, . . . , nk) be a vector of non-negative
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integers vi, |v| =
∑k

j=1 v j and Dvc(xit,f) = ∂|n|c(xit,f)/(∂fv1
1 · · · ∂fnk

k ). There exists a functionM(xit) such
that |Dvc(xit,f1) −Dvc(xit,f2)| ≤ M(xit)‖f1 − f2‖ for all f1,f2 [ F and |v| ≤ 5. The function M(xit)
satisfies supf[F ‖Dvc(xit,f)‖ ≤ M(xit) and supi E[|M(xit)|10q+12+d] < 1 for some integer q ≥ p/2+ 2 and
for some d . 0.

ASSUMPTION 5 Let liT denote the smallest eigenvalue of SiT = Var(T−1/2 ∑T
t=1 Ui(xit; u, gi)). We assume

that inf i infT liT . 0.

ASSUMPTION 6 (i) inf i infu,gi |E[∂2c(xit; u,gi)/∂gi∂g′i]| . 0;
(ii) inf i infu,gi

∑1
l=−1 E[(∂c(xit; u, gi)/∂gi)(∂c(xit−l ; u, gi)/∂g′i)] . 0.

Remark 2 Assumption 6 is stronger than the one assumed in Hahn and Kuersteiner (2004) in the sense that
Assumption 6(ii) was not imposed there.

ASSUMPTION 7 Let mi1 ≤ · · · ≤ mik ≤ · · · ≤ miR be the eigenvalues of I i in ascending order. We have (i)
0 < inf i mi1 ≤ supi miR < 1, (ii) limn�1 n−1 ∑n

i=1 I i exists, (iii) lettingI ; limn�1 n−1 ∑n
i=1 I i, we assume

that I is positive definite.

ASSUMPTION 8 sup(u,g)[F supl Eu,g[M(xit)M(xit−l)] , 1.

Appendix B. Proof of Theorem thm2

We focus on asymptotic normality here, taking consistency result as given.11 Because
0 = ∑T

t=1 V (xit; ũ, ĝi(ũ)) by definition, ũ can be given the alternative characterization

0 = 1
nT

∑n
i=1

∑T
t=1

U(xit; ũ, ĝi(ũ)) −
1
T
Sn(ũ).

By the Taylor series expansion, we obtain

0 = 1
nT

∑n
i=1

∑T
t=1

U(xit; u0, ĝi(u0)) −
1
T
Sn(u0)

+ 1
nT

∑n
i=1

∑T
t=1

Uu(xit; �u, ĝi(�u))
( )

(ũ− u0) − 1
T

∂Sn(�u)
∂u′

(ũ− u0)

for some �u on the line segment adjoining u0 and ũ. Because I i ; −E[∂Ui(xit; u0,gi0)/∂u′], we may define
�I i ; −(1/T)∑T

t=1 U
u(xit; �u, ĝi(�u)), which yields






nT

√
(ũ− u0) = 1

n

∑n
i=1

�I i + 1
T

∂Sn(�u)
∂u′

( )−1
1




nT

√
∑n
i=1

∑T
t=1

U(xit; u0, ĝi(u0)) −




n
T

√
Sn(u0)

( )
. (A1)

It can be shown12 that (1/n)∑n
i=1

�I i = I + op(1). By Condition 2, we also have (1/T)∂Sn(�u)/∂u′ = op(1).
We therefore have

1
n

∑n
i=1

�I i + 1
T

∂Sn(�u)
∂u′

= I + op(1). (A2)

By applying a second-order Taylor series approximation to (1/nT)∑n
i=1

∑T
t=1 U(xit; u0, ĝi(u0)) around gi0, and

noting that ĝi(u0) − gi0 = −(E[∂Vi/∂g
′
i])−1((1/T)∑T

t=1 Vit) + op(1/




T

√ ) = (1/T)∑T
t=1 Ṽ it + op(1/





T

√ ), we
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can anticipate that13

1




nT

√
∑n
i=1

∑T
t=1

U(xit; u0, ĝi(u0)) =
1




nT

√
∑n
i=1

∑T
t=1

Uit +




n
T

√
1
n

∑n
i=1

1



T

√
∑T
t=1

Ugi
it

( )
1



T

√
∑T
t=1

Ṽ it

( )

+




n
T

√
1
2
1
n

∑n
i=1

E[Ugigi
i ] 1




T
√

∑T
t=1

Ṽ it

( )
⊗ 1




T
√

∑T
t=1

Ṽ it

( )[ ]
+ op(1). (A3)

It can be shown that by using the same argument as in Hahn and Kuersteiner (2004) that

1
2
1
n

∑n
i=1

E[Ugigi
i ] 1




T
√

∑T
t=1

Ṽ it

( )
⊗ 1




T
√

∑T
t=1

Ṽit

( )[ ]
+ 1

n

∑n
i=1

1



T

√
∑T
t=1

Ugi
it

( )
1



T

√
∑T
t=1

Ṽ it

( )

= 1
n

∑n
i=1

∑1
l=−1

E[Ugi
i Ṽ it−l] + 1

2
1
n

∑n
i=1

E[Ugigi
i ]vec

∑1
l=−1

E[Ṽ itṼ
′
it−l]

( )
+ op(1),

which, when combining (A1)–(A3) and Condition 3, yields






nT

√
(ũ− u0) = I−1 1





nT
√

∑n
i=1

∑T
t=1

U(xit; u0,gi0)
( )

+ op(1),

from which the conclusion follows.

Appendix C. Proof of Theorem 3

We will first state without proof14 that Conditions 1 and 2 are satisfied:

THEOREM 6 Assume that the regularity conditions in Appendix A hold. Then, Bn(u) as defined in Equation
(21) satisfies Condition 1.

THEOREM 7 Assume that the regularity conditions in Appendix A hold. Further assume that m = o(T1/2).
Then, Bn(u) as defined in Equation (21) satisfies Condition 2.

Below, we show that Condition 3 is satisfied. By differentiating Bn, we obtain that Sn(u) = [2] + · · · + [5],
where

[2] ; −1
2
1
n

∑n
i=1

1
T

∑T
t=1

∂3cit

∂u(∂g′ ⊗ ∂g′)

( )
vec

1
T

∑T
t=1

∂2cit

∂g∂g′

( )−1
⎛⎝ ⎞⎠,

[3] ; −1
2
1
n

∑n
i=1

∂ĝ′i(u)
∂u

1
T

∑T
t=1

∂3cit

∂g(∂g′ ⊗ ∂g′)

( )
vec

1
T

∑T
t=1

∂2cit

∂g∂g′

( )−1
⎛⎝ ⎞⎠,

[4] ; 1
2
1
n

∑n
i=1

1
T

∑m
l=−m

wT,l

∑min(T,T+l)

t=max(1,l+1)

∂

∂u

∂cit

∂g′

( )
⊗ ∂cit−l

∂g′

( )( )( )[ ]

· vec 1
T

∑m
l=−m

wT,l

∑min(T,T+l)

t=max(1,l+1)

∂cit

∂g

∂cit−l

∂g′

( )( )−1
⎛⎝ ⎞⎠
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and

[5] ; 1
2
1
n

∑n
i=1

∂ĝ′i(u)
∂u

1
T

∑m
l=−m

wT,l

∑min(T,T+l)

t=max(1,l+1)

∂

∂g

∂cit

∂g′

( )
⊗ ∂cit−l

∂g′

( )( )( )[ ]

· vec 1
T

∑m
l=−m

wT,l

∑min(T,T+l)

t=max(1,l+1)

∂cit

∂g

∂cit−l

∂g′

( )( )−1
⎛⎝ ⎞⎠.

We will often use the first-order condition for ĝi(u), which implies that

∂ĝ′i(u)
∂u

= −
∑T
t=1

∂2cit(u, ĝi(u))
∂u∂g′

( ) ∑T
t=1

∂2cit(u, ĝi(u))
∂g∂g′

( )−1

. (A4)

In the discussion below, all the terms [2], . . . , [5] will be evaluated at u0. We first take care of the expansion of
[2] + [3]. Note first that, by definition of Uit(u,gi), we have ∂3cit(u,g)/∂u(∂g′ ⊗ ∂g′) = Ugg

it + riV
gg
it , where

Vgg
it (u, gi) = ∂2Vit(u,gi)/∂g′ ⊗ ∂g′. (Recall that ri ; E[∂2c(xit; u0,gi0)/∂u∂g′i](E[∂2c(xit; u0, gi0)/∂gi∂g′i])−1.)

It turns out that all the averages over t on the RHS of [2] is uniformly consistent over i.15 We therefore obtain

[2] = −1
2
1
n

∑n
i=1

(E[Ugg
it ] + riE[Vgg

it ])vec((E[Vg
it ])−1) + op(1). (A5)

The uniform consistency over i combinedwith Equation (A6) also implies that

max
i

∂ĝ′i(u)
∂u

+ ri

∣∣∣∣ ∣∣∣∣ = op(1). (A6)

Using the uniform consistency and Equation (A6), we obtain

[3] = 1
2
1
n

∑n
i=1

riE[Vgg
it ]vec((E[Vg

it ])−1) + op(1). (A7)

Combining Equations (A5) and (A7), we obtain

[2] + [3] = −1
2
1
n

∑n
i=1

E[Ugg
it ]vec((E[Vg

it ])−1) + op(1). (A8)

We now take care of the expansion of [4] + [5]. Note that

∂

∂u

∂cit(u,g)
∂g′

( )
⊗ ∂cit−l(u, g)

∂g′

( )( )
= ∂2cit(u,g)

∂u∂g′

( )
⊗ ∂cit−l(u,g)

∂g′

( )
+ ∂cit(u, g)

∂g′

( )
⊗ ∂2cit−l(u,g)

∂u∂g′

( )
= (Ug

it + riV
g
it ) ⊗ V ′

it−l + V ′
it ⊗ (Ug

it−l + riV
g
it−l)

and

∂

∂g

∂cit(u, g)
∂g′

( )
⊗ ∂cit(u,g)

∂g′

( )( )
= Vg

it ⊗ V ′
it−l + V ′

it ⊗ Vg
it−l,
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we can write

[4] + [5] = 1
2
1
n

∑n
i=1

1
T

∑m
l=−m

wT,l

∑min(T,T+l)

t=max(1,l+1)

Ug
it (u0, ĝi(u0)) ⊗ Vit−l(u0, ĝi(u0))′

+Vit(u0, ĝi(u0))′ ⊗Ug
it−l(u0, ĝi(u0))

( )[ ]

· vec 1
T

∑m
l=−m

wT,l

∑min(T,T+l)

t=max(1,l+1)
Vit(u0, ĝi(u0))Vit−l(u0, ĝi(u0))′

( )−1
⎛⎝ ⎞⎠+ op(1).

Using Lemma 5 in Supplementary Appendix, we obtain

max
i

1
T

∑m
l=−m

wT,l

∑min(T,T+l)

t=max(1,l+1)
Vit(u0, ĝi(u0))Vit−l(u0, ĝi(u0))′ −

∑1
l=−1

E[VitV ′
it−l]

∣∣∣∣∣
∣∣∣∣∣ = op(1).

Furthermore, if the conditional likelihood is properly defined, then we should have Vit serially uncorrelated,
which implies that

max
i

1
T

∑m
l=−m

wT,l

∑min(T,T+l)

t=max(1,l+1)
VitV ′

it−l − E[VitV ′
it]

∣∣∣∣∣
∣∣∣∣∣ = max

i

1
T

∑m
l=−m

wT,l

∑min(T,T+l)

t=max(1,l+1)
VitV ′

it−l + E[Vg
it ]

∣∣∣∣∣
∣∣∣∣∣ = op(1),

where the first equality is based on the information equality. Therefore, we obtain

[4] + [5] = −1
2
1
n

∑n
i=1

1
T

∑m
l=−m

wT,l

∑min(T,T+l)

t=max(1,l+1)

Ug
it (u0, ĝi(u0)) ⊗ Vit−l(u0, ĝi(u0))′

+Vit(u0, ĝi(u0))′ ⊗Ug
it−l(u0, ĝi(u0))

( )[ ]
· vec(E[Vg

it ]−1) + op(1).

Using Lemma 5 again, we obtain

[4] + [5] = −1
2
1
n

∑n
i=1

∑1
l=−1

E[Ug
it ⊗ V ′

it−l + V ′
it ⊗Ug

it−l]vec(E[Vg
it ]−1) + op(1)

= 1
2
1
n

∑n
i=1

∑1
l=−1

E[Ug
it Ṽ it−l +Ug

it−l Ṽ it] + op(1)

= 1
n

∑n
i=1

∑1
l=−1

E[Ug
it Ṽ it−l] + op(1). (A9)

Combining Equations (A8) and (A9), we obtain

Sn(u0) = −1
2
1
n

∑n
i=1

E[Ugg
it ]vec((E[Vg

it ])−1) + 1
n

∑n
i=1

∑1
l=−1

E[Ug
it Ṽ it−l] + op(1). (A10)

Now, we note that, under correct specification of conditional likelihood,Ṽ it would have zero serial
correlation and we would therefore have

∑1
l=−1 E[Ṽ itṼ

′
it−l] = E[Ṽ itṼ

′
it] = (E[Vg

i ])−1E[VitV ′
it](E[Vg

i ])−1.
Furthermore, we have E[VitV ′

it] = −E[Vg
i ] by the information equality. It follows that

Sn(u0) = 1
2
1
n

∑n
i=1

E[Ugigi
i ]vec

∑1
l=−1

E[Ṽ itṼ
′
it−l]

( )
+ 1

n

∑n
i=1

∑1
l=−1

E[Ug
it Ṽ it−l] + op(1).
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Appendix D. Proof of Theorem 5

Using the same argument as in the proofs for Theorems 6 and 7, it can be shown that Bn(u) as defined in
Equation (23) satisfies Conditions 1 and 2. We therefore only establish Condition 3.
Our proof is based on the characterization

Sn(u) = 1
2n

∑n
i=1

1
T

∑T
t=1

∂3cit

∂u(∂g′ ⊗ ∂g′)

( )
vec(H−1

i YiH−1
i )

+ 1
2n

∑n
i=1

∂ĝ′i(u)
∂u

1
T

∑T
t=1

∂3cit

∂g(∂g′ ⊗ ∂g′)

( )
vec(H−1

i YiH−1
i )

+ 1
2n

∑n
i=1

1
T

∑m
l=−m

∑min(T,T+l)

t=max(1,l+1)

∂

∂u

∂cit

∂g′

( )
⊗ ∂cit−l

∂g′

( )( )( )
vec(H−1

i )

+ 1
2n

∑n
i=1

∂ĝ′i(u)
∂u

1
T

∑m
l=−m

∑min(T,T+l)

t=max(1,l+1)

∂

∂g

∂cit

∂g′

( )
⊗ ∂cit−l

∂g′

( )( )( )
vec(H−1

i ).

Proceeding as in Appendix C, we can obtain that

Sn(u0) = 1
2n

∑n
i=1

E[Ugg
it ]vec (E[Vg

it ])−1
∑1
l=−1

E[VitV ′
it−l]

( )
(E[Vg

it ])−1

( )

− 1
2n

∑n
i=1

∑1
l=−1

E[Ug
it ⊗ V ′

it−l + V ′
it ⊗Ug

it−l]vec((E[Vg
it ])−1) + op(1)

= 1
2n

∑n
i=1

E[Ugg
it ]vec

∑1
l=−1

E[Ṽ itṼ
′
it−l]

( )
+ 1

2n

∑n
i=1

∑1
l=−1

E[Ug
it Ṽ it−l +Ug

it−l Ṽ it] + op(1)

= 1
2n

∑n
i=1

E[Ugg
it ]vec

∑1
l=−1

E[Ṽ itṼ
′
it−l]

( )
+ 1

n

∑n
i=1

∑1
l=−1

E[Ug
it Ṽ it−l] + op(1).
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