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Abstract

We present a class of binary choice models for panel data with the following features:
(i) The explanatory variables are predetermined but not strictly exogenous. This includes lagged
dependent variables as well as other forms of unspeci.ed feedback. (ii) Individual e1ects are
allowed to be correlated with the explanatory variables. Dependence is speci.ed through the
conditional expectation of the e1ects which is let to be non-parametric. We also present a GMM
estimator for these models, which is consistent and asymptotically normal for .xed T and large
N . We study its .nite sample properties in an autoregressive model by means of Monte Carlo
simulations. Finally, as an empirical illustration, we estimate a female labour force participation
equation with predetermined children using PSID data.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is well known that parameter estimates from short panels jointly estimated with
the individual e1ects can be seriously biased when the explanatory variables are only
predetermined as opposed to strictly exogenous. This situation includes models with
lagged dependent variables as well as other models in which the explanatory variables
are Granger-caused by the endogenous variables. In linear models with additive ef-
fects the standard response to this problem has been to consider instrumental-variables
estimates that exploit the lack of correlation between future errors in .rst-di1erences
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and lagged values of the variables (e.g. Anderson and Hsiao, 1981; Holtz-Eakin et al.,
1988, or Arellano and Bond, 1991). However, much fewer results are available on
discrete choice models with predetermined variables and other non-linear models of
interest in microeconometrics.
The purpose of this paper is to develop a class of semi-parametric random e1ects

binary choice models without the strict exogeneity assumption. Random e1ects models
with only strictly exogenous variables have been considered by Chamberlain (1980,
1984) and Newey (1994a). Heckman (1981a,b) studied discrete choice models with
state dependence and random e1ects. A di1erent strand of the literature, beginning
with the conditional logit formulation of Andersen (1970), has considered “.xed ef-
fects” speci.cations in which the full distribution of the e1ects is left unrestricted (or
treated as “non-parametric”). This includes the maximum score method proposed by
Manski (1987), which relaxes the logit assumption but requires strict exogeneity and
stationarity, and the models considered by HonorHe and Kyriazidou (2000), and HonorHe
and Lewbel (2002). HonorHe and Kyriazidou include a lagged dependent variable, but
their remaining explanatory variables are also required to be strictly exogenous. HonorHe
and Lewbel allow for other predetermined variables but require the presence of a con-
tinuous, strictly exogenous, explanatory variable that is independent of the e1ects. For
a survey of the literature, see Arellano and HonorHe (2001).
Fixed e1ects can be regarded as a random e1ects speci.cation that leaves the dis-

tribution of the e1ects unrestricted. They are attractive as a way to ensure that the
conditional distribution of the e1ects does not play a role in identifying the parameters
of interest. However, sometimes one may be willing to impose a certain amount of
structure in the dependence between the e1ects and the endogenous variables if in ex-
change this makes it possible to relax other aspects of the economic model of interest.
In such situations, a semi-parametric random e1ects speci.cation may represent a use-
ful compromise. In this regard, the semi-parametric random e1ects models considered
in this paper contain a non-parametric conditional expectation of the e1ects given the
predetermined variables, but are otherwise parametric.
An example where lack of strict exogeneity would be expected even after control-

ling for individual e1ects, is given by the e1ect of children in female labour force
participation decisions. In such context, assuming that children are strictly exogenous
is much stronger than the assumption of predeterminedness, since it would require us
to maintain that labour supply plans have no e1ect on fertility decisions at any point
in the life cycle (Browning, 1992, p. 1462). Here feedback e1ects from lagged par-
ticipation decisions (or lagged shocks to participation) to current and future children
outcomes cannot be ruled out. The result is that the identi.cation arrangements and
the estimation techniques that are useful with strictly exogenous variables break down.
The paper is organized as follows. Section 2 presents the model and a GMM esti-

mator for this model, which is consistent and asymptotically normal for .xed T as N
goes to in.nity. In Section 3 we study the .nite sample properties of this estimator in a
binary choice model with a single lagged dependent variable by means of Monte Carlo
simulations. Finally, in Section 4, as an empirical illustration, we estimate a female
labour force participation equation with predetermined children and individual e1ects
using PSID data.
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2. Models and estimators

2.1. The model

Let us consider the following error-components binary choice model for N individ-
uals observed T consecutive time periods

yit = 1(�t + �xit + uit¿ 0) (i = 1; : : : ; N ; t = 1; : : : ; T ); (2.1)

uit = �i + vit ; (2.2)

where 1(:) denotes the indicator function, so that yit is a 0−1 variable. T is small and
N is large. Let us also denote wit =(xit ; yi(t−1)) and wt

i =(wi1 · · ·wit). 1 The composite
errors uit are assumed to have a known distribution up to scale given wt

i , for example
normal, of the form:

uit |wt
i ∼ N(E(�i |wt

i); �2
t ): (2.3)

The sequence of conditional means {E(�i |ws
i ); s=1; : : : ; T} is left unrestricted. They

are just linked by the law of iterated expectations:

E(�i |wt
i) = E(E(�i |wt+1

i ) |wt
i): (2.4)

Thus, the model allows for dependence between the explanatory variable xit and the
individual e1ect �i through the conditional mean of the latter given the observed time
path of w. Moreover, the model speci.es x as a predetermined variable, in the sense
that while xit does not depend on current or future values of the transitory error vit ,
there may be feedback from lagged values of v or y to xit . Assumption (2.3), however,
essentially excludes serially correlated errors. This is so because the mean independence
condition E(vit |wt

i) = 0, while not implying by itself serial mean independence of the
vit , it does rule out standard patterns of autocorrelation.
The conditional probabilities speci.ed by the model are

Pr(yit = 1 |wt
i) = �

(
�t + �xit + E(�i |wt

i)
�t

)
; (2.5)

where �(:) is the standard normal cdf. The assumption of normality is unessential and
could be replaced by any other parametric assumption. Notice that since the model is
conditional on wt

i it could include yi(t−1) as an additional regressor, and indeed the
next section focuses on the case where xit = yi(t−1). However, the speci.cation above
was chosen for its simplicity, and also to emphasize the fact that, in order to allow for
xit to depend upon lagged y, we ought to condition on the histories of both x and y,
even in the absence of an independent e1ect of yi(t−1) on yit given xit ; �i and vit .

The model could also accommodate a situation where feedback e1ects are present for
some explanatory variables but not others. E1ectively, if there is a strictly exogenous
x, all its lags and leads will be included in the conditioning set at each t.

1 The variable yi0 is assumed to be observed to simplify the notation.
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It is of some interest to relate the present model to a model in which (2.3) is replaced
by the assumption

vit |wt
i ; �i ∼ N(0; !2

t ); (2.6)

so that

Pr(yit = 1 |wt
i ; �i) = �

(
�t + �xit + �i

!t

)
: (2.7)

Note that if for some t

�i |wt
i ∼ N(E(�i |wt

i); �
2
�t); (2.8)

it can be easily shown that this assumption together with (2.6) implies an expression
identical to (2.5) with �2

t = �2
�t +!2

t . It would thus appear that assumptions (2.3) and
(2.6) are connected through (2.8). However, if �i |wt

i is normal, since wt
i contains yt−1

i
which is a sequence of binary variables, it follows that �i |wt−1

i cannot in general be
normal, and therefore an expression of the form of (2.5) could not hold for Pr(yi(t−1)=
1 |wt−1

i ). So, the two models are not nested. Unlike in (2.6), in model (2.1)–(2.3) �i

and vit are not assumed to be conditionally independent, and in general they will be
correlated. 2

The present model’s identi.cation rests on the assumption that the demeaned error
uit − E(�i |wt

i) has a distribution that may change with t, but is independent of the
individual’s history wt

i . Since the history will a1ect the shape of the conditional distri-
butions �i |wt

i , our assumption implies that in general vit will only be mean independent
of wt

i , which is a limitation of this approach.
Thus, a feature of our model is that it matters to the distributional assumption if one

starts observing the individuals one period earlier or later. That is, if uit |wi1 · · ·wit is
normally distributed, in general uit |wi2 · · ·wit will be distributed as a normal mixture
and hence non-normal. This is an undesirable mathematical property since typically in
applications individuals are not necessarily observed from the date in which the process
started.
Notice that this is also true of the static random e1ects probit model of Chamberlain

(1984) and Newey (1994a). The assumption in such case is

�i + vit | xTi ∼ N(E(�i | xTi ); �2
t ):

If the assumption is intended to hold for any T , it follows that vit | xTi may be normal
for some T but not for any T (except in very special cases).
We motivated assumption (2.3) as a distributional speci.cation for the random e1ects

model represented by (2.1) and (2.2). Nevertheless, taken together, assumptions (2.1)–
(2.3) can be given an alternative interpretation, which suggests a di1erent class of
applications of the techniques developed below. Namely, suppose that the model of
economic interest is

yit = 1(�t + �xit + E(�i |wt
i) + �it¿ 0);

2 Notice that unless vit is a purely expectational error (an innovation), there will normally be reasons for
assuming correlation between � and vt (e.g. random preferences, omitted time-varying characteristics, etc.).
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where the forecast E(�i |wt
i) is part of the structural equation. The latent variable

�i is unobserved to the agent, and its forecast is revised each period as information
accumulates. Such model together with the distributional assumption for the error �it

�it |wt
i ∼ N(0; �2

t )

is equivalent to (2.1)–(2.3).

2.2. Discrete predetermined variables

2.2.1. Identi"cation
We start by considering identi.cation and estimation in the case where xit is a

discrete random variable with a .nite support of J points. It is useful to consider this
case since the model becomes fully parametric, while e1ectively leaving the distribution
of xit unrestricted. The continuous case is taken up below.
The vector wit will have a .nite support of 2J points given by (�1 · · ·�2J ). The

t × 1 random vector xti has a multinomial distribution, and takes J t di1erent values.
Similarly, the vector wt

i takes on (2J )t di1erent values �t
j (j = 1; : : : ; (2J )t).

As a matter of notational convenience we order the �t
j such that for t ¿ 1:

�t
j = (�t−1

j ; �‘) (2.9)

with j= (‘− 1)(2J )t−1 + 1; : : : ; ‘(2J )t−1; ‘= 1; : : : ; (2J ). That is, for a speci.c value
wt−1

i = �t−1
j there are 2J di1erent values of wt

i = (wt−1
i ; wit) with wt−1

i = �t−1
j , which

we represent as wt
i = �t

j ordered as in (2.9).
Let us denote

ptj = Pr(yit = 1 |wt
i = �t

j) ≡ ht(�t
j) (j = 1; : : : ; (2J )t) (2.10)

and

 t
j = E(�i |wt

i = �t
j) (j = 1; : : : ; (2J )t): (2.11)

Therefore we have

ptj = �

(
�t + ��[t]

j +  t
j

�t

)
; (2.12)

where �[t]
j denotes the last element of the vector �t

j. By the law of iterated expectations
we also have

 t−1
j =

2J∑
‘=1

 t
(‘−1)(2J )t−1+j Pr(wit = �‘ |wt−1

i = �t−1
j )

×(j = 1; : : : ; (2J )(t−1); t = 2; : : : ; T ): (2.13)
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Moreover, since the model includes a constant term, it is not restrictive to assume
that E(�i) = 0. Therefore

E(�i) =
2J∑
‘=1

E(�i |wi1 = �‘) Pr(wi1 = �‘) = 0: (2.14)

Let us consider the partition �j = (�1j; �2j) where �2j is either 0 or 1. Then the
probabilities in (2.13) factorize as

Pr(wit = �‘ |wt−1
i = �t−1

j ) = Pr(xit = �1‘ |wt−1
i = �t−1

j ; yi(t−1) = �2‘)

×Pr(yi(t−1) = �2‘ |wt−1
i = �t−1

j ): (2.15)

Notice that the second term on the right-hand side contains the probabilities speci.ed
by the model. The .rst term consists of unspeci.ed conditional probabilities for the x,
and so they are additional reduced form parameters:

�jk
t‘ = Pr(xit = �1‘ |wt−1

i = �t−1
j ; yi(t−1) = �2k)

(t = 2; : : : ; T ; ‘ = 1; : : : ; J ; j = 1; : : : ; (2J )t−1; k = 0; 1): (2.16)

The probabilities p‘ =Pr(wi1 =�‘) are also left unrestricted and just add 2J param-
eters to the full likelihood function of the data.
The number of reduced form parameters ptj is (2J + (2J )2 + · · ·+ (2J )T ), and the

number of �jk
t‘ is 2(2J + (2J )2 + · · ·+ (2J )T−1).

The coeOcients can be estimated up to scale. Using �1 as the scale, we can estimate
�t=�1, �=�1,  t

j =�1 and the relative scales �1=�t . We shall use �1=1 as the normalization
restriction.
The structural parameters are �; �1 : : : �T , �2 : : : �T and the  t

j . The number of param-

eters  t
j is ((2J )+ · · ·+(2J )T ), although they are subject to

∑T−1
j=0 (2J )j restrictions. 3

In conclusion, the total number of estimating equations is

r = 4
T−1∑
j=1

(2J )j + (2J )T + (2J ) + 1 (2.17)

while the number of parameters to be estimated including the �jk
t‘ and the initial prob-

abilities is

k = 3
T−1∑
j=1

(2J )j + (2J )T + (2J ) + 2T: (2.18)

Hence the number of overidentifying restrictions is

r − k =
T−1∑
j=1

(2J )j − 2T + 1: (2.19)

3 We could alternatively say that the required parameters are

 T
j = E(�i |wT

i = �T
j ) (j = 1; : : : ; (2J )T )

since the remaining  t
j are functions of those and the cell probabilities.
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Identi.cation of � up to scale requires that at least T¿ 2, or that there are at least
three observations available on each individual (since we assumed that yi0 is observed).
With two observations, contrary to the situation in the linear model, � would only be
identi.ed under homoskedasticity. Indeed, setting J = 2, �1 = �2 = 1, �t constant, and
Pr(yi0 = 1) = 1, a straightforward calculation reveals that

� =

∑1
‘=0

∑1
j=0 �−1(p‘j)�‘jpj − �−1(p1)

�11p1 + �10p0 − 1
; (2.20)

where

pj = Pr(yi1 = j | xi1 = 1) (j = 0; 1);

p‘j = Pr(yi2 = 1 | xi2 = ‘; xi1 = 1; yi1 = j);

�‘j = Pr(xi2 = ‘ | xi1 = 1; yi1 = j) (‘ = 0; 1; j = 0; 1):

In the derivation of (2.20), we are assuming that xit is a 0 − 1 variable, and that
there are e1ectively two observations on each unit since yi0 = 1 with probability one.
The coeOcient � is nevertheless identi.ed due to the homoskedasticity assumption
�1 = �2.4

2.2.2. Minimum distance and maximum likelihood estimation
Let us de.ne the variables

dt
ij = 1(w

t
i = �t

j): (2.21)

Then the unrestricted maximum likelihood estimator of ptj is given by

p̂tj =
1∑N

i=1 dt
ij

N∑
i=1

yitdt
ij (t = 1; : : : T ; j = 1; : : : ; (2J )t): (2.22)

Similarly, for �jk
t‘ we have

�̂jk
t‘ =

1∑N
i=1 dt−1

ij 1(yi(t−1) = k)

N∑
i=1

1(xit = �1‘)dt−1
ij 1(yi(t−1) = k) (2.23)

and for the initial probabilities:

p̂‘ =
1
N

N∑
i=1

1(wi1 = �‘) (‘ = 1; : : : ; 2J ): (2.24)

4 We obtained the expression for � in (2.20) as the solution to the moment equation

E{x1[E(� | x2; x1; y1)− E(� | x1)]} = 0;

where E(� | x2; x1; y1)− E(� | x1) = �−1[Pr(y2 = 1 | x2; x1; y1)]− �−1[Pr(y1 = | x1)]− �Qx2. This type of
moment will be used below for GMM estimation.
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We can form the vector 5

g(p̂; ") =

2J∑
‘=1

 1
‘ p̂‘

p̂tj − �

(
�t + ��[t]

j +  t
j

�t

)

 t−1
j −

J∑
‘=1

 t
(‘−1)(2J )t−1+j�̂

j1
t‘ p̂(t−1) j−

2J∑
‘=J+1

 t
(‘−1)(2J )t−1+j�̂

j0
t(‘−J )(1− p̂(t−1) j)

...


:

(2.25)

The vector of functions g(p̂; ") includes the terms for all j and t. The vector p̂
contains the p̂tj; �̂

jk
t‘ and p̂‘, while " contains all the parameters to be estimated. A

minimum distance (MD) estimator of " solves

"̂= argmin
"

g(p̂; ")′ANg(p̂; "); (2.26)

where AN is a consistent estimate of the inverse of the covariance matrix of g(p̂; ").
As an alternative to the MD procedure, the model can be estimated by maximum

likelihood. The contribution to the log-likelihood for the ith observation is given by

Li =
T∑

t=1

[yit lnpit + (1− yit)ln(1− pit)]

+
T∑

t=2


J∑

‘=1

1(xit = �1‘)
(2J )t−1∑
j=1

dt−1
ij [yi(t−1) ln �j1

t‘ + (1− yi(t−1)) ln �j0
t‘ ]


+

2J∑
‘=1

1(wi1 = �‘) lnp‘; (2.27)

where

pit = �

�t + �xit +
∑(2J )t

j=1  t
j d

t
ij

�t

 (2.28)

and the  t
j are solved recursively using the restrictions (2.13) and (2.14) as functions

of  T
j and the other parameters of the model. The log-likelihood is maximized as a

function of the �t ; �t ; �;  T
j ; �jk

t‘ and p‘.

5 We have implicitly ordered the observations in such a way that �2‘ = 1 for ‘ = 1; : : : ; J and �2‘ = 0
for ‘ = J + 1; : : : ; 2J .
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If N is not suOciently large relative to the number of cells—which depends on
J and T—some cells may contain very few or no observations. Those cells will be
trimmed, thereby reducing the e1ective number of .rst-stage parameters and equations
available for MD estimation. The .nite sample properties of the MD estimates may be
a1ected by the degree of .rst-stage trimming. The problem of choosing the amount of
trimming in this context, therefore, resembles the choice of the number of instruments
in instrumental variable models.

2.2.3. GMM estimation
The following simpler method avoids the joint estimation of the parameters of interest

with the nuisance coeOcients  t
j . By inverting Eq. (2.5) we obtain

�t�−1[ht(wt
i)] = �t + �xit + E(�i |wt

i): (2.29)

First-di1erencing this equation we have

�t�−1[ht(wt
i)]− �t−1�−1[ht−1(wt−1

i )]−Q�t − �Qxit = �it (2.30)

where Q�t = �t − �t−1, Qxit = xit − xi(t−1), and

�it = E(�i |wt
i)− E(�i |wt−1

i ): (2.31)

Therefore

E(�it |wt−1
i ) = 0: (2.32)

Notice that

ht(wt
i) =

(2J )t∑
j=1

dt
ijptj: (2.33)

Moreover, the conditional moment restriction (2.32) is equivalent to the following
unconditional moments (see Chamberlain, 1987, p. 308):

E(dt−1
ij �it) = 0 (j = 1; : : : ; (2J )t−1) (2.34)

or:

E

dt−1
ij

�t�−1

(2J )t∑
j=1

dt
ijptj



−�t−1�−1

(2J )t−1∑
j=1

dt−1
ij p(t−1) j

−Q�t − �Qxit

= 0: (2.35)

The orthogonality conditions corresponding to the ptj are

E[dt
ij(yit − ptj)] = 0 (j = 1; : : : ; (2J )t); (2.36)

E[dt−1
ij (yi(t−1) − p(t−1) j)] = 0 (j = 1; : : : ; (2J )t−1): (2.37)

The complete set of moment conditions can be used to obtain joint estimates of the
ptj and the coeOcients of interest. However, since the latter are unrestricted moments



134 M. Arellano, R. Carrasco / Journal of Econometrics 115 (2003) 125–157

there is no eOciency loss (as far as the estimation of the parameters of interest is
concerned) in replacing in the .rst set of orthogonality conditions (2.35) unrestricted
estimates of the ptj and the p(t−1) j.

Letting zit be a vector containing the indicators dt−1
ij (j = 1; : : : ; (2J )t−1), and

ĥt(wt
i) =

(2J )t∑
j=1

dt
ijp̂tj (2.38)

a two-step GMM method can be based on the sample orthogonality conditions

1
N

N∑
i=1

zit(�t�−1[ĥt(wt
i)]− �t−1�−1[ĥt−1(wt−1

i )]−Q�t − �Qxit)

×(t = 2; : : : ; T ) (2.39)

yielding asymptotically eOcient estimates of �; Q�t and �t subject to the normalization
restriction �1 = 1. Since both yT

i and xTi have .nite supports the model is fully para-
metric and the asymptotic distribution of the estimators can be obtained using standard
GMM asymptotic theory.
An optimal weighting matrix is given by a consistent estimate of the inverse asymp-

totic covariance matrix of the orthogonality conditions (2.39). Notice that since the lat-
ter depends on the joint limiting distribution of zit�it and p̂tj, a standard outer-product
formula using the estimated moments would be inappropriate.
In practice, the number of available moment conditions may be substantially smaller

than
∑

t (2J )
t−1 since zit will only contain the indicators corresponding to outcomes

that occurred in the data. Moreover, the sample moments will only depend on estimated
ht of non-empty cells. Detailed illustrations of these issues are provided below using
Monte Carlo simulations and an empirical application. 6

Minimum distance estimation of binary choice models using inverted probabilities
was .rst proposed by Berkson (1944) for data with many observations per cell (see
Amemiya, 1985, p. 275). Transformation (2.30) is also similar to the one employed
by Newey (1994a) for a probit model with only strictly exogenous variables. In the
strictly exogenous case, however, the error term �it does not appear since there is no
sequential updating of the conditional expectations of the individual e1ects.

2.3. Continuous predetermined variables

If xit is a continuous random variable, estimation cannot be based on cell sample
frequencies. Instead we now rely on non-parametric smoothed estimators of the reduced
form probabilities ht(wt

i) in order to construct orthogonality conditions. Another aspect

6 We expect the large N , .xed T distribution of the GMM estimator to lack a bias term even if x is
discrete with in.nite support (Delgado and Mora, 1995). On account of .nite sample performance, however,
it may be desirable to use a smoothed estimator of the probabilities, or to drop cells that contain very few
observations (as we do in the empirical application).
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is that with a continuous xit it is feasible to estimate non-parametrically the distributions
of the composite errors for each t, although this will not be pursued here. 7

The t × 1 random vector yt−1
i = (yi0; : : : ; yi(t−1)) still has a multivariate Bernouilli

distribution, and takes on 2t di1erent values &t−1
j (j=1; : : : ; 2t). Therefore, we consider

non-parametric estimates of ht(wt
i) of the form

h̃t(wt
i) =

2t∑
j=1

h̃tj(xti)1(y
t−1
i = &t−1

j ); (2.40)

where h̃tj(xti) is a non-parametric smooth (e.g. kernel) estimator of the conditional
probability

htj(xti) = Pr(yit = 1 | xti ; yt−1
i = &t−1

j ): (2.41)

Contrary to the multinomial case, now the conditional moment restrictions given by
(2.32) do not imply a .nite number of orthogonality conditions. Here we do not con-
sider the issue of selecting and estimating optimal instruments (which would be required
for asymptotic eOciency), and merely exploit the moment conditions E(wt−1

i �it) = 0.
Let us de.ne

 ̃ it(") =

(
1

wt−1
i

)
{�t�−1[h̃t(wt

i)]− �t−1�−1

× [h̃t−1(wt−1
i )]−Q�t − �Qxit} (2.42)

where "=(�;Q�2; : : : ;Q�T ; �2; : : : ; �T ). Let the sample orthogonality conditions be given
by

b̃N (") =
1
N

N∑
i=1

( ̃ i2(")′; : : : ;  ̃ iT (")′)′: (2.43)

A semi-parametric two-step GMM estimator of " solves

"̃= argmin
"

b̃N (")′AN b̃N (") (2.44)

where AN is a weighting matrix.
To illustrate why the previous moment conditions may be expected to satisfy the

rank condition and hence be suOcient to identify the parameters, let us consider the
case where T=2. In such case the 3×1 vector "=(�;Q�2; �2) would be just identi.ed
provided the following submatrix of the derivatives of the moment conditions has full
rank:

( =

(
E(xi1Qxi2) −E(xi1�−1[h2(w2

i )])

E(yi0Qxi2) −E(yi0�−1[h2(w2
i )])

)
;

7 Chen (1998) generalized the model of Newey (1994a) with strictly exogenous variables by allowing the
distribution of the composite errors to be unknown.
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which under the model’s assumptions takes the form

( =

(
E(xi1Qxi2) −E(xi1[�2 + �xi2 + E(�i |w2

i )])

E(yi0Qxi2) −E(yi0[�2 + �xi2 + E(�i |w2
i )])

)
:

Note that in a model without individual e1ects and � = 0, the rank condition will be
satis.ed unless E(yi0) = 0. 8

As long as the order and rank conditions are satis.ed, estimation could be based on
a smaller set of moments using as instruments, for example, a subset of the lagged
variables contained in wt−1

i . Nevertheless, the form of the error �it in (2.30) will remain
unchanged since the relevant non-parametric probabilities correspond to those speci.ed
by the model for the full vector of conditioning variables.
Under appropriate regularity conditions (see Newey, 1994a; Newey and McFadden,

1994):
√
Nb̃N (")

d→N(0; V0) (2.45)

with

V0 = E[( i(") + ai)( i(") + ai)′]; (2.46)

where  i(") = ( i2(")′ · · ·  iT (")′)′;  it(") = wt−1
i �it , and ai is an adjustment term that

takes into account the fact that the ht(wt
i) have been replaced by non-parametric esti-

mates. There may be a need for trimming in the .rst-stage non-parametric estimation,
in which case the second-stage moments b̃N (") will be based on a smaller e1ective
sample size.
Following Newey (1994b), V0 can be consistently estimated by mean of

Ṽ =
1
N

N∑
i=1

( ̃ i + ãi)( ̃ i + ãi)′; (2.47)

where  ̃ i =  i("̃) and

ãi =
T∑

s=2

2s∑
j=1

ãsji (2.48)

with

ãsji =
1∑N

k=1 1(y
s−1
k = �s−1

j )

N∑
k=1

(
9 ̃ k

9hsj

)
yisKsj(xsk − xsi )1(y

s−1
k = �s−1

j ) (2.49)

and Ksj(:) is the kernel used in the estimation of hsj(xsi ).
The advantage of (2.49) is that it does not require the calculation of ai as an

explicit functional of the parameters, the data, and the non-parametric probabilities. This
expression, however, can be obtained in our case as a direct application of Proposition 5

8 Our moment conditions are linear in the parameters given the non-parametric components, so that the
Jacobian ( is constant. Here we just consider the dependence of ( on the true values of the parameters.
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in Newey (1994a), which provides the basis for an alternative estimator of ai. We
illustrate the result when T = 2 and the following moment is used:

 i(") = Uw1
i {�2�−1[h2(w2

i )]− �−1[h1(w1
i )]−Q�2 − �Qx2};

where Uw1
i = (1; yi0; xi1) and "= (�;Q�2; �2). In this case ai = a1i + a2i and

a1i =− Uw1
i �{�−1[h1(w1

i )]}−1[yi1 − h1(w1
i )];

a2i =− Uw1
i �2�{�−1[h2(w2

i )]}−1[yi2 − h2(w2
i )]:

Finally, a consistent estimate of the asymptotic variance matrix of "̃ is given by

(D̃′AN D̃)−1D̃′AN ṼAN D̃(D̃′AN D̃)−1; (2.50)

where

D̃ =
1
N

N∑
i=1

9 ̃ i

9"′ : (2.51)

Alternatively, one could use a bootstrap estimator of the asymptotic variance matrix
of "̃.

2.4. Marginal e9ects of interest

The e1ect of changing xit from x′ to x′′ on the probability of yit = 1 is given by

-S
t (x

′; x′′) = Pr(�t + �x′′ + uit¿ 0)− Pr(�t + �x′ + uit¿ 0)

=Gt(�t + �x′′)− Gt(�t + �x′); (2.52)

where Gt(:) is the marginal cdf of −uit . According to our speci.cation Gt can be
written as

Gt(r) = E
[
�
(
r + E(�i |wt

i)
�t

)]
: (2.53)

To obtain a consistent estimate of -S
t (x

′; x′′), a consistent estimate of �−1
t E(�i |wt

i)
is required. In view of our estimation strategy and (2.29), a natural choice is

[�−1
t E(�i |wt

i) = �−1[ĥt(wt
i)]− �̂−1

t (�̂t + �̂xit): (2.54)

Upon substitution, the estimated e1ect is 9

-̂S
t (x

′; x′′)

=
1
N

N∑
i=1

{�(�̂−1
t �̂(x′′ − xit) + �−1[ĥt(wt

i)])

−�(�̂−1
t �̂(x′ − xit) + �−1[ĥt(wt

i)])}: (2.55)

9 A related discussion is contained in Chamberlain (1984, pp. 1272–1274).
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Note that, although � is constant, the estimated e1ect is period-speci.c as a result
of conditioning sequentially over time.
It is of some interest to distinguish -S

t (x
′; x′′) from the predictive e9ect of changing

xit from x′ to x′′ given by

-P
t (x

′; x′′)

=E{Pr(yit = 1 |yt−1
i ; xt−1

i ; xit = x′′)− Pr(yit = 1 |yt−1
i ; xt−1

i ; xit = x′)}: (2.56)

Estimation of -P
t (x

′; x′′) does not require the use of the model. It is a reduced
form e1ect that can be estimated using the non-parametric estimates of the sequential
conditional probabilities ĥt(wt

i). Note that -S
t (x

′; x′′) gives the structural e1ect of xt on
yt in the observed population of ut , while -P

t (x
′; x′′) mixes the direct e1ect of xt with

the indirect e1ect due to the dependence between � and xt .
In a model with two (or more) continuous explanatory variables, direct relative

marginal e1ects can also be obtained. These are constant over time and given by the
ratios of the corresponding � coeOcients. For example, we have

�1

�2
=
9Gt(�t + �1x1it + �2x2it)=9x1it
9Gt(�t + �1x1it + �2x2it)=9x2it

: (2.57)

2.5. Individual e9ects interacted with time e9ects

A simple extension of the basic framework outlined above is a model in which
individual e1ects are interacted with time e1ects given by

yit = 1(�t + �xit + �i1t + vit¿ 0) (2.58)

and

�i1t + vit |wt
i ∼ N(E(�i |wt

i)1t; �2
t ): (2.59)

In this model, estimation can be based on the transformation

�t�−1[ht(wt
i)]− rt�t−1�−1[ht−1(wt−1

i )]

=(�t − rt�t−1) + �xit − rt�xi(t−1) + �∗it ; (2.60)

where rt = 1t=1(t−1) and E(�∗it |wt−1
i ) = 0. A normalization restriction such as 11 = 1 is

required.

3. Experimental evidence

3.1. State dependence with unobserved heterogeneity

In this section we study the .nite sample properties of the ML and GMM estimators
described above in a binary choice model with a single lagged dependent variable by
means of Monte Carlo simulations. The model is given by

yit = 1(�+ 2yi(t−1) + �i + vit¿ 0) (t = 2; : : : ; T ): (3.1)
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This is a model of independent interest, whose basic motivation is to facilitate
the distinction between unobserved heterogeneity and state dependence in the anal-
ysis of binary-state discrete-time processes. One example is the analysis of sequences
of employment and unemployment states, where a substantive question is whether or
not unemployment causes future unemployment (e.g. Heckman (1981c) or Card and
Sullivan (1988), who use these models for measuring the e1ect of training programs
on employment and unemployment probabilities). Another example is the analysis of a
housing quality indicator over time as in the work by Moon and Stotsky (1993). Moon
and Stotsky consider the e1ect of rent control on a two state housing condition variable
(sound and unsound) allowing for state dependence and unobserved heterogeneity.
We assume that the composite error given yt−1

i = (yi1; : : : ; yi(t−1)) has a logistic
distribution of the form:

�i + vit |yt−1
i ∼ Logistic(E(�i |yt−1

i ); �2): (3.2)

Since we do not expect signi.cant di1erences between the performance of logit and
probit models, we chose the logistic function F , say, because the inverse probabilities
have an explicit form and their calculation is faster. 10

The form of the likelihood for one individual, conditional on the .rst observation,
is therefore Li =

∏T
t=2 (Fit)yit (1− Fit)(1−yit) where

Fit = F

�+ 2yi(t−1) +
2(t−1)∑
j=1

 t−1
j dt−1

ij

 ;

 t−1
j = E(�i |yt−1

i = �t−1
j ) (3.3)

and

dt−1
ij = 1(yt−1

i = �t−1
j ) (j = 1; : : : ; 2t−1):

The coeOcients  t−1
j are solved recursively using E(�i) = 0 and the law of iterated

expectations, as functions of  T−1
j and the other parameters of the model. The like-

lihood function is particularly simple in this case since the conditioning variables are
binary, and only the probabilities speci.ed by the model are required in the evaluation
of the  t−1

j . We further simpli.ed the speci.cation by keeping � and �2 constant over
time, so that the coeOcients should be interpreted as being relative to �.
The distribution of the initial observation p1 = Pr(yi1 = 1) is left unrestricted in our

model. However, since p1 enters the restriction E(�i) =  1
1 p1 +  1

2 (1 − p1) = 0, we
maximized the full likelihood of the data given by

Li × (p1)yi1 (1− p1)(1−yi1):

10 The probit transformation �−1 does not have an explicit form, but it can be easily evaluated numerically
(see, for example, Beasley and Springer, 1977).
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3.2. Some alternative likelihoods

In the simulations we also considered an alternative likelihood model conditional
on an individual e1ect with a mass point distribution. Assuming that the conditional
random variables �i |yi1 = 1 and �i |yi1 = 0 are discrete with .nite support given by
m mass points e1; : : : ; em, the likelihood for one individual given the initial observation
in this case is

LHi =
m∑

‘=1

T∏
t=2

Git(e‘)yit [1− Git(e‘)](1−yit) Pr(�i = e‘ |yi1 = �1); (3.4)

where

Git(e‘) = F(�+ 2yi(t−1) + e‘): (3.5)

LHi is a function of �; 2, the mass points e1; : : : ; em and the conditional probabilities
Pr(�i = e‘ |yi1 = �1).
Notice that the likelihood (3.4) is based on a decomposition of the joint distribution

of yT
i given by

p(yT
i ) = p(yi1)

∫ T∏
t=2

p(yit |yt−1
i ; �i) dH (�i |yi1) (3.6)

which should be distinguished from the following alternative decomposition:

p(yT
i ) =

∫ T∏
t=2

p(yit |yt−1
i ; �i)p(yi1 | �i) dH (�i): (3.7)

By specifying the conditional distributions of �i given yi1; H (�i |yi1), in (3.6) as
opposed to the marginal distribution of �i; H (�i) (as done in (3.7)), we allow for
dependence between yi1 and �i, while leaving the initial conditions of the process
unrestricted. Decomposition (3.6) is akin to the estimators of linear autoregressive
models that leave the initial conditions unrestricted. If on the other hand one wishes to
specify the distribution p(yi1 | �i) (for example, by assuming some form of stationarity),
(3.7) would be the relevant decomposition.
Specifying a mass point distribution for �i is attractive because it is Vexible, and

also because by letting the support of � grow with sample size it is often possible
to establish asymptotic properties for the estimators with respect to a model with an
unrestricted distribution for � (cf. Heckman and Singer, 1984).
The likelihood LHi only entails estimating two conditional distributions of the ef-

fects in the .rst-order autoregressive case. However, in the more general model with
predetermined variables considered in the previous section, the number of conditional
distributions would be larger. Moreover, the conditional distribution of the predeter-
mined variables given the unobserved component would be required to be able to
construct the mixing likelihood. This would cause the predetermined variables to be-
come fully endogenous, since we would e1ectively need a speci.cation of the joint
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distribution of y and x given �. 11 As a consequence, this approach may not be feasible
even with discrete explanatory variables, and even less so with continuous variables.
In the simulations we speci.ed two mass points {e1; e2} for the random variables

�i |yi1. As a result, the likelihood function contained .ve free parameters. Namely, �,
2, Pr(�i = e1 |yi1 = 1), Pr(�i = e1 |yi1 = 0), and e1. Notice that given one mass point
and the associated probabilities, the other mass point is determined by the condition
E(�i) = 0.
Another approach that we considered is Chamberlain (1985)’s conditional autore-

gressive logit estimator for the model

Pr(yit = 1 |yt−1
i ; �i) = F(2yi(t−1) + �i);

(see also Magnac, 2000). When T = 4, this method is based on the observation that
Pr(yi2 =1 |yi4; yi2 +yi3 =1; yi1; �i) is independent of �i. The corresponding conditional
MLE of 2 turns out to be of the form

2̃CML = ln(n1=n2);

where n1 and n2 are the number of observations with (1; 1; 0; 0) or (0; 0; 1; 1) in the .rst
case, and (1; 0; 1; 0) or (0; 1; 0; 1) in the second. An expression along the same lines
can be obtained for larger values of T . However, extensions to more general models
are problematic. In a model with only strictly exogenous variables in addition to lagged
y, it leads to estimators with a slower than root-N rate of convergence (HonorHe and
Kyriazidou, 2000), and little is known about models with other predetermined variables.
In addition, given that one of the original motivations was the bias from estimators

that attempt to estimate the .xed e1ects in short panels, we decided to include a logit
ML estimator that does this.
Finally, as a benchmark we calculated maximum likelihood estimates conditional on

yi1 without unobserved heterogeneity. The likelihood is given by

LRi =
T∏

t=2

(Frit)yit (1− Frit)(1−yit); (3.8)

where

Frit = F(�+ 2yi(t−1)): (3.9)

The function LRi is a special case of Li and the other likelihoods. We generated
data without unobserved heterogeneity, so that the maximizers of the .ve likelihood
functions are consistent estimates of the same parameters (a description of the design

11 A discussion of this problem in the context of a duration model with predetermined time-varying covari-
ates can be found in Bover et al. (2002). The form of a likelihood comparable to (3.4) when an additional
predetermined discrete variable xit is present is

m∑
‘=1

T∏
t=2

Git(e‘)
yit [1− Git(e‘)]

(1−yit )Pr(xit | xt−1
i ; yt−1

i ; �i = e‘)Pr(�i = e‘ | yi1; xi1):
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of the experiments is given below). Thus, we hope to assess the eOciency loss in-
curred in allowing for the various forms of unobserved heterogeneity relative to the
homogeneous model. 12

3.3. GMM estimation

We now turn to describe the GMM estimator of model (3.2) used in the Monte Carlo
analysis. By using moment conditions of the type given in (2.39), only the coeOcient
2 would be estimated. However, � is also a parameter of interest since the dynamics of
the process (3.1) is determined by both � and 2. The parameter � is identi.able from
the orthogonality conditions

E(E(�i |yt−1
i )) = E(F−1[Pr(yit = 1 |yt−1

i )]− �− 2yi(t−1)) = 0

(t = 2; : : : ; T ): (3.10)

We therefore obtained joint estimates of � and 2 relying on both .rst-di1erence and
levels sample orthogonality conditions as follows:

b1tN =
1
N

N∑
i=1

zit(F−1[ĥt(yt−1
i )]− F−1[ĥt−1(yt−2

i )]− 2Qyi(t−1))

(t = 3; : : : ; T ); (3.11)

b2tN =
1
N

N∑
i=1

(F−1[ĥt(yt−1
i )]− �− 2yi(t−1)) (t = 2; : : : ; T ); (3.12)

where zit is a subset of the indicators dt−2
ij (j=1; : : : ; 2t−2) corresponding to outcomes

that occurred in the data, and the ĥt(yt−1
i ) denote the sample frequencies

ĥt(yt−1
i ) = p̂tj ≡ 1∑N

k=1 dt−1
kj

N∑
k=1

yktdt−1
kj if yt−1

i = �t−1
j (j = 1; : : : ; 2t−1):

Note that the sample moments will only depend on relative frequencies of non-empty
cells (those with

∑N
k=1 d

t−1
kj ¿ 0), so that depending on the values of N and the model’s

parameters the actual number of p̂tj’s involved in estimation may be substantially
smaller than

∑
t 2

t−1.
The GMM results reported below are for “one-step” estimators given by

(�̂; 2̂) = argmin
T∑

t=3

b′1tN

(
N∑
i=1

zitz′it

)−1

b1tN +
T∑

t=2

b′2tN b2tN : (3.13)

The estimates in (3.13) use a non-optimal but convenient weighting matrix which does
not require the calculation of preliminary consistent estimates of � and 2.

12 It would also be of interest to consider a Monte Carlo design with heterogeneity generated according
to one of the previous models. However, in such case we would only have pseudo-true parameters for the
remaining models, since they are not nested. In Section 4 we report a simulation with heterogeneity in the
context of the application.
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In the calculation of the orthogonality conditions b1tN and b2tN , we used the following
modi.cation of the logit transformation mentioned by Cox (1970) and Amemiya (1985,
p. 278):

F−1(p̂tj) = ln
(

p̂tj + (2ntj)−1

1− p̂tj + (2ntj)−1

)
; (3.14)

where ntj is the number of observations in the cell with yt−1
i = �t−1

j , so that ntj =∑N
i=1 dt−1

ij . This modi.cation has the advantage that the transformation is still de.ned
if p̂tj = 0 or 1. Moreover, its mean bias relative to ln[ptj=(1− ptj)] can be shown to
be of a smaller order of magnitude than the bias for the standard logit transformation.

3.4. Experimental design

We generated longitudinal observations from a homogeneous stationary .rst-order
Markov process. Thus, relative to model (3.1), in the data generating process we have
�i = 0 with probability one. Moreover

p10 = Pr(yit = 1 |yi(t−1) = 0) = F(�); (3.15)

p11 = Pr(yit = 1 |yi(t−1) = 1) = F(�+ 2): (3.16)

The degree of dependence in the process can be measured by

:= corr(yit ; yi(t−1)) = p11 − p10 = F(�+ 2)− F(�) (3.17)

while the stationary probability is given by

p∗ = Pr(yit = 1) =
p10

1− (p11 − p10)
: (3.18)

So it seemed natural to start by setting combinations of values for : and p∗, from
which the implied values of � and 2 can be derived using the logistic transformation.
Although : and p∗ are natural descriptive quantities for our data generating process,

we are mainly concerned with the sampling distributions of estimates of 2 and �.
The reason is that the coeOcients in the linear index, like 2 and �, will be typically
parameters of interest in econometric applications in which the index is related to the
agents’ objective functions evaluations. Moreover, we would expect the coeOcients in
the linear index to remain well-de.ned with heterogeneous and non-stationary data.
We considered cases with := 0:2; 0:5 and p∗ = 0:2; 0:5; 0:8, which produced the

following values for � and 2

:= 0:2 := 0:5

p∗ 0.2 0.5 0.8 0.2 0.5 0.8
� −1:66 −0:4 0.57 −2:2 −1:1 −0:4
2 1.08 0.81 1.08 2.6 2.2 2.6

One would expect that the larger the value of : the more diOcult it becomes to dis-
tinguish between state dependence and unobserved heterogeneity. So large values of :
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may produce quite imprecise estimates of � and 2. As an indication of some empirically
relevant quantities, for the PSID sample that we use in Section 4, the female labour
force participation rate is 0.55, while the gross .rst-order autocorrelation in participa-
tion is 0.65, (which reVects the combined e1ect of state dependence and heterogeneity).
The estimates reported in Section 4, allowing for unobserved heterogeneity, imply a
value of : of 0.31.
For each experiment, we generated 100 samples with N=500; 1000 and T=4; 6. With

T = 4 the GMM estimates were based on 9 moment conditions (6 in .rst di1erences
and 3 in levels) and 14 cell frequencies, whereas with T = 6 they were based on 35
moments (30 in di1erences and 5 in levels) and 62 cell frequencies.

3.5. Monte Carlo results

Tables 1–4 report means, percentage bias, standard deviations and root mean squared
errors (MSE) for the GMM and ML estimates of model (3.1)–(3.2). The tables also
report results for the alternative likelihood model with mass point distributions for the
e1ects given yi1 (labelled ML-MP), for the conditional autoregressive logit model (in
the case of 2, labelled CML), and for the homogeneous model (labelled RML). Table
5 contains the results from the ML method that estimates 2 jointly with the .xed e1ects
for the subset of experiments with N = 500 and := 0:2.
The results for the experiments with T = 4 are contained in Tables 1 and 2. The

comparison between GMM and ML in those tables shows that GMM almost always
has a higher MSE for both � and 2 than ML. ML tends to have a smaller standard
deviation and bias than GMM. However, the di1erences between the two estimators
are small except in the less favorable cases. The bias in the GMM estimate of � is
worryingly large when := 0:5 and p∗ = 0:8. More generally, it is noticeable that for
the larger value of : the estimates of � and 2 are less precise and have higher MSE
than for those with : = 0:2. Also, for a given :, large or small values of p∗ tend to
produce worse estimates of 2.
Turning to the comparison between GMM/ML with the homogeneous ML (RML),

it turns out that the standard deviation of RML is between 1.5 and 3 times smaller
than that of GMM or ML, with the di1erence becoming wider in the least favourable
cases. RML is the estimator with the smallest bias and standard deviation. This result
is to be expected since RML does not allow for unobserved heterogeneity, which is in
fact absent from the data.
As far as ML-MP is concerned, the estimator of � exhibits a greater MSE than those

of GMM and ML, while in the case of 2 the result is the opposite. ML-MP estimates
of � are seriously downward biased when := 0:5 and p∗ = 0:8, even with N = 1000.
However, ML-MP estimates of 2 have substantially smaller standard deviations than
GMM/ML estimates. The poor performance of ML-MP estimates of � relative to those
of 2 is probably due to larger correlations between the estimates of � and the estimates
of the mass points. The ML-MP results may be sensitive to the number of mass points
allowed in the conditional distributions of �, but we did not explore this issue.
With T = 6, the GMM estimates always have a smaller MSE than with T = 4, but

this is due to reductions in variance that o1set larger biases in all the experiments.
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Table 1
Means and standard deviations of the estimators, N = 500, T = 4

GMM ML ML-MP RML GMM ML ML-MP CML RML

(� = 0:2; p∗ = 0:2) � =−1:66 2 = 1:08
Mean −1.65 −1.68 −1.79 −1.66 0.99 1.10 0.97 1.12 1.06
Mean bias (%) 0.6 1.2 7.8 0.0 8.3 1.8 10.2 3.7 1.8
St. dev. 0.09 0.09 0.35 0.07 0.30 0.29 0.17 0.34 0.14
Root MSE 0.09 0.09 0.37 0.07 0.31 0.29 0.20 0.34 0.14

(� = 0:2; p∗ = 0:5) � =−0:4 2 = 0:81
Mean −0.38 −0.43 −0.38 −0.39 0.76 0.85 0.73 0.80 0.78
Mean bias (%) 5.0 7.5 5.0 2.5 6.2 4.9 9.9 1.2 3.7
St. dev. 0.13 0.10 0.16 0.07 0.22 0.18 0.14 0.21 0.11
Root MSE 0.13 0.11 0.16 0.07 0.23 0.18 0.16 0.21 0.11

(� = 0:2; p∗ = 0:8) � = 0:57 2 = 1:08
Mean 0.60 0.54 0.74 0.57 1.03 1.13 0.98 1.08 1.06
Mean bias (%) 5.3 5.3 29.8 0.0 4.6 4.6 9.2 0.0 1.8
St. dev. 0.26 0.25 0.35 0.11 0.31 0.30 0.19 0.31 0.13
Root MSE 0.26 0.25 0.39 0.11 0.32 0.30 0.22 0.31 0.13

(� = 0:5; p∗ = 0:2) � =−2:2 2 = 2:6
Mean −2.16 −2.23 −2.32 −2.20 2.39 2.71 2.48 3.18 2.58
Mean bias (%) 1.8 1.4 5.4 0.0 8.1 4.2 4.6 22.3 0.8
St. dev. 0.13 0.13 0.36 0.09 0.51 0.47 0.23 2.47 0.16
Root MSE 0.13 0.13 0.38 0.09 0.55 0.48 0.26 2.54 0.16

(� = 0:5; p∗ = 0:5) � =−1:1 2 = 2:2
Mean −1.06 −1.11 −1.07 −1.08 2.12 2.23 2.13 2.21 2.16
Mean bias (%) 3.6 0.9 2.7 1.8 3.6 1.4 3.2 0.4 1.8
St. dev. 0.17 0.18 0.18 0.07 0.32 0.33 0.16 0.37 0.11
Root MSE 0.17 0.18 0.18 0.07 0.33 0.33 0.17 0.37 0.12

(� = 0:5; p∗ = 0:8) � =−0:4 2 = 2:6
Mean −0.26 −0.47 −0.19 −0.38 2.43 2.70 2.48 3.08 2.58
Mean bias (%) 35.0 17.5 52.5 5.0 6.5 3.8 4.6 18.5 0.8
St. dev. 0.44 0.34 0.46 0.11 0.53 0.43 0.23 2.09 0.13
Root MSE 0.46 0.35 0.51 0.11 0.56 0.44 0.26 2.14 0.13

100 replications. Root MSE denotes root mean squared error.

In contrast with GMM, the .nite sample biases of the ML estimates do not increase
with T for a .xed N . Since biases of this type have been shown to be sensitive to
the choice of weighting matrix in other contexts, it would be interesting to explore to
what extent they can be removed by using an optimal weighting matrix.
CML leaves both initial conditions and the distribution of the e1ects unrestricted. So

it is the most robust method, but at the expense of relying exclusively on a fraction
of the observations. In terms of MSE, it tends to lie between GMM and ML, although
typically with a smaller bias and a larger standard deviation. There is, however, some
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Table 2
Means and standard deviations of the estimators, N = 1000; T = 4

GMM ML ML-MP RML GMM ML ML-MP CML RML

(� = 0:2; p∗ = 0:2) � =−1:66 2 = 1:08
Mean −1.65 −1.66 −1.75 −1.66 1.03 1.08 1.00 1.09 1.07
Mean bias (%) 0.6 0.0 5.4 0.0 4.6 0.0 7.4 0.9 0.9
St. dev. 0.06 0.06 0.26 0.05 0.23 0.20 0.14 0.23 0.1
Root MSE 0.06 0.06 0.28 0.05 0.24 0.20 0.16 0.23 0.10

(� = 0:2; p∗ = 0:5) � =−0:4 2 = 0:81
Mean −0.40 −0.41 −0.40 −0.40 0.81 0.82 0.78 0.82 0.81
Mean bias (%) 0.0 2.5 0.0 0.0 0.0 1.2 3.7 1.2 0.0
St. dev. 0.08 0.08 0.12 0.05 0.15 0.14 0.09 0.14 0.07
Root MSE 0.08 0.08 0.12 0.05 0.15 0.14 0.10 0.14 0.07

(� = 0:2; p∗ = 0:8) � = 0:57 2 = 1:08
Mean 0.58 0.56 0.66 0.57 1.06 1.10 1.03 1.08 1.07
Mean bias (%) 1.7 1.7 15.8 0.0 1.8 1.8 4.6 0.0 0.9
St. dev. 0.17 0.16 0.24 0.09 0.22 0.20 0.14 0.22 0.11
Root MSE 0.17 0.16 0.26 0.09 0.22 0.20 0.15 0.22 0.11

(� = 0:5; p∗ = 0:2) � =−2:2 2 = 2:6
Mean −2.19 −2.20 −2.29 −2.20 2.54 2.61 2.53 2.70 2.60
Mean bias (%) 0.4 0.0 4.1 0.0 2.3 0.38 2.7 3.8 0.0
St. dev. 0.09 0.08 0.28 0.06 0.34 0.31 0.17 0.42 0.11
Root MSE 0.09 0.08 0.29 0.06 0.35 0.31 0.18 0.43 0.11

(� = 0:5; p∗ = 0:5) � =−1:1 2 = 2:2
Mean −1.07 −1.11 −1.10 −1.09 2.14 2.20 2.13 2.21 2.18
Mean bias (%) 2.7 0.91 0.0 0.9 2.7 0.0 3.2 0.4 0.9
St. dev. 0.12 0.12 0.17 0.06 0.23 0.22 0.12 0.25 0.09
Root MSE 0.12 0.12 0.17 0.06 0.24 0.22 0.14 0.25 0.09

(� = 0:5; p∗ = 0:8) � =−0:4 2 = 2:6
Mean −0.33 −0.41 −0.27 −0.39 2.5 2.63 2.52 2.63 2.59
Mean bias (%) 17.5 2.5 32.5 2.5 3.8 1.1 3.1 1.1 0.4
St. dev. 0.24 0.30 0.34 0.09 0.30 0.37 0.19 0.51 0.12
Root MSE 0.25 0.30 0.36 0.09 0.32 0.37 0.21 0.51 0.12

100 replications. Root MSE denotes root mean squared error.

evidence of a higher probability of outliers in the CML, which is reVected in very high
sample standard deviations for some of the experiments.
Table 5 reports ML estimates of 2 for : = 0:2 and N = 500, obtained jointly with

those of the .xed e1ects. Due to computing limitations, results for higher values of N
and : are not reported. The results in Table 5, however, indicate that the biases are in
all cases very large indeed for both T = 4 and T = 6.
In conclusion, the Monte Carlo results for the GMM and ML estimates of our model

suggest a similar pattern to that typically encountered in linear autoregressive models.
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Table 3
Means and standard deviations of the estimators, N = 500; T = 6

GMM ML ML-MP RML GMM ML ML-MP CML RML

(� = 0:2; p∗ = 0:2) � =−1:66 2 = 1:08
Mean −1.62 −1.71 −1.71 −1.66 0.90 1.17 1.00 1.05 1.06
Mean bias (%) 2.4 3.0 3.0 0.0 16.7 8.3 7.4 2.8 1.8
St. dev. 0.07 0.07 0.16 0.06 0.21 0.19 0.14 0.16 0.12
Root MSE 0.08 0.08 0.17 0.06 0.28 0.21 0.16 0.16 0.12

(� = 0:2; p∗ = 0:5) � =−0:4 2 = 0:81
Mean −0.35 −0.39 −0.39 −0.39 0.70 0.80 0.76 0.79 0.79
Mean bias (%) 12.5 2.5 2.5 2.5 13.6 1.2 6.2 2.5 2.5
St. dev. 0.09 0.07 0.08 0.06 0.15 0.13 0.11 0.12 0.10
Root MSE 0.11 0.07 0.08 0.06 0.19 0.13 0.12 0.12 0.10

(� = 0:2; p∗ = 0:8) � = 0:57 2 = 1:08
Mean 0.67 0.54 0.67 0.57 0.93 1.12 1.00 1.07 1.06
Mean bias (%) 17.5 5.3 17.5 0.0 13.9 3.7 7.4 0.9 1.8
St. dev. 0.17 0.10 0.17 0.09 0.21 0.13 0.12 0.16 0.11
Root MSE 0.20 0.11 0.20 0.09 0.26 0.13 0.15 0.16 0.11

(� = 0:5; p∗ = 0:2) � =−2:2 2 = 2:6
Mean −2.10 −2.24 −2.15 −2.19 2.15 2.70 2.38 2.59 2.58
Mean bias (%) 4.5 1.8 2.3 0.4 17.3 3.8 8.5 0.4 0.8
St. dev. 0.09 0.09 0.62 0.08 0.31 0.28 0.62 0.25 0.13
Root MSE 0.13 0.10 0.62 0.08 0.55 0.30 0.66 0.25 0.13

(� = 0:5; p∗ = 0:5) � =−1:1 2 = 2:2
Mean −0.98 −1.09 −1.08 −1.10 1.96 2.19 2.14 2.19 2.18
Mean bias (%) 10.9 0.9 1.81 0.0 10.9 0.4 2.7 0.4 0.9
St. dev. 0.11 0.09 0.14 0.06 0.21 0.17 0.11 0.16 0.10
Root MSE 0.16 0.09 0.14 0.06 0.32 0.17 0.13 0.16 0.10

(� = 0:5; p ∗ =0:8) � =−0:4 2 = 2:6
Mean −0.06 −0.42 −0.21 −0.38 2.16 2.62 2.48 2.58 2.56
Mean bias (%) 85.0 5.0 47.5 5.0 16.9 0.8 4.6 0.8 1.5
St. dev. 0.25 0.10 0.34 0.10 0.31 0.13 0.15 0.24 0.12
Root MSE 0.42 0.10 0.39 0.10 0.54 0.13 0.19 0.24 0.13

100 replications. Root MSE denotes root mean squared error.

Namely, both GMM and ML perform well when the amount of state dependence is
moderate, but GMM biases tend to be higher the higher the persistence in the data.

4. An application to female labour force participation

We illustrated the previous methods by estimating a relationship between female
labour force participation and children variables allowing for individual e1ects. We
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Table 4
Means and standard deviations of the estimators, N = 1000; T = 6

GMM ML ML-MP RML GMM ML ML-MP CML RML

(� = 0:2; p∗ = 0:2) � =−1:66 2 = 1:08
Mean −1.64 −1.67 −1.70 −1.66 1.0 1.13 1.04 1.08 1.08
Mean bias (%) 1.2 0.6 2.4 0.0 7.4 4.6 3.7 0.0 0.0
St. dev. 0.05 0.04 0.13 0.04 0.15 0.11 0.09 0.12 0.07
Root MSE 0.06 0.05 0.13 0.05 0.17 0.12 0.10 0.12 0.07

(� = 0:2; p∗ = 0:5) � =−0:4 2 = 0:81
Mean −0.37 −0.40 −0.38 −0.39 0.76 0.81 0.77 0.80 0.79
Mean bias (%) 7.5 0.0 5.0 2.5 6.2 0.0 4.9 1.2 2.5
St. dev. 0.05 0.05 0.06 0.04 0.09 0.08 0.06 0.08 0.06
Root MSE 0.06 0.05 0.06 0.05 0.11 0.08 0.07 0.08 0.06

(� = 0:2; p∗ = 0:8) � = 0:57 2 = 1:08
Mean 0.61 0.56 0.62 0.57 1.02 1.10 1.04 1.08 1.07
Mean bias (%) 7.0 1.7 8.8 0.0 5.5 1.8 3.7 0.0 0.9
St. dev. 0.12 0.08 0.09 0.07 0.16 0.10 0.10 0.13 0.09
Root MSE 0.13 0.08 0.11 0.07 0.17 0.10 0.11 0.13 0.09

(� = 0:5; p∗ = 0:2) � =−2:2 2 = 2:6
Mean −2.16 −2.22 −2.24 −2.20 2.40 2.65 2.55 2.60 2.60
Mean bias (%) 1.8 0.9 1.8 0.0 7.7 1.9 1.9 0.0 0.0
St. dev. 0.07 0.07 0.12 0.05 0.25 0.18 0.12 0.17 0.08
Root MSE 0.08 0.07 0.13 0.05 0.32 0.19 0.13 0.17 0.08

(� = 0:5; p∗ = 0:5) � =−1:1 2 = 2:2
Mean −1.02 −1.11 −1.07 −1.09 2.05 2.20 2.15 2.17 2.19
Mean bias (%) 7.3 0.9 2.7 0.9 6.8 0.0 2.3 1.4 0.4
St. dev. 0.08 0.08 0.12 0.04 0.15 0.14 0.08 0.11 0.06
Root MSE 0.11 0.08 0.12 0.05 0.21 0.14 0.10 0.11 0.06

(� = 0:5; p∗ = 0:8) � =−0:4 2 = 2:6
Mean −0.24 −0.41 −0.31 −0.39 2.39 2.61 2.55 2.60 2.60
Mean bias (%) 40.0 2.5 22.5 2.5 8.1 0.4 1.9 0.0 0.0
St. dev. 0.19 0.08 0.14 0.06 0.25 0.11 0.1 0.18 0.09
Root MSE 0.25 0.08 0.16 0.06 0.33 0.11 0.12 0.18 0.09

100 replications. Root MSE denotes root mean squared error.

used data on 384 white married women from the random sub-sample of the Panel
Study of Income Dynamics (PSID), for the years 1971, 1973, 1975, and 1977. Only
women continuously married with the same husband and who were 20–50 years old
in 1971 were included in the sample.
The starting point is an equation of the form:

yit = 1(�+ �′xit + �i + vit¿ 0); (4.1)

where yit=1 if the ith woman worked in year t. The e1ect of children is speci.ed by the
vector xit which consists of two dummy variables: xit =(k12it ; k35it)′. The .rst dummy
equals 1 if the age of the youngest child is 1 or 2, while the second takes the value 1 if
the youngest child is aged 3, 4 or 5. This particular speci.cation is motivated by the fact
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Table 5
Means and standard deviations of .xed e1ects estimates of 2 N = 500, � = 0:2

T = 4 T = 6

p∗ = 0:2 2 = 1:08
Mean −1.42 −0.30
St. dev. 0.21 0.13
Root MSE 2.51 1.39

p∗ = 0:5 2 = 0:81
Mean −1.32 −0.26
St. dev. 0.18 0.11
Root MSE 2.14 1.08

p∗ = 0:8 2 = 1:08
Mean −1.40 −0.27
St. dev. 0.23 0.13
Root MSE 2.49 1.36

100 replications. Root MSE denotes root mean squared error.

that most of the children’s e1ects on participation appear to depend on the presence of
very young children, more so than, for example, on the total number of children living
in the household (see Browning, 1992). The individual-speci.c e1ect �i will capture
unobserved permanent components in both wages and tastes for non-market time. 13

Table 6 contains the estimates of four di1erent logit speci.cations of the basic model
that treat children as strictly exogenous variables, with and without time dummies. For
simplicity we describe the methods with reference to the latter. Column a labelled
“pooled levels” presents the results from a model without unobserved heterogeneity. In
this case the log-likelihood function takes the form

La =
N∑
i=1

T∑
t=1

{yit ln Fit + (1− yit) ln(1− Fit)}; (4.2)

where Fit = F(�+ �′xit).
Column b reports estimates from a pseudo-conditional logit log-likelihood that leaves

the distribution of the e1ects unrestricted. The form of the criterion is

Lb =
T∑

t=2

N∑
i=1

{yit(1− yi(t−1)) ln F(�′Qxit)

+ (1− yit)yi(t−1) ln[1− F(�′Qxit)]}=
T∑

t=2

Lbt : (4.3)

13 Hyslop (1999) estimated female participation equations with state dependence, serial correlation and
individual e1ects, using a richer set of explanatory variables but ruling out feedback from participation
histories into fertility decisions.



150 M. Arellano, R. Carrasco / Journal of Econometrics 115 (2003) 125–157

Table 6
Female labour force participation logit models, exogenous children

Independent Pseudo-ML GMM

variables a b c d

Pooled Conditional Linear Unrestricted
levels logit e1ects e1ects

Models without time dummies
k12t −1.74 −1.62 −1.26 −1.62

(0.26) (0.71) (0.31) (0.49)
k35t −0.60 −1.27 −0.76 −0.92

(0.17) (0.50) (0.18) (0.08)
Constant 0.42 0.38 0.44

(0.06) (0.10) (0.07)

Models with time dummies
k12t −1.70 −1.38 −1.14 −1.37

(0.27) (0.66) (0.29) (0.51)
k35t −0.56 −1.06 −0.67 −0.71

(0.17) (0.53) (0.18) (0.12)
Constant71 0.41 0.36 0.38

(0.11) (0.12) (0.06)
Constant73 0.27 0.53 0.23 0.29

(0.11) (0.27) (0.12) (0.06)
Constant75 0.40 0.52 0.38 0.43

(0.11) (0.27) (0.13) (0.11)
Constant77 0.56 −0.28 0.56 0.56

(0.11) (0.25) (0.13) (0.05)

N =384, white married women between 20 and 50 years old in 1971, from the PSID random subsample.
Years = 1971, 1973, 1975, 1977.

k12 = 1 if the age of the youngest child is 1 or 2.
k35 = 1 if the age of the youngest child is 3, 4 or 5.
Figures in parentheses are standard errors.
Estimated constants for conditional logit with time dummies are in .rst di1erences.

The term Lbt is the conditional logit log-likelihood given a suOcient statistic for the
.xed e1ect of a panel consisting of waves t−1 and t only (Chamberlain, 1980). Thus,
although the estimator that maximizes Lb is consistent regardless of the value of T , Lb

would only be the actual conditional logit log-likelihood when T = 2.
Column c reports pseudo-ML estimates from a model in which the conditional mean

of the e1ects is restricted to be linear (as in Chamberlain, 1984). The form of the
criterion in this case is the same as (4.2), but with probabilities given by

Fit = F

(
�+ �′xit +

T∑
s=1

=′sxis

)
: (4.4)

Finally, column d contains GMM estimates of a generalization of the previous
model that leaves the conditional mean of the e1ects unrestricted (cf. Newey, 1994a).
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Estimation is based on the following sample orthogonality conditions:

btN =
∑

i

1(xTi = �T
j )(g

∗
it − �′x∗it); (4.5)

where git=F−1[P̂r(yt=1 | xTi )]; P̂r(yt=1 | xTi ) are cell-speci.c sample frequencies, and
the stars denote that the variables have been transformed into orthogonal deviations (cf.
Arellano and Bover, 1995, and further detail given below). All the cells with less than
four observations were dropped, and as a result the number of orthogonality conditions
used in the estimation was also reduced.
We can observe that relative to the rest of the estimates, the pooled levels estimates

of the coeOcient on k12 are larger (in absolute value) while those of the coeOcient
on k35 are smaller. Aside from this, it is of some interest to compare the conditional
e1ects estimates in column b, with the random e1ects estimates in columns c and d.
The estimates in column c, which are the most restrictive, are more at variance with
the conditional e1ects estimates than the less restrictive estimates shown in column d.
Note, however, that models c and d are not nested within model b, because model
b assumes that vit | xTi ; �i is logistic whereas models c and d assume that it is the
composite error �i + vit | xTi the one which has a logistic distribution.

The previous remarks are true for both the estimates with and without time dummies,
although the latter are smaller than the former in all cases. This fact suggests the
presence of non-negligible cyclical e1ects on female participation.
Table 7 contains GMM estimates that treat the children variables as predetermined

by conditioning on lagged children and lagged participation. The estimates are based
on orthogonality conditions of the type described in Section 2, except for the fact that
we used orthogonal deviations as opposed to .rst-di1erences. Speci.cally, we used the
following sample moments

bd
tN =

∑
i

zit(f∗
it − �∗t − �′x∗it) (t = 2; 3);

b‘
tN =

∑
i

(fit − �t − �′xit) (t = 2; 3; 4);

where fit=F−1[P̂r(yt=1 |yt−1
i ; xti)], and starred variables denote orthogonal deviations

as in f∗
i2 =

√
2=3[fi2−0:5(fi3 +fi4)] and f∗

i3 =
√
1=2(fi3−fi4). Of a total of 32 pos-

sible values of (yi1; xi1; xi2) and 256 of (yi1; yi2; xi1; xi2; xi3), only 17 and 37 occurred in
the data. Hence zi2 and zi3 are, respectively, 17×1 and 37×1 vectors containing binary
indicators for those outcomes. Moreover, we only calculated unrestricted frequencies
P̂r(yt = 1 |yt−1

i ; xti) for cells containing at least 4 observations. In this way, the num-
bers of cell frequencies used by the GMM estimator were 9 for (yi1; xi1; xi2), 12 for
(yi1; yi2; xi1; xi2; xi3) and 13 for (yi1; yi2; yi3; xi1; : : : ; xi4), and the e1ective sample size
was reduced from 384 to 308. 14 With these speci.cations, we calculated a one-step

14 Except for b‘2N and b‘3N which were based on 360 and 339 observations, respectively.
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Table 7
Female labour force participation logit models, predetermined children

Independent variables GMM

a b c d

k12t −3.14 −3.26 −2.00 −2.18
(0.64) (0.65) (0.60) (0.61)

k35t −1.40 −1.15 −0.77 −0.61
(0.35) (0.40) (0.36) (0.39)

yt−1 1.41 1.20
(0.53) (0.55)

Constant 0.64 −0.15
(0.14) (0.34)

Constant73 0.37 −0.29
(0.17) (0.34)

Constant75 0.61 −0.04
(0.18) (0.34)

Constant77 0.81 0.09
(0.20) (0.42)

N =384, white married women between 20 and 50 years old in 1971, from the PSID random subsample.
Years = 1971, 1973, 1975, 1977.

k12 = 1 if the age of the youngest child is 1 or 2.
k35 = 1 if the age of the youngest child is 3, 4 or 5.
Figures in parentheses are standard errors.

GMM estimator of the 5 parameters (�2; �3; �4; �′), based on 57 moments, 34 sample
frequencies, and 308 observations, that maximized

3∑
t=2

bd′
tN

(∑
i

zitz′it

)−1

bd
tN +

4∑
t=2

b‘′
tN b

‘
tN :

We report estimates with and without period-speci.c intercepts, for both the basic
model and an extended model that includes lagged participation as a regressor. In-
terestingly, the baseline model’s estimates are markedly di1erent from the estimates
obtained in Table 6 under strict exogeneity, implying stronger e1ects of small children
on participation. The interpretation of these di1erences, however, is not straightforward
since they may be the result of misspeci.cation. 15 In fact, allowing for variation over
time in the intercepts substantially reduces the impact of the children variables. Fi-
nally, when time dummies are included, lagged participation is found to be marginally
signi.cant. We also tried a more general speci.cation including interactions between

15 Nevertheless, it may be mentioned that, working with a di1erent framework, Rosenzweig and Wolpin
(1980) found that the use of actual fertility in participation equations understated the impact of exogenous
changes in fertility on female work status.
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Table 8
E1ects on female labour force participation probabilities logit models, predetermined children

� = (−3:14;−1:40) � = (−2:00;−0:77)

1973 1975 1977 1973 1975 1977

Changing (k12, k35)
from (0,1) to (1,1) −0.33 −0.36 −0.38 −0.29 −0.30 −0.30
from (0,0) to (1,0) −0.46 −0.46 −0.45 −0.31 −0.30 −0.29
from (1,0) to (1,1) −0.09 −0.11 −0.12 −0.10 −0.11 −0.11

lagged participation and children, but none of the interactions were signi.cant, and the
other coeOcients did not change.
In order to obtain consistent standard errors for the GMM estimates in Table 7 and in

column d of Table 6, we estimated the variance of the sample orthogonality conditions,
and took into account that the weighting matrix was non-optimal. This involved the
estimation of the joint covariance matrix of the moment restrictions using the true
probabilities, and the unrestricted cell sample frequencies (see Appendix A).
The implications of the results in Table 7 are that young children have a negative

e1ect on female labour participation (from the signs of the coeOcients) and that 1–2
year olds have a larger negative e1ect than 3–5 year olds (from the ratio between
the estimates). To acquire additional information of interest we calculated the implied
structural changes in the probabilities using the marginal e1ect estimator described in
(2.55). This estimator holds constant the indirect e1ect of children on participation due
to their dependence with individual e1ects. Table 8 reports changes in the participation
probabilities corresponding to estimates with and without year e1ects in columns a and
c of Table 7. Controlling for year e1ects, having a 1–2 year old child reduces the
probability of participation by approximately 30 percentage points, while having a 3–5
year old reduces it by 10 percentage points.
The reported estimates are calculated under the assumption that variances are constant

over time. The impact of allowing for unequal variances on the estimated children
e1ects is an issue that remains to be explored.
Simulation evidence on the properties of the estimators. We simulated data calibrated

to the PSID sample to study the .nite sample properties of the GMM estimator in the
empirical application. This also had the additional interest of exhibiting some Monte
Carlo results with heterogeneity, which complement those reported in Section 3 and
illustrate how to generate heterogeneous data from our model.
In order to specify the data generation process, we .rst have to choose the values

of the structural parameters � in (4.1) and of  T
j = E(� |wT = �T

j ). In our case T = 4
and wT =(x1; : : : ; x4; y1; : : : ; y3) is an 11×1 vector of binary variables, so that there are
211=2048 di1erent  4

j . We also need to choose Pr(x1=&2j ; y1=&1k) and �tj(xt−1; yt−1)=
Pr(xt=&2j | xt−1; yt−1) for t=2; 3; 4 and each possible value of (xt−1; yt−1). Next, given
these quantities, we obtain E(� |w3) for given w3 = (x1; x2; x3; y1; y2) as the solution to
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the non-linear equation:

E(� |w3) =
∑
j

∑
k

E(� |w3; x4 = &2j ; y3 = &1k) Pr(x4 = &2j ; y3 = &1k |w3)

=
∑
j

∑
k

E(� |w3; x4 = &2j ; y3 = &1k)

×Pr(x4 = &2j |w3; y3 = &1k) Pr(y3 = &1k |w3);

where Pr(y3 = &1k |w3) is the probability speci.ed by the model, e.g.

Pr(y3 = 1 |w3) = F[�′x3 + E(� |w3)]:

The terms E(� |w3; x4 = &2j ; y3 = &1k) and Pr(x4 = &2j |w3; y3 = &1k) correspond to those
labelled above as  4

j and �4j, respectively. The procedure is repeated 28 = 256 times
to obtain as many  3

j = E(� |w3 = �3
j ). Finally, we obtain the 25 = 32 terms  2

j =
E(� |w2 = �2

j ) solving similar non-linear equations as functions of  3
j and �3j.

Having speci.ed the model, we can begin by simulating data on (x1; y1) with prob-
abilities Pr(x1 = &2j ; y1 = &1k). Next, we obtain data on x2 from �2j(x1; y1), and then on
y2 using the model’s probability F[�′x2 +E(� |w2)]. These are followed by data on x3
from �3j(x2; x1; y1; y2), and so on.
We set � to the estimated values in Table 7, col. 1, � = (−3:14;−1:40). To select

values for  4
j we considered a linear speci.cation of the conditional mean by estimating

logit equations of the form

yi4 = 1(−3:14x1i4 − 1:4x2i4 + �0 + �1yi1 + �2yi2 + �3yi3 + �′4x
T
i + �i4 ¿ 0);

and set E(� |w4)=−1:3+0:49yi1 +0:89yi2 +2:6yi3, which correspond to the empirical
estimates of �0, �1 , �2 and �3 with �4 = 0, since the estimated �4 were insigni.-
cant. Initial observations of x1 and y1 were randomly generated using their marginal
probabilities in the empirical data (0.10, 0.16, and 0.54, respectively). Subsequent ob-
servations of x2, x3 and x4 were generated from univariate unrestricted autoregressive
logit equations since cross terms were mostly insigni.cant. 16

16 The equations are

x1i2 = 1(−3:0 + 2:3x1i1 + ?1i2 ¿ 0);

x1i3 = 1(−4:2− 0:03x1i1 + 3:8x1i2 + ?1i3 ¿ 0);

x1i4 = 1(−4:7 + 0:88x1i1 + 0:36x1i2 + 3:3x1i3 + ?1i4 ¿ 0);

x2i2 = 1(−2:5 + 2:0x2i1 + ?2i2 ¿ 0);

x2i3 = 1(−2:9− 0:97x2i1 + 2:3x2i2 + ?2i3 ¿ 0);

x2i4 = 1(−3:8 + 1:8x2i1 − 0:58x2i2 + 2:0x2i3 + ?2i4 ¿ 0):
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Table 9
Monte Carlo simulation for the GMM estimates used in the empirical application N = 384, T = 4

�1 =−3:14 �2 =−1:41

Mean −3.10 −1.41
St. dev. 1.43 0.43
Skewness 3.9 0.35
Kurtosis 24.5 3.7

Quantiles:
0.10 −4.18 −1.93
0.25 −3.76 −1.69
0.50 −3.28 −1.45
0.75 −2.68 −1.14
0.90 −2.15 −0.88

100 replications.

Table 9 contains the simulation results for the GMM estimates used in the .rst
column of Table 7. The results for this experiment are encouraging, except for the fact
that with N =384 there is some evidence of non-normality in the sampling distribution
of the estimate of �1. 17 Both mean and median biases are negligible, and measured
dispersion indicates that the estimates are reasonably informative for the sample size
used in the application. These results, however, should be viewed with caution since
with such a small sample size the variances of the estimates are likely to be sensitive
to alternative speci.cations of the conditional mean of the e1ects and the processes of
the explanatory variables.
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Appendix A. Formulae for standard errors

All the GMM estimates that we use in the empirical application in Section 4 can be
written in the general form

"̂= argmin′
[
1
N

N∑
i=1

 i(p̂; ")

]′
AN

[
1
N

N∑
i=1

 i(p̂; ")

]
;

17 In a simulation of the same model with N = 3000 (not reported) the skewness and kurtosis coeOcients
of the estimate of �1 were −0:2 and 3.2, respectively.
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where AN is a weight matrix, and p̂ is a vector of cell-speci.c sample frequencies that
consistently estimate the unknown probabilities p. We may regard p̂ as the solution
to the moment equations

1
N

N∑
i=1

hi(p̂) = 0;

where hi(:) is a vector of linear functions of the same dimension as p, so that

√
N (p̂− p) =

(
− 1

N

N∑
i=1

9hi(p)
9p′

)−1
1√
N

N∑
i=1

hi(p):

Moreover, using a .rst-order Taylor expansion we have

1√
N

N∑
i=1

 i(p̂; ") =
1√
N

N∑
i=1

 i(p; ") +

(
1
N

N∑
i=1

9 i(p; ")
9p′

)√
N (p̂− p) + op(1)

= [I;−QN ]
1√
N

N∑
i=1

&i(p; ") + op(1);

where &i(p; ") = [ i(p; ")′; hi(p)′]′ and QN = (
∑

i 9 i(p; ")=9p′)(
∑

i 9hi(p)=9p′)−1.
Thus a consistent estimate of the asymptotic variance of N−1=2∑

i  i(p̂; ") is

Ŵ = [I;−Q̂N ]
1
N

N∑
i=1

&i(p̂; "̂)&i(p̂; "̂)′[I;−Q̂N ]′;

where Q̂N is similar to QN but replacing p and " by p̂ and "̂, respectively. Finally, from
standard GMM theory, a consistent estimator of the asymptotic variance of

√
N ("̂−")

is given by the sandwich formula

V̂ " = (D̂′
"AN D̂")−1D̂′

"AN ŴAN D̂"(D̂′
"AN D̂")−1;

where D̂" = N−1 ∑N
i=1 9 i(p̂; "̂)=9"′.
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