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ROBUST PRIORS IN NONLINEAR PANEL DATA MODELS

BY MANUEL ARELLANO AND STÉPHANE BONHOMME1

Many approaches to estimation of panel models are based on an average or inte-
grated likelihood that assigns weights to different values of the individual effects. Fixed
effects, random effects, and Bayesian approaches all fall into this category. We provide
a characterization of the class of weights (or priors) that produce estimators that are
first-order unbiased. We show that such bias-reducing weights will depend on the data
in general unless an orthogonal reparameterization or an essentially equivalent condi-
tion is available. Two intuitively appealing weighting schemes are discussed. We argue
that asymptotically valid confidence intervals can be read from the posterior distribu-
tion of the common parameters when N and T grow at the same rate. Next, we show
that random effects estimators are not bias reducing in general and we discuss impor-
tant exceptions. Moreover, the bias depends on the Kullback–Leibler distance between
the population distribution of the effects and its best approximation in the random ef-
fects family. Finally, we show that, in general, standard random effects estimation of
marginal effects is inconsistent for large T , whereas the posterior mean of the mar-
ginal effect is large-T consistent, and we provide conditions for bias reduction. Some
examples and Monte Carlo experiments illustrate the results.

KEYWORDS: Panel data, incidental parameters, bias reduction, integrated likeli-
hood, priors.

1. INTRODUCTION

IN A PANEL MODEL the likelihood of the data yi for a given unit is typically a
function f (yi� θ�αi)= fi(θ�αi) of common and individual specific parameters
θ and αi, respectively. Interest centers on the estimation of θ or other common
policy parameters constructed as summary measures of the two types of para-
meters and data. The central feature of this estimation problem is the presence
of many nuisance parameters (the individual effects) when the cross-sectional
dimension is large relative to the number of time-series observations.

Many approaches to estimation of θ in this context are based on an average
likelihood that assigns weights to different values of αi:

f ai (θ)=
∫
fi(θ�αi)wi(αi)dαi�(1)

where wi(αi) is a possibly θ-specific weight, related to a discrete or continu-
ous measure. An estimate of θ is then usually chosen to maximize the average
likelihood of the sample under cross-sectional independence:

∑N

i=1 ln f ai (θ).
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acknowledged.
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A fixed effects approach that estimates θ jointly with the individual effects
by maximum likelihood (ML) falls into this category with weights assigning all
mass to αi = α̂i(θ), where α̂i(θ) is the maximum likelihood estimator of αi for
given θ. That is,

wi(αi)= δ(αi − α̂i(θ))�(2)

where δ(·) denotes Dirac’s delta function. The resulting average likelihood in
this case is just the concentrated likelihood fi(θ� α̂i(θ)).

A random effects approach is also based on an average likelihood in which
the weights are chosen as a model for the distribution of individual effects in
the population given covariates and initial observations. In this case, wi(αi) is a
parametric or semiparametric density or probability mass function which does
not depend on θ, but includes additional unknown coefficients:

wi(αi)= πi(αi;ξ)�
Finally, in a Bayesian approach, beginning with a joint prior for common

and individual parameters π(θ�α1� � � � �αN), an average likelihood is also con-
structed. In this case, weights are chosen as a formulation of the prior proba-
bility distribution of αi given θ, covariates, and initial observations, under the
assumption of prior conditional independence of α1� � � � �αN given θ:

wi(αi)= πi(αi|θ)
such that

π(θ�α1� � � � �αN)= π1(α1|θ)� � � � �πN(αN |θ)π(θ)�(3)

However, αi and θ need not be independent, so that the weights assigned to
different values of αi may depend on the value of θ.

All these approaches, in general, lead to estimators of θ that are not consis-
tent as N tends to infinity for fixed T , but have large-N biases of order 1/T .
This situation, known as the incidental parameter problem, is of particular con-
cern when T is small relative to N (a common situation in applications) and
has become one of the main challenges in modern econometrics.2

The traditional reaction to this problem has been to look for estimators that
yield fixed-T consistency as N goes to infinity.3 One drawback of these meth-
ods is that they are somewhat limited to linear models and certain nonlinear
models, often due to the fact that fixed-T identification itself is problematic.

2The classic reference on the incidental parameter problem is Neyman and Scott (1948).
Lancaster (2000) reviewed the history of the problem since then.

3See Arellano and Honoré (2001) for a review.
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Other considerations are that their properties may deteriorate as T increases
and that there may be superior methods that are not fixed-T consistent.4

More recently, it has been argued that the incidental parameter problem can
be viewed as time-series finite-sample bias when T tends to infinity. Follow-
ing this perspective, several approaches have been proposed to correct for the
time-series bias. These methods include bias-correction of the ML estimator
of the common parameters (Hahn and Newey (2004), Hahn and Kuersteiner
(2004), Dhaene, Jochmans, and Thuysbaert (2006)), of the moment equation
(Woutersen (2002), Arellano (2003), Carro (2007)), or of the objective func-
tion (Arellano and Hahn (2006, 2007), Bester and Hansen (2005a), Hospido
(2006)), each of them based on analytical or simulation-based approximations.

The aim in this literature has been to obtain estimators of θ with biases of
order 1/T 2 (as opposed to 1/T ) and similar large-sample dispersion as the
corresponding uncorrected methods when T/N tends to a constant. This is
done in the hope that the reduction in the order of magnitude of the bias will
essentially eliminate the incidental parameter problem, even in panels where
T is much smaller than N , as long as individual time series are statistically
informative.

In this paper, we consider estimators that maximize an average likelihood
such as (1) and provide a characterization of the class of weights that pro-
duce estimators that are first-order unbiased. Specifically, we consider θ̂ =
arg maxθ

∑N

i=1 ln f ai (θ) for general weight functions, or priors,wi(αi).5 For fixed
T , we can define the pseudo true value θT = plimN→∞ θ̂. In general, θT �= θ0.
However, expanding in powers of T ,

θT = θ0 + B

T
+ o

(
1
T

)
�

We look for priors that yield B= 0.
Our results suggest new bias-reducing estimators with attractive computa-

tional properties, as well as a natural way to obtain asymptotic confidence in-
tervals. They also provide important insights into the properties of fixed ef-
fects, random effects, and Bayesian nonlinear panel estimators in a unified
framework.

The approach we follow was first considered in the panel data context by
Lancaster (2002) from a Bayesian perspective, in situations where common
parameters and fixed effects can be made information orthogonal by repara-

4Alvarez and Arellano (2003) showed that standard panel generalized method of moments
(GMM) estimators of linear dynamic models are asymptotically biased as T and N increase at
the same rate.

5We shall interchangeably use the terms “weights” and “priors,” since in this paper we treat
priors as automatic weighting schemes.
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meterization.6 Indeed, it can be shown that under information orthogonality,
taking a uniform prior for the effects reduces the bias on the parameter of in-
terest. In this paper we generalize this approach to situations where orthogonal
reparameterizations do not exist.

We start with a characterization of bias-reducing priors. For a given weight
function or prior, we derive the expression of the 1/T term of the bias of the
average likelihood relative to an infeasible average likelihood without uncer-
tainty about pseudo true values of the effects for given values of θ. We use this
finding to show that there always exist bias-reducing weights. This result pro-
vides a generalization of Lancaster’s approach to a much wider class of models.
We also find an expression for the bias of the score of the average or integrated
likelihood, which allows us to make the link with information orthogonality.
Namely we show that, when (generalized) orthogonal reparameterizations of
the fixed effects are not available, bias-reducing priors will in general, depend
on the data.

We discuss two specific data-dependent bias-reducing priors. The first one,
which we call the robust prior, can be written as a combination of a Hessian
and an outer product of the score term. As such it is related to, but different
from, the nonsubjective prior introduced by Harold Jeffreys. The second bias-
reducing prior is just the normal approximation to the sampling distribution of
the estimated effects for given θ:

wi(αi)∼ N
(̂
αi(θ)� V̂ar[̂αi(θ)]

)
�

The bias-reduction property comes from the fact that, contrary to (2), the vari-
ability of the fixed effects estimates and its dependence on θ are taken into
account.

Given a bias-reducing prior, estimation of the common parameters can be
performed by integration methods, as well as by using Bayesian simulation
techniques such as the Markov chain Monte Carlo. The possibility of using
computationally efficient techniques for estimation is an appealing feature of
the method we propose. In addition, simulation methods can also be useful
to compute confidence intervals. Building on Chernozhukov and Hong (2003),
we argue that asymptotically valid confidence intervals of the parameter esti-
mates can be read from the quantiles of the posterior distribution of θ whenN
and T grow at the same rate.

Next we study random effects estimation, which we see as a particular case of
the previous analysis when the priors on the individual effects are independent
of the common parameters. We find that in the absence of prior knowledge on
the distribution of the individual effects in the population, it is not possible, in

6The classic paper on information orthogonality is Cox and Reid (1987), and its discussion by
Sweeting (1987) makes the connection between orthogonality and inference from the integrated
likelihood.
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general, to correct for first-order bias. For a given random effects specification,
we characterize the set of models for which random effects maximum likeli-
hood (REML) is robust. As an important special case, we derive a necessary
and sufficient condition for the Gaussian REML estimator to be bias reduc-
ing, which includes the class of linear autoregressive models. In more general
nonlinear models, however, the use of Gaussian REML has no bias-reducing
asymptotic justification.

In contrast, if the random effects family approximates the population distri-
bution of individual effects well, the properties of REML improve. Specifically,
we show that the first-order bias of the REML estimator depends on the dis-
tance between the distribution of individual effects and its best approximation,
in a Kullback–Leibler sense, in the random effects family. This suggests that
using a flexible distribution for the effects may reduce the bias on the parame-
ter of interest. As an example, we consider the case of a normal mixture with
a number of components that grows with N , and we obtain first-order bias
reduction of the REML estimator in a model without covariates.

Finally, we study the estimation of averages over individual effects, such as
average marginal effects. We compare two estimators: First, the standard ran-
dom effects estimator, which is inconsistent for large T unless the population
distribution of the effects belongs to the chosen family of priors; second, the
Bayesian fixed effects (BFE) estimator, defined as the posterior mean of the
marginal effect, which is large-T consistent. Thus, in the presence of misspec-
ification, by updating the prior given the data, the bias of marginal effects is
reduced by an order of magnitude.

We compute the first-order bias term of BFE estimators of marginal effects.
Priors that are bias reducing for the common parameters do not lead, in gen-
eral, to bias reduction of marginal effects, and bias-reducing priors for mar-
ginal effects are specific to the effect considered. The BFE first-order bias de-
pends on the distance between the population distribution of the effects and
its best fitting approximation in the chosen family of priors. So, while updating
lowers the bias on the marginal effects by an order of magnitude, the bias can
be further reduced either by using a bias-reducing prior or a sufficiently close
approximating family to the distribution of the effects.

The related literature includes Woutersen (2002), who obtained the first-
order bias of the integrated likelihood estimator in the case where parameters
are information orthogonal, and proposed a modification of the score when
there is no orthogonality. In a contribution closely related to ours, Severini
(1999) studied the conditions under which a classical pseudo-likelihood is as-
ymptotically equivalent to some integrated likelihood, corresponding to a given
prior distribution for the effects. The conditions he finds can be seen as a spe-
cial case of our results when parameters are information orthogonal. Some
of the results of this paper have been independently obtained by Bester and
Hansen (2005b). They considered the form of bias-reducing priors for general
parametric likelihood models and provided a data-dependent prior, which co-
incides with one of our proposals, but their focus is not on panel data and they
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do not discuss the duality between existence of orthogonal reparameterizations
and non-data-dependent bias-reducing priors. Other important differences are
that we provide a formal justification for bias reduction in the panel context
and that we are also concerned with developing a framework where we can
study the bias-reducing properties of random effects estimators.

The plan of the paper is as follows. In Section 2, we derive the expression
of the bias of the average likelihood and make the link with information or-
thogonality. In Section 3, we obtain analytical expressions of two special bias-
reducing weight functions and discuss inference issues. Section 4 focuses on the
bias-reducing properties of random effects estimators. In Section 5, we study
the properties of marginal effects. Section 6 illustrates the results by means of
two examples: the dynamic AR(p) model and the static logit model with fixed
effects. In Section 7, we report a small Monte Carlo simulation to study the
finite-sample behavior of the proposed estimators. Section 8 concludes. The
Appendix contains proofs of results from Sections 2, 3, 4.1, and 4.2. Proofs of
the remaining results, which are of a more technical nature, are in the online
Supplemental material (Arellano and Bonhomme (2009)) on the journal web-
site.

2. BIASES OF THE INTEGRATED LIKELIHOOD AND SCORE

In this section, we derive the expression of the first-order bias of the inte-
grated likelihood with respect to an arbitrary prior distribution for the individ-
ual effects. We start by setting the notation.

2.1. Notation

Let (yit� x′
it)

′, i= 1� � � � �N and t = 0�1� � � � �T , be the set of observations on
the endogenous variable yit and a vector of strictly exogenous variables xit that
we assume are independent and identically distributed (i.i.d.) across individ-
uals. The density of yit conditioned on (xi1� � � � � xiT ) and lagged y ’s is given
by

fit(yit|θ0�αi0)≡ f (yit |xit� yi(t−1);θ0�αi0
)
�

which leads to the expression for the scaled individual log-likelihood condi-
tioned on exogenous covariates and initial observations:

	i(θ�αi)= 1
T

T∑
t=1

ln fit(yit|θ�αi)�

The likelihood is assumed to depend on a vector of common parameters θ and
scalar individual fixed effects α1� � � � �αN .7 Then let πi(αi|θ) be a conditional

7Considering further lags and multiple fixed effects would complicate the notation, but leave
the essence of what follows unaltered.
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prior distribution on the individual fixed effect given θ. The conditioning on
θ follows from our treatment of αi as nuisance parameters, while θ are the
parameters of interest. Moreover, the subindex i in πi refers to possible condi-
tioning on strictly exogenous regressors and initial conditions.

Throughout the paper, we will assume that standard regularity conditions
are satisfied (e.g., Severini (1999)). In particular, all likelihood and pseudo-
likelihood functions as well as all priors will be three times differentiable. We
will also assume that the prior is not dogmatic in the following sense.

ASSUMPTION 1: The support of πi(αi|θ) contains an open neighborhood of the
true parameters (αi0� θ0).

The prior will generally depend on T . We assume that the order of magni-
tude of the logarithm of the prior is bounded as T increases:

ASSUMPTION 2: When T tends to infinity, we have, for all θ and αi,

lnπi(αi|θ)=O(1) uniformly over i�8

Concentrated Likelihood

Our analysis makes use of three different objective functions at the indi-
vidual level. The first one is the concentrated or profile likelihood. It is de-
fined as 	ci (θ) = 	i(θ� α̂i(θ)), where the fixed effects estimates solve α̂i(θ) =
arg maxαi 	i(θ�αi). Thus, the ML estimator solves θ̂ML = arg maxθ

∑N

i=1 	
c
i (θ).

As is well known, θ̂ML is, in general, inconsistent for fixed T as N → ∞.

Integrated Likelihood

Bias-corrected estimators for θ based on the concentrated likelihood have
been recently studied in the statistical and econometric literatures (Arellano
and Hahn (2007)). In this paper, we study the behavior of the integrated likeli-
hood with respect to a given prior πi(αi|θ). The individual log integrated like-
lihood is given by

	Ii (θ)= 1
T

ln
∫

exp[T	i(θ�αi)]πi(αi|θ)dαi�

As noted by Berger, Liseo, and Wolpert (1999), this likelihood would be ac-
ceptable to a subjective Bayesian whose joint prior is separable in the individ-
ual effects; see (3). From this perspective, in this paper we implicitly assume a
uniform prior on θ: π(θ)∝ 1.9 Allowing for any nondogmatic prior on θ does
not affect the analysis.

9We write a∝ b to denote that a and b are equal up to a multiplicative constant.



496 M. ARELLANO AND S. BONHOMME

Target Likelihood

We shall compute the first-order bias of the integrated likelihood rela-
tive to a target likelihood without uncertainty about the value of the ef-
fects for given θ. Let the target likelihood be 	i(θ) = 	i(θ�αi(θ)), where
αi(θ) = arg maxαi plimT→∞ 	i(θ�αi). This function possesses many properties
of a proper likelihood. In particular, it is maximized at θ0 and satisfies Bartlett
identities (Severini (2000)). Note that the effects αi(θ)—and as such the likeli-
hood 	i(θ)—are infeasible. The target likelihood provides a useful theoretical
benchmark to compute first-order biases. It is a “least favorable” target like-
lihood in the sense that the expected information for θ calculated from 	i(θ)
coincides with the partial expected information.

The concentrated and target likelihood functions can be regarded as inte-
grated likelihood functions with respect to the priors

πi(αi|θ)= δ(αi − αi(θ)) and πi
c(αi|θ)= δ(αi − α̂i(θ))�

respectively. In this perspective, πci can be interpreted as a sample counterpart
of πi. Below, we investigate the existence of nondegenerate feasible counter-
parts of πi that, unlike πci , reduce first-order bias.

Last, we denote the observed score with respect to the fixed effect as

vi(θ�αi)= ∂	i(θ�αi)

∂αi

and denote its derivatives as

v
αi
i (θ�αi)= ∂vi(θ�αi)

∂αi
� vθi (θ�αi)= ∂vi(θ�αi)

∂θ
�

v
αiαi
i (θ�αi)= ∂2vi(θ�αi)

∂α2
i

� etc.

2.2. Bias of the Integrated Likelihood

We now derive the expression of the first-order bias of the individual inte-
grated likelihood relative to the target likelihood:

Eθ0�αi0[	Ii (θ)− 	i(θ)] = Cst + βi(θ)

T
+O

(
1
T 2

)
for a given prior πi(αi|θ).10 The expectation is taken with respect to
exp[T	i(θ0�αi0)], so that a quantity like Eθ0�αi0[	Ii (θ)] will depend on θ, θ0,
and αi0. We shall proceed in two steps.

10Throughout the paper, we use Cst to denote any constant term, which depending on the
context may be scalar or vector-valued, and stochastic or nonstochastic.
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In a first step, we use a Laplace approximation (e.g., Tierney, Kass, and
Kadane (1989)) to link the integrated and the concentrated likelihood func-
tions. The result is contained in the following lemma.

LEMMA 1: Let Assumptions 1 and 2 hold. Then

Eθ0�αi0[	Ii (θ)− 	ci (θ)] = Cst − 1
2T

ln Eθ0�αi0[−vαii (θ�αi(θ))](4)

+ 1
T

lnπi(αi(θ)|θ)+O
(

1
T 2

)
�

In a second step we use the formula that gives the first-order bias of the
concentrated likelihood (e.g., Arellano and Hahn (2006, 2007)):

Eθ0�αi0[	ci (θ)− 	i(θ)] = 1
2T

{
Eθ0�αi0[−vαii (θ�αi(θ))]

}−1
(5)

× Eθ0�αi0[Tv2
i (θ�αi(θ))] +O

(
1
T 2

)
�

The expression of the first-order bias of the integrated likelihood then follows
directly.

THEOREM 1: Let Assumptions 1 and 2 hold. Then

Eθ0�αi0[	Ii (θ)− 	i(θ)] = Cst + βi(θ)

T
+O

(
1
T 2

)
�

where

βi(θ)= 1
2
{
Eθ0�αi0[−vαii (θ�αi(θ))]

}−1
Eθ0�αi0[Tv2

i (θ�αi(θ))](6)

− 1
2

ln Eθ0�αi0[−vαii (θ�αi(θ))] + lnπi(αi(θ)|θ)�

As the right-hand side of (6) is O(1), Theorem 1 shows that the effect of the
prior vanishes as the amount of data increases. When T goes to infinity, the
bias of the integrated likelihood goes to zero irrespective of the prior, provided
that the latter is nondogmatic. In Section 4, we will see that this property is
shared by random effects panel data models. However, it turns out that the
prior has an effect on the first-order bias of the integrated likelihood as, in
general, βi(θ) is not locally constant around θ0.
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2.3. Bias of the Integrated Score

We start with a definition of robust priors.

DEFINITION 1: Let bi(θ0) = ∂
∂θ

|θ0βi(θ) be the first-order bias of the inte-
grated score evaluated at the true value. A prior family is said to be bias reduc-
ing, or robust, if and only if

b∞(θ0)≡ plim
N→∞

1
N

N∑
i=1

bi(θ0)= o(1)�

Bias reduction of the moment equation implies bias reduction of the estima-
tor (e.g., Arellano and Hahn (2006)). So, for a robust prior family, the mode
of the integrated likelihood

θ̂IML = arg max
θ

N∑
i=1

	Ii (θ)

has zero first-order bias; that is,

plim
N→∞

θ̂IML = θ0 + o
(

1
T

)
�

We now use the results of the previous subsection to characterize robust pri-
ors. From Theorem 1 we can obtain the expression of the bias of the integrated
score evaluated at the true value, bi(θ0). It is convenient, in the likelihood con-
text, to use a simplification proposed by Pace and Salvan (2006). At the true
value θ0, where the information matrix equality is satisfied, we have

∂

∂θ

∣∣∣∣
θ0

({
Eθ0�αi0[−vαii (θ�αi(θ))]

}−1
Eθ0�αi0[Tv2

i (θ�αi(θ))]
)

(7)

= ∂

∂θ

∣∣∣∣
θ0

ln
({

Eθ0�αi0[−vαii (θ�αi(θ))]
}−1

Eθ0�αi0[Tv2
i (θ�αi(θ))]

)
�

The bias of the integrated score is thus given by

bi(θ0)= ∂

∂θ

∣∣∣∣
θ0

lnπi(αi(θ)|θ)− ∂

∂θ

∣∣∣∣
θ0

ln
(
Eθ0�αi0[−vαii (θ�αi(θ))](8)

× {
Eθ0�αi0[Tv2

i (θ�αi(θ))]
}−1/2)

�

Hence we get the following result:



PRIORS IN NONLINEAR PANEL DATA 499

THEOREM 2: A prior πi is bias reducing if

∂

∂θ

∣∣∣∣
θ0

lnπi(αi(θ)|θ)

= ∂

∂θ

∣∣∣∣
θ0

ln
(
Eθ0�αi0[−vαii (θ�αi(θ))]

{
Eθ0�αi0[Tv2

i (θ�αi(θ))]
}−1/2)

+O
(

1
T

)
�

Theorem 2 gives a sufficient condition for bias reduction. The reason why the
condition is not always necessary is that bias reduction might happen because
of cross-sectional averaging, that is, b∞(θ0) could be O(1/T) even if some of
the bi(θ0), i = 1� � � � �N , are not. However, the bias-reducing priors that we
discuss in the next section will satisfy bi(θ0)=O(1/T) for all i.

2.4. Nondistribution Dependent Bias-Reducing Priors and Orthogonality

We turn to consider the role of information orthogonality. The next proposi-
tion shows the link between the ability of a prior to reduce bias and information
orthogonality.

PROPOSITION 1: The following equality holds:

bi(θ0)= ∂

∂θ

∣∣∣∣
θ0

lnπi(αi(θ)|θ)+ ∂

∂αi

∣∣∣∣
αi0

ρi(θ0�αi)�(9)

where

ρi(θ�αi)≡ {
Eθ�αi [−vαii (θ�αi)]

}−1
Eθ�αi [vθi (θ�αi)]�

Proposition 1 shows that the quantity ρi(θ�αi), the projection coefficient in
the efficient score for θ, is key in the ability of a given prior to reduce bias.
A particular case is the information orthogonality studied by Cox and Reid
(1987) and Lancaster (2002). In that case, the information matrix is block di-
agonal so that Eθ�αi [vθi (θ�αi)] is identically zero. It follows from Proposition 1
that the uniform prior πi(αi|θ) ∝ 1 is bias reducing. The same is true of all
priors that are independent of θ in light of Proposition 1 and the fact that

∂αi(θ)

∂θ

∣∣∣∣
θ0

= ρi(θ0�αi0)�(10)
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Conversely, Proposition 1 implies that the uniform prior reduces bias if and
only if

plim
N→∞

1
N

N∑
i=1

∂

∂αi

∣∣∣∣
αi0

ρi(θ0�αi)= o(1)�(11)

Condition (11) is slightly more general than information orthogonality. For it
to be satisfied, it suffices that ρi(θ�αi) is a function of θ only.

The uniform prior does not depend on the distribution of the data. That is, it
is independent of the true parameters θ0�α10� � � � �αN0. We shall refer to the (in-
feasible) weighting schemes that depend on the true values of the parameters
as distribution dependent. In particular, the uniform prior is not distribution
dependent.

Other non-distribution-dependent priors are given by orthogonal reparame-
terizations of the fixed effects, when available. Let ψi = ψi(αi� θ) be a repa-
rameterization of the individual effects. To every prior π̃i(ψi|θ) on ψi we can
associate the transformed prior in the original parameterization:

πi(αi|θ)= π̃i(ψi(αi� θ)|θ)
∣∣∣∣∂ψi(αi� θ)∂αi

∣∣∣∣�
The following result shows that the bias-reducing properties of a prior are not
affected by a reparameterization of the effects.

PROPOSITION 2: π̃i is bias-reducing in the transformed parameterization ψi if
and only if πi is bias reducing in the original parameterization αi.

We now apply Proposition 2 to a reparameterization ψi =ψi(αi� θ) such that
ψi and θ are information orthogonal in the sense of equation (11). In this case
the uniform prior on ψi is bias reducing. Hence, using Proposition 2, the trans-
formed prior on αi,

πi(αi|θ)=
∣∣∣∣∂ψi(αi� θ)∂αi

∣∣∣∣�
is also bias reducing. Note that this prior is the Jacobian of the transformation
which maps (αi� θ) onto (ψi� θ). Conversely, any non-distribution-dependent
bias-reducing prior πi(αi|θ) can be associated with an orthogonal reparame-
terization in the sense of equation (11). It suffices to take ψi =ψi(αi� θ), where

ψi(αi� θ)=
∫ αi

−∞
πi(α|θ)dα�

This discussion shows that there exists a mapping between non-distribution-
dependent bias reducing priors and orthogonal reparameterizations in the
sense of (11). Now, such reparameterizations do not always exist. In the mul-
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tiparameter case (when θ is a vector) one ends up with a partial differential
equation which has no solution in general, in close analogy with the case of
strict information orthogonality (Cox and Reid (1987)). Hence, to deal with
the case where orthogonal reparameterizations are not available, it is, in gen-
eral, necessary to search for robust priors that depend on the distribution of
the data. We address this task in the next section.

3. CONSTRUCTIVE BIAS-REDUCING PRIORS

In this section we discuss two specific data-dependent priors that are bias
reducing independently of the possibility of orthogonalization.

3.1. A Robust Prior

Theorem 2 shows that the following prior is bias reducing:

πRi (αi|θ)∝ Ê[−vαii (θ�αi)]{Ê[v2
i (θ�αi)]}−1/2�(12)

where Ê[−vαii (θ�αi)] and Ê[v2
i (θ�αi)] are consistent estimates of Eθ0�αi0[−vαii (θ�

αi)] and Eθ0�αi0[v2
i (θ�αi)], respectively, when T tends to infinity. Note that re-

placing the expectations by large-T consistent estimates in the condition of
Theorem 2 does not affect the result.11

The bias-reducing prior (12), which we call the robust prior, depends on
the data. The discussion in the previous section has shown that non-data-
dependent priors are generally not robust in cases when orthogonal repara-
meterizations of the fixed effects are not available.12

Moreover, πRi is the combination of a Hessian term (Ê[−vαii (θ�αi)]) and
a outer product term (Ê[v2

i (θ�αi)]). A closely related expression appears in
Jeffreys’ automatic prior when θ is kept fixed, the expression of which is

πJi (αi|θ)∝ {
Eθ�αi [−vαii (θ�αi)]

}1/2
�(13)

A crucial difference between πRi (αi|θ) and πJi (αi|θ) is that Jeffreys’ prior does
not depend on the data. In fact, Jeffreys’ prior (13) is generally not bias reduc-
ing (see Hahn (2004)).

Before ending this discussion, note that we have assumed a likelihood setup,
as opposed to a pseudo-likelihood setup. The likelihood assumption is re-
quired to obtain equation (7), which uses the information identity at true pa-
rameter values. In the pseudo-likelihood case, however, it is still possible to

11Thus, the problem of computing bias-reducing priors is analogous to the problem of esti-
mating an additive bias correction to the concentrated likelihood. See, for example, Hahn and
Kuersteiner (2004), Arellano and Hahn (2006, 2007), and Pace and Salvan (2006).

12This result is in a similar spirit to one in Wasserman (2000), which showed that for certain
mixture models, data-dependent priors are the only priors that produce intervals with second-
order frequentist coverage.
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use Theorem 1 to obtain a robust weighting scheme for an integrated objective
function. In effect, using the expression of the bias of the integrated likelihood
(6), it is straightforward to show that the following prior is bias reducing in
both likelihood and pseudo-likelihood settings:

{Ê[−vαii (θ�αi)]}1/2 exp
(

−T
2

{Ê[−vαii (θ�αi)]}−1
Ê[v2

i (θ�αi)]
)
�(14)

Coming back to the likelihood setup, note that Proposition 1 shows that
many other priors are robust. In particular, the two priors given by (12) and
(14) are bias reducing. Using (14) instead of (12) for estimation can make a
difference in finite samples. The Monte Carlo simulations reported below will
illustrate this remark.

3.2. Robust Reparameterizations

The following result provides an additional characterization of the robust
prior.

PROPOSITION 3: We have

πRi (̂αi(θ)|θ)∝ 1√
V̂ar(̂αi(θ))

(
1 +Op

(
1
T

))
�(15)

where T V̂ar(̂αi(θ)) is a consistent estimate of the asymptotic variance of
√
T ×

(̂αi(θ) − αi(θ)) when T tends to infinity. In addition, every nondogmatic prior
satisfying (15) is bias reducing.

Proposition 3 sheds some light on the properties of the robust prior. To see
why, let us consider the reparameterization

ψi(αi� θ)= αi − α̂i(θ)√
V̂ar(̂αi(θ))

�(16)

Reparameterizing the individual effects as in (16) amounts to rescaling the
effects, weighting them in inverse proportion to the standard deviation of the
fixed effects maximum likelihood estimator (MLE).

Specifically, let us consider a prior on ψi that is independent of θ, with prob-
ability density function (p.d.f.) f . In terms of the original parameterization, the
prior is13

π̃Ri (αi|θ)= 1√
V̂ar(̂αi(θ))

f

(
αi − α̂i(θ)√
V̂ar(̂αi(θ))

)
�

13Note that π̃Ri does not satisfy Assumption 2. This does not matter for the present discussion,
however, as shown by the proof of Proposition 3.
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Then, clearly

π̃Ri (̂αi(θ)|θ)∝ 1√
V̂ar(̂αi(θ))

�

It thus follows from Proposition 3 that π̃Ri is bias reducing.
For the particular choice of ψi ∼ N (0�1), we obtain the result that the nor-

mal approximation to the sampling distribution of the MLE α̂i(θ) is a bias-
reducing weighting scheme for αi:

αi|θ∼ N
(̂
αi(θ)� V̂ar(̂αi(θ))

)
�(17)

Specifying a prior distribution on the fixed effects as in (17) is intuitively ap-
pealing from the point of view of bias reduction. First, unlike the robust prior
(πRi ), this prior is proper, so that it will unambiguously lead to a proper poste-
rior. Second, it can be seen as a feasible counterpart of the (degenerate) prior
associated to the target likelihood (πi). Unlike the prior associated with the
concentrated likelihood (πci ), it takes into account the way the precision of
α̂i(θ) varies with θ. When Var(̂αi(θ)) varies slowly with θ, the uniform prior
on the original effects is bias reducing. This happens when parameters are in-
formation orthogonal.

3.3. Asymptotic Distribution and Inference

Here we derive the asymptotic distribution of the integrated likelihood es-
timator and discuss how to perform inference from the posterior distribution
of θ.

Let 	Ii (θ) be associated with a bias-reducing prior. Let θ̂IML =
arg maxθ

∑N

i=1 	
I
i (θ) be the mode of the integrated likelihood. We are inter-

ested in the asymptotic distribution of θ̂IML whenN and T tend simultaneously
to infinity at the same rate: T/N → Cst > 0.

Let θ= arg maxθ
∑N

i=1 	i(θ) be the (infeasible) mode of the target likelihood.
Because the prior is bias reducing, we have

θ̂IML = θ+ op
(

1
T

)
�

So, when N and T tend to infinity at the same rate,
√
NT(θ̂IML − θ)= op(1)�

The mode of the integrated likelihood and the mode of the target likelihood
are thus asymptotically equivalent. In particular, the asymptotic variance of√
NT(θ̂IML −θ0) is equal to that of

√
NT(θ−θ0). Now, θ has the same asymp-

totic dispersion as the maximum likelihood estimator θ̂ML. So, as in the case
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of the additive approaches to bias reduction (Hahn and Newey (2004)), bias
reduction occurs with no increase in the asymptotic variance relative to fixed
effects maximum likelihood.

Given a robust weighting scheme, estimation based on the integrated like-
lihood can be performed using classical or Bayesian techniques. For this pur-
pose, one can use integration routines (quadrature, Monte Carlo) to compute
the integrated likelihood and then maximize the latter using optimization algo-
rithms. This is the approach we have adopted in the Monte Carlo experiments
reported below. However, in highly nonlinear models with possibly many para-
meters, this approach can be problematic. Our connection to Bayesian statis-
tics makes it possible to use Bayesian techniques, such as Markov chain Monte
Carlo (MCMC), to perform the estimation.

Moreover, an additional appealing feature of the simulation approach is the
ability to read confidence intervals directly from the posterior distribution.
Following Chernozhukov and Hong (2003), it can be shown that in a double
asymptotics perspective when N and T tend to infinity at the same rate, the
quantiles of the posterior distribution of θ provide asymptotically valid confi-
dence intervals for θ0. Indeed, the marginal posterior of θ can be interpreted
as a pseudo-posterior calculated from the integrated likelihood. Moreover, this
objective function satisfies a generalized information equality in a double as-
ymptotic sense.

4. RANDOM EFFECTS AND BIAS REDUCTION

In this section, we study the first-order bias properties of random effects
maximum likelihood (REML) estimators.

4.1. The Random Effects Model

We assume that αi0, i= 1� � � � �N , are drawn from a distribution with density
π0 conditioned on covariates and initial observations. The marginal density of
an observation is thus given by

fi(yi1� � � � � yiT |yi0� θ0�π0)=
∫ T∏

t=1

f
(
yit |xit� yi(t−1);θ0�αi

)
π0(αi)dαi�

This model is very common in the panel data literature. Often π0 is supposed to
belong to a known parametric family such as the normal or a multinomial dis-
tribution with a finite number of mass points, possibly independent of covari-
ates. In contrast, here we make no assumption about the functional form of π0.

Let ξ be a parameter and let πi(αi;ξ) be a family of prior distributions in-
dexed by ξ. A typical example is when π(αi;ξ) is a normal distribution with
unknown mean and variance, ξ = (m� s2). Importantly, πi(αi;ξ) does not de-
pend directly on the common parameter θ or on the cumulative distribution
function (c.d.f.) of the distribution of the data (that is, on the true parame-
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ters θ0�αi0). Nevertheless, we do allow πi to depend on conditioning covari-
ates and/or initial conditions. For example, the mean and variance of the nor-
mal m and s2 may be functions of covariates and/or initial conditions as in
Chamberlain (1984).

The function πi(αi;ξ) has two possible interpretations. It can be regarded
as a model for the population distribution of αi0; this is the “random effects”
perspective. In a Bayesian perspective, it can also be seen as a hierarchical
prior assuming independence between αi and θ. In both approaches, we are
interested in the random effects pseudo-likelihood:

	RE
i (θ;ξ)= 1

T
ln
∫

exp[T	i(θ�αi)]πi(αi;ξ)dαi�

which is the integrated likelihood with respect to the prior πi(αi;ξ).

4.2. Robust Random Effects

Here we study the existence of random effects specifications that are bias
reducing for any population distribution of the individual effects π0.14

It is convenient to start by concentrating the likelihood with respect to ξ. Let

ξ̂(θ)= arg max
ξ

N∑
i=1

	RE
i (θ;ξ)�

The score of the concentrated random effects likelihood is given by

1
N

N∑
i=1

∂

∂θ

∣∣∣∣
θ0

	RE
i (θ; ξ̂(θ))= 1

N

N∑
i=1

∂

∂θ

∣∣∣∣
θ0

	RE
i (θ; ξ̂(θ0))�

where the equality comes from the envelope theorem.
The bias of the score of the concentrated random effects likelihood is thus

b∞(θ0)= plim
N→∞

1
N

N∑
i=1

∂

∂θ

∣∣∣∣
θ0

	RE
i (θ; ξ̂(θ0))(18)

= plim
N→∞

1
N

N∑
i=1

Eπ0

(
∂

∂θ

∣∣∣∣
θ0

	RE
i (θ;ξ(θ0))

)
�

where ξ(θ) = plimN→∞(̂ξ(θ)). The following result helps to interpret the
pseudo true value ξ(θ0).

14In general, π0 is conditional on covariates and initial conditions, but for simplicity our nota-
tion does not make explicit that π0 may be unit-specific.
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LEMMA 2: For all θ, we have

plim
N→∞

1
N

N∑
i=1

Eπ0

(
∂ lnπi(αi(θ);ξ(θ))

∂ξ

)
=O

(
1
T

)
�(19)

Lemma 2 provides a heuristic interpretation of ξ(θ), up to a O(1/T)
term, as the pseudo true value of ξ for the model πi(·;ξ) and the “data”
α1(θ)� � � � �αN(θ). Evaluated at θ = θ0, equation (19) shows that πi(·;ξ(θ0))
is the best approximation to π0, in a Kullback–Leibler sense, in the family
πi(·;ξ). In the next subsection, we will see that the distance between π0 and its
best approximation also matters for bias reduction.

Equation (18) shows that the first-order bias properties of the random ef-
fects likelihood are the same as those of an integrated likelihood with prior
πi(αi;ξ(θ0)). In particular, using Proposition 1 we obtain

b∞(θ0)= plim
N→∞

1
N

N∑
i=1

Eπ0

(
∂

∂θ

∣∣∣∣
θ0

lnπi(αi(θ);ξ(θ0))(20)

+ ∂

∂αi

∣∣∣∣
αi0

ρi(θ0�αi)

)
�

So, using (20) together with equation (10) and rearranging, we find that
REML is first-order bias reducing if and only if

plim
N→∞

1
N

N∑
i=1

Eπ0

(
1

πi(αi0;ξ(θ0))

∂

∂αi

∣∣∣∣
αi0

πi(αi;ξ(θ0))ρi(θ0�αi)

)
= o(1)�(21)

A first implication of (21) is that if the common parameters and the indi-
vidual effects are information orthogonal, then every REML estimator is bias
reducing. This is because in this case ρi(θ�α)= 0 is identically zero.

Another case where REML is bias reducing is when π0 belongs to the para-
metric family πi(·;ξ). Then the random effects model is correctly specified.
So, under standard identification conditions, the REML estimator is fixed-T
consistent, hence bias reducing.

Moreover, equation (21) allows us to characterize the set of models for
which a given random effects specification is bias reducing, as shown by the
following theorem.

THEOREM 3: Let πi(·;ξ) be a random effects specification depending on a q-
dimensional vector of hyperparameters ξ. Then REML is bias reducing for all π0

and covariate distributions if and only if there exists a constant dim(θ)× q matrix
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Γ (θ) such that

∂

∂α

∣∣∣∣
αi

ρi(θ�α)πi(α;ξ(θ))= Γ (θ) ∂
∂ξ

∣∣∣∣
ξ(θ)

πi(αi;ξ)+ o(1)�(22)

Theorem 3 shows that for a given random effects family, the set of models
where there is bias reduction is limited: it corresponds to ρi being a linear
combination of q functions, where q is the number of hyperparameters. As an
important special case, we mention the following corollary.

COROLLARY 1—(Uncorrelated Random Effects): REML based on a loca-
tion–scale family reduces first-order bias for all π0 and covariate distributions
if and only if there exist γ1(θ) and γ2(θ) such that

ρi(θ�αi)= γ1(θ)+ γ2(θ)αi + o(1)�(23)

Corollary 1 gives a necessary and sufficient condition for REML based on
a location–scale family to reduce bias. In the corollary, the mean and vari-
ance hyperparameters are independent of xi. We also have the following result,
where we let the mean depend linearly on xi (correlated random effects).15

COROLLARY 2—(Correlated Random Effects): REML based on a location–
scale family with mean depending linearly on xi reduces first-order bias for all π0

and covariate distributions if and only if there exist γ1(θ) and γ2(θ) such that

ρi(θ�αi)= γ1(θ)xi + γ2(θ)αi + o(1)�(24)

In particular, these results apply to Gaussian REML. Section 6 will give ex-
amples of models that satisfy conditions (23) or (24), such as dynamic AR(p)
models with or without strictly exogenous regressors. In these models, the bias
of REML based on the Gaussian family is of order 1/T 2. Still, most models
do not satisfy conditions (23) or (24). In those cases, the bias of the Gaussian
REML estimator is of order 1/T .

Corollaries 1 and 2 are interestingly related to the minimax finite-sample
result obtained by Chamberlain and Moreira (2008). Using a very different
perspective, our results also emphasize the importance of the model’s linearity
for Gaussian REML to have good properties.

4.3. Flexible Random Effects

In the previous subsection we asked the question: Given a random effects
family of priors, what is the set of models in which REML is robust for any
population distribution of the individual effects? In particular, we required
bias reduction to hold even if the population distribution π0 was very poorly

15As in Chamberlain’s (1984) random effects probit, for example.
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approximated by the parametric family of prior distributions πi(·;ξ). In con-
trast, here we ask: Is it possible to reduce the bias on θ by choosing a family
of priors that approximates π0 “sufficiently well?” Our motivation comes from
the fact that in the absence of misspecification, that is, when π0 belongs to the
chosen family of prior distributions, the bias is zero.

To answer this question, it is convenient to define the objects

ξ0 = arg max
ξ

Eπ0(lnπ(αi0;ξ)) and π̃0 ≡ π(·;ξ0)�

ξ0 is the infeasible ML estimand of ξ, for the “data” α10� � � � �αN0. So π̃0 is the
best approximation to π0, in a Kullback–Leibler sense, in the family π(·;ξ).
Note that both ξ0 and π̃0 are theoretical objects.16 Note also that we have as-
sumed for expositional simplicity that πi(·;ξ) ≡ π(·;ξ) does not depend on
covariates. We come back to this point at the end of this subsection.

It is also convenient to define, for a density p,

K(π0�p)=
[
Eπ0

(
ln
p(αi0)

π0(αi0)

)2]1/2

�

K(π0�p) is the L2 Kullback–Leibler loss. We will use it to measure how close
the true π0 and its best parametric approximation π̃0 are.

Let

θ̂REML = arg max
θ

N∑
i=1

	RE
i (θ� ξ̂(θ))

be the REML estimator and let θ= arg maxθ
∑N

i=1 	i(θ) be the infeasible mode
of the target likelihood. Unlike that of θ, the asymptotic distribution of θ̂REML

is generally not centered at zero. The following theorem shows that the bias in
the asymptotic distribution of θ̂REML depends on the discrepancy between the
true density π0 and its best fitting approximation π̃0, as measured by the L2

Kullback–Leibler loss. The theorem requires some conditions on the tails of
π0 that we detail in the Supplemental material, together with its proof.

THEOREM 4: Let N and T tend to infinity such that N/T → Cst. Under suit-
able regularity conditions,

√
NT(θ̂REML − θ0)= √

NT(θ− θ0)+O(K(π0� π̃0))+ op(1)�
Theorem 4 shows that if the distance between π0 and its best paramet-

ric approximation π̃0 is o(1), then the REML estimator is first-order un-

16Note also that ξ0 does not coincide with ξ(θ0), although due to (19) their difference is
O(1/T).
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biased and has the same asymptotic variance as the fixed effects estima-
tor.

As a special case, Theorem 4 implies that θ̂REML and θ are asymptotically
equivalent if the model is correctly specified and π0 belongs to the parametric
family π(·;ξ).

More interestingly, the result in Theorem 4 also suggests that for a flexible
choice of π(·;ξ), one should be able to obtain asymptotically unbiased infer-
ence on θ. The following result formalizes this intuition in the case of normal
mixtures. For this purpose, we adopt the setup in Ghosal and van der Vaart
(2001).

COROLLARY 3: Assume that π0 can be expressed as a mixture of normals of
the form

π0(α)=
∫

1
σ
ϕ

(
α−μ
σ

)
dH0(μ�σ)�

where σ ∈ [σ�σ] belongs to a compact interval. Let π be the p.d.f. of a finite
mixture of K normal components:

π(α)=
K∑
k=1

pk
1
σk
ϕ

(
α−μk
σk

)
�

where pk ≥ 0,
∑K

k=1pk = 1, and μk ∈ [−A�A], with A = O((lnN)ν) for some
ν > 0. Assume also that there exists δ ∈]0�1] such that17∫

π0(α)/π̃0(α)≥e1/δ

(
π0(α)

π̃0(α)

)δ
π0(α)dα <∞�(25)

Then, for K ≥ C lnN with C large enough,

K(π0� π̃0)=O(N−1/2+γ) for any γ > 0�(26)

So when N�T tend to infinity such that N/T →Cst, then
√
NT(θ̂REML − θ0)= √

NT(θ− θ0)+ op(1)�(27)

Corollary 3 shows that in the case where π0 is a mixture of normals, the
rate of convergence of the discrete sieve MLE is almost root-N in (26). As
noted by Ghosal and van der Vaart (2007) this near-parametric rate is driven
by the assumptions on π0. Working under much weaker assumptions, Ghosal

17Condition (25) imposes that the tails of π̃0 are not too thin relative to those of π0. We need
this condition because Ghosal and van der Vaart (2001) bound the Hellinger distance between the
two distributions (i.e., the L2 distance of square roots), while we need to bound the L2 Kullback–
Leibler loss. A useful inequality between the two distances is given in Wong and Shen (1995).
Also note that (25) is clearly satisfied if π0 is compactly supported.
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and van der Vaart (2007) found convergence rates of sieve MLEs that are close
to the rate of nonparametric kernel estimators O(N−2/5). Applied to the case
of finite mixtures of normals, their results imply that (27) holds for REML
based on a normal mixture with a sufficiently large number of components,
under much weaker assumptions on π0. Indeed, for (27) to hold, we only need
that K(π0� π̃0)= o(1) and do not require a specific convergence rate.

Importantly, all results in this section are stated under the assumption that
π and π0 do not depend on covariates, or that covariates are discrete and the
analysis is conducted for specific values. If π0 depends on more general x’s,
then the statements of the theorem and corollary will still hold, provided that
we let πi(·;ξ) depend in an unrestricted way on xi.

5. POLICY PARAMETERS: MARGINAL EFFECTS

5.1. Estimating Marginal Effects

In this section we study the bias properties of some estimators of averages
over individual effects, such as average marginal effects. We consider quanti-
ties of the form

M = 1
N

N∑
i=1

mi(θ0�αi0)�

A first example is the marginal effect of a covariate in a probit or logit
model, for example, for probit mi(θ�αi) = θk

1
T

∑T

t=1ϕ(x
′
itθ + αi), where ϕ is

the N (0�1) density. Other examples are moments of the distribution of indi-
vidual effects mi(θ�αi)= αki .

A standard fixed effects estimator of M is given by

M̂FE = 1
N

N∑
i=1

mi(θ̂� α̂i(θ̂))�

where α̂i(θ) is the MLE of αi given θ, and θ̂ is a possibly bias-reducing estima-
tor of θ. This estimator was studied by Hahn and Newey (2004). Whether θ̂ is
bias corrected or not, M̂FE has generally a nonzero first-order bias term. Hahn
and Newey suggested an approach to bias-correct the marginal effects also and
obtained a bias of order 1/T 2.

We consider two other estimators ofM . In a random effects framework with
family πi(·;ξ), we may consider the standard random effects estimator given
by

M̂RE = 1
N

N∑
i=1

∫
mi(θ̂�αi)πi(αi; ξ̂(θ̂))dαi�
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where θ̂ is a large-T consistent estimator of θ, for example, the REML estima-
tor, and ξ̂(θ) is the MLE of ξ given θ.

More generally, assuming a family of prior distributions πi(αi|θ), we can
consider a Bayesian fixed effects (BFE) estimator of M as

M̂BFE =
∫

· · ·
∫ (

1
N

N∑
i=1

mi(θ�αi)

)
×p(α1� � � � �αN�θ|y�x)dα1 · · ·dαN dθ�

where p is the posterior distribution of the model’s parameters given the data.
M̂BFE is the posterior mean of 1

N

∑N

i=1mi(θ�αi). One could as well consider the
posterior mode. As before, assuming a nonflat prior on θ does not affect the
large-T bias or the asymptotic distribution of the estimator.18

5.2. Bayesian Fixed Effects Estimation

The following theorem gives the large-T bias of the BFE estimator M̂BFE.

THEOREM 5: When T tends to infinity,

plim
N→∞

(M̂BFE −M)= BM

T
+ o

(
1
T

)
�

where

BM =
[

plim
N→∞

1
N

N∑
i=1

∂

∂θ

∣∣∣∣
θ0

mi(θ�αi0)

]
B

+ plim
N→∞

1
N

N∑
i=1

1
πi(αi0|θ0)

∂

∂α

∣∣∣∣
αi0

[
Eθ0�αi0(−vαii (θ0�α))

]−1

×πi(α|θ0)m
αi
i (θ0�α)

and B is the first-order bias of the mode of the integrated likelihood (or, equiva-
lently, of the posterior mean of θ).

Theorem 5 shows that the BFE estimator of M is large-T consistent, inde-
pendently of πi, and gives an expression of the first-order bias. It follows that

18In a random effects model, we could also consider another estimator, that one
could refer to as Bayesian random effects, namely the posterior mean or mode of
1
N

∑N
i=1

∫
mi(θ�αi)πi(αi;ξ)dαi . Using a Laplace approximation, it is easy to show that this es-

timator is asymptotically equivalent to M̂RE when N and T tend to infinity at the same rate.
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taking a robust prior on αi leads to first-order unbiasedness for θ (B= 0), but
not for M in general (BM �= 0). An exception where the two bias terms are
zero occurs when M = m(θ0) does not depend on the individual effects. So
the properties of the BFE estimator are similar to those of the standard fixed
effects estimator.

As in the case of common parameters θ, one may look for priors on αi that
yield BM = 0. If parameters are information orthogonal, the uniform prior is
not bias reducing for M if the marginal effect depends on individual effects.
Instead, one may consider

πmi (αi)= 1
m
αi
i (θ0�αi)

Eθ0�αi0[−vαii (θ0�αi)]�(28)

Under information orthogonality, πmi is bias reducing for both θ and M . In
the general case, one can verify that the following prior is robust for θ and M
simultaneously:

πR�mi (αi|θ)= m
αi
i (θ0�αi(θ))

m
αi
i (θ0�αi)

Eθ0�αi0[−vαii (θ0�αi)](29)

× {
Eθ0�αi0[v2

i (θ0�αi(θ))]
}−1/2

�

As the robust priors considered in Section 3, πR�mi depends on the distribu-
tion of the data.19 However, πR�mi also depends on mi, and although it is not
unique, there does not seem to be a way to find priors that are bias reducing
for any marginal effect considered. So, in practice, one would need to estimate
the model with different priors on αi for the various marginal effects that one
would consider.

In keeping with the discussion in Section 4, we now look for a flexible spec-
ification for πi that is bias reducing, independently of the marginal effect con-
sidered. For this purpose we use the setup of Section 4.3, and denote the pop-
ulation distribution of individual effects as π0, the parametric random effects
family as πi(·;ξ), and the best fitting approximation as π̃0. Then we have the
following corollary to Theorem 5.

COROLLARY 4: Under suitable regularity conditions given in the Supplemental
material,

plim
N→∞

(M̂BFE −M)=O
(K(π0� π̃0)

T

)
+ o

(
1
T

)
�

19As such, πR�mi and πmi are infeasible. Feasible counterparts could be constructed as explained
in Section 3.
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Corollary 4 shows that the first-order bias of the BFE estimator of M de-
pends on the distance between the true π0 and its parametric approximation
π̃0, as measured by the L2 Kullback–Leibler loss. As in the case of Corollary
3, to eliminate first-order bias, one could choose πi(·;ξ) to be the p.d.f. of a
finite normal mixture with a sufficiently large number of components.

Finally, let us discuss inference when N and T tend to infinity at the same
rate. Provided that one uses either a robust prior for M or a flexible random
effects specification, the asymptotic distribution of

√
NT(M̂BFE −M) is nor-

mal with zero mean and variance given by the large-T inverse information ma-
trix.20 In addition, asymptotically valid confidence intervals can be read from
the posterior distribution of the marginal effects, as in the case of common
parameters.

5.3. Random Efects Estimation

Let us now turn to random effects estimation of marginal effects. The fol-
lowing theorem shows that M̂RE is generally inconsistent when N and T tend
to infinity.

THEOREM 6: When T tends to infinity,

plim
N→∞

(M̂RE −M)= plim
N→∞

1
N

N∑
i=1

∫
mi(θ0�αi)(π̃0(αi)−π0(αi))dαi

+O
(

1
T

)
�

In a random effects framework one can use either M̂RE or M̂BFE to estimate
M . Theorem 5 showed that the BFE estimator ofM is large-T consistent, inde-
pendently of the priors postulated on the individual effects. In sharp contrast
with this result, Theorem 6 shows that standard random effects estimators of
M are inconsistent in general. This happens because, in the estimation of M ,
M̂BFE updates the prior knowledge on the distribution of the fixed effects using
the data, while M̂RE does not.21

To summarize the results in this section, the comparison of Bayesian fixed
effects and random effects estimators of marginal effects shows the benefits

20Note that if we are interested instead in inference about the plim of M , then (unless mi is
independent of αi) the confidence intervals would be of order 1/

√
N as opposed to 1/

√
NT . This

is because when N and T grow at the same rate, the sampling error due to the averaging over
cross-sectional units dominates.

21Under suitable tail assumptions it can be shown that the bias of M̂RE is O(K(π0� π̃0)). How-
ever, using a flexible parametric family to reduce the bias would increase the asymptotic variance
of the estimator, because π̃0 appears in the first term of the expansion of M̂RE.
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of updating by relying on the posterior distribution, as this reduces bias by
an order of magnitude, from O(1) to O(1/T). Moreover, the magnitude of the
bias of the Bayesian fixed effects estimator depends on how well the parametric
distribution of priors approximates the population distribution of individual
effects.

6. EXAMPLES

In this section and the next we consider two specific examples: a dynamic
AR(p)model, and a static logit model. Derivations and an additional example
concerning a Poisson counts model are available in Section S2 of the Supple-
mental material.

6.1. Dynamic AR(p)

The model we consider is given by

yit = μ10yi�t−1 + · · · +μp0yi�t−p + αi0 + εit
(i= 1� � � � �N� t = 1� � � � � T )�

Let y0
i = (yi�1−p� � � � � yi0)′ be the vector of initial conditions that we assume is

observed. Observations are i.i.d. across i. Moreover, it is assumed that

(εi1� � � � � εiT )
′|αi0� y0

i ∼ N (0�σ2
0 IT )�

where IT is the identity matrix of order T .
For this model there exist likelihood-based fixed-T consistent estimators

(see, for example, Alvarez and Arellano (2004)), which can provide a useful
benchmark for the application of our general methods. Another interesting
aspect of this illustration is that, as we argue below, an orthogonal reparame-
terization is available for the first-order process, but not for models with p> 1.

The individual log-likelihood is given by

	i(μ�σ
2�αi)= 1

T
ln f (yi|y0

i � αi;μ�σ2)

= −1
2

ln(2π)− 1
2

ln(σ2)− 1
2T

T∑
t=1

(yit − x′
itμ− αi)2

σ2
�

where xit = (yi�t−1� � � � � yi�t−p)′ and μ= (μ1� � � � �μp)
′.

We show in the Supplemental material that a robust prior can be chosen as
a large-T consistent estimate of the infeasible quantity

πIR
i (αi|μ�σ2)∝ (

1 + a(μ−μ0)+ bi(μ−μ0�αi − αi0)
)−1/2

�
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where a(·) and bi(·� ·) are linear and quadratic functions, respectively, the coef-
ficients of which depend on true parameter values and initial conditions. More
precisely, a≡ a(μ0) is a function of μ0 only, while bi ≡ b(μ0�αi0� yi0) depends
on true values and initial conditions.

The quadratic term bi(μ−μ0�αi − αi0) has no effect on the bias. Indeed, it
could be replaced by any other quadratic function in differences μ − μ0 and
αi − αi0. Removing the quadratic terms, we may consider

π̃IR(αi|μ�σ2)∝ {1 + a(μ−μ0)}−1/2�(30)

The prior π̃IR is also bias reducing. Note that as a(μ−μ0) is linear, the function
π̃IR(αi|μ�σ2) is degenerate for some values of μ. When estimating the prior in
practice, this degeneracy can be a problem. It can then make sense to use the
alternative expression (14) for the robust prior and consider instead

π̃IR(αi|μ�σ2)∝ exp
(

−1
2
a(μ−μ0)

)
�(31)

Now, the priors given by (30) and (31), are distribution dependent because a
depends on μ0. Looking for a non-distribution-dependent prior requires solv-
ing

∂

∂μ

∣∣∣∣
μ0�σ

2
0

lnπ(αi(μ�σ2)|μ�σ2)∝ ∂

∂μ

∣∣∣∣
μ0

ln
({1 + a(μ−μ0)}−1/2

)
(32)

for some function π independent of (μ0�σ
2
0 �αi0).

In the AR(1) case, we show in the Supplemental material that

∂

∂μ

∣∣∣∣
μ0

ln
({1 + a(μ−μ0)}−1/2

)= 1
T

T−1∑
t=1

(T − t)μt−1

10 �

In this case, equation (32) admits solutions independent of true parameter
values. For example, the following choice works:

π(αi|μ�σ2)= exp

(
1
T

T−1∑
t=1

T − t
t
μt

)
�(33)

This is the prior found by Lancaster (2002) in terms of the original (non-
information-orthogonal) parameterization. Note that this property is specific
to the AR(1) case. In the AR(p) model, p > 1, a non-data-dependent bias-
reducing prior generally does not exist. At the end of this section, the existence
of bias-reducing data-dependent priors for the AR(p)model that are indepen-
dent of the common parameters is discussed in the context of random effects
estimation.
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6.2. Static Logit

We now consider the model

yit = 1{x′
itθ0 + αi0 + εit > 0} (i= 1� � � � �N� t = 1� � � � � T )�

where the x’s are known, and εit are i.i.d. and drawn from the logistic distribu-
tion with c.d.f. Λ.

The individual log-likelihood is given by

	i(θ�αi)= 1
T

T∑
t=1

{
yit lnΛ(x′

itθ+ αi)+ (1 − yit) ln[1 −Λ(x′
itθ+ αi)]

}
�

In the Supplemental material we derive the expression of a robust prior as a
consistent estimate of

πIR
i (αi|θ) ∝

(
T∑
t=1

Eθ0�αi0([yit −Λ(x′
itθ+ αi)]2)

)−1/2

(34)

×
T∑
t=1

Λ(x′
itθ+ αi)[1 −Λ(x′

itθ+ αi)]�

As shown in Lancaster (2000), there also exists an orthogonal reparameteri-
zation in this model. Let

ψi =
T∑
t=1

Λ(x′
itθ+ αi)�

Then ψi and θ are information orthogonal.
The uniform prior on ψi is thus bias reducing. The corresponding prior on

the original individual effects is

πi(αi|θ)∝
T∑
t=1

Λ(x′
itθ+ αi)[1 −Λ(x′

itθ+ αi)]�(35)

Note that in this case, Jeffreys’ prior is given by πJi (αi|θ)∝ {πi(αi|θ)}1/2. It is
readily verified that πJi is not bias reducing. On the other hand, both πIR

i and
πi reduce bias.

In practice, one can thus compute the robust prior

πRi (αi|θ) ∝
{

T∑
t=1

(
(yit −Λ(x′

itθ+ αi))2
)}−1/2

(36)
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×
T∑
t=1

Λ(x′
itθ+ αi)[1 −Λ(x′

itθ+ αi)]�

One can also use expected quantities and compute

πRi (αi|θ)(37)

∝
{

T∑
t=1

Λ(x′
it θ̂+ α̂i)[1 − 2Λ(x′

itθ+ αi)] + [Λ(x′
itθ+ αi)]2

}−1/2

×
T∑
t=1

Λ(x′
itθ+ αi)[1 −Λ(x′

itθ+ αi)]�

where θ̂ and α̂i are consistent estimates of the true parameters when T tends
to infinity (for example, maximum likelihood estimates).

6.3. Random Effects

We study the properties of random effects maximum likelihood (REML)
estimators in the previous examples.

Dynamic AR(p)

We start with the dynamic AR(p) model of Section 6.1. We show in the
Supplemental material that, for this model,

ρi(μ�σ
2�αi)= a0(μ)y

0
i + a1(μ)αi�

where y0
i is the vector of initial conditions, and a0(μ) and a1(μ) are matrices.

Moreover, if the process is stationary, then a0(μ)=O(1/T). Hence, it follows
from Corollary 1 that uncorrelated Gaussian REML is bias reducing for this
model. This result was proven by Cho, Hahn, and Kuersteiner (2004) in the
case p = 1. If strictly exogenous covariates are included in the model, then it
is easy to check that correlated Gaussian REML is robust, while uncorrelated
REML is not, in general.

Linear Model With One Endogenous Regressor and Many Instruments

A closely related example is the following linear model with one endogenous
regressor in a panel context22:

yit = θαi + uit�
xit = αi + vit�

22We are grateful to Jinyong Hahn for this suggestion.



518 M. ARELLANO AND S. BONHOMME

where errors are i.i.d. and(
uit
vit

)
∼ N (0�Ω)�

We assume that covariance matrix Ω is given. We let

Ω−1 =
(
ω11 ω12

ω21 ω22

)
�

In this example there is an analogy between having a large number of indi-
vidual effects and a large number of instruments in a simultaneous equations
perspective (see Hahn (2000)).

We show in the Supplemental material that

ρi(θ�αi)= αi −ω11θ−ω12

ω11θ2 + 2ω12θ+ω22
�

We are thus in the case of Corollary 1 and Gaussian REML is bias reducing.
A related situation arises in Chamberlain and Imbens’ (2004) use of REQML
under Bekker’s (1994) asymptotics. Our treatment of this example shows that
the linearity of the model is crucial for the success of random effects methods.

Static Logit

In the case of the static logit model, we have that

ρi(θ�αi)= −

T∑
t=1

Λ(x′
itθ+ αi)(1 −Λ(x′

itθ+ αi))xit
T∑
t=1

Λ(x′
itθ+ αi)(1 −Λ(x′

itθ+ αi))
�

This is a highly nonlinear expression in αi, θ, and xi = (xi1� � � � � xiT )
′. Thus,

usual REML estimators are not bias reducing. For example, Corollary 1 shows
that uncorrelated Gaussian REML is not robust.

Note that this lack of unbiasedness is not corrected for by allowing the prior
to depend on covariates xit , as in Chamberlain’s (1984) probit model. In that
case, it is still impossible to correct for the first-order bias without permitting
the prior to depend on the common parameters θ. In nonlinear models, thus,
the success of random effects likelihood inference depends critically on prior
knowledge about the form of the fixed effects.

7. MONTE CARLO SIMULATION

In this section, we provide some Monte Carlo evidence on the finite-sample
behavior of integrated likelihood estimators.
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7.1. Static Logit

We first focus on the static logit model:

yit = 1{x′
itθ0 + αi0 + εit > 0} (i= 1� � � � �N� t = 1� � � � � T )�(38)

The xit are constant across simulations and drawn from a N (0�1) distribution.
The individual effects are drawn in each simulation from N (xi�1), where xi =
1
T

∑T

t=1 xit . Last, εit are i.i.d. draws from the logistic c.d.f. and θ0 is set to 1. In
all the experiments N is 100.

Table I shows some statistics of the empirical distribution of 100 draws of
θ̂, where θ̂ can be one of the following estimators: “Uncorrected” refers to
the MLE and “Corrected” refers to the corrected MLE obtained using the
DiCiccio and Stern (1993) adjustment based on equation (5) (see Arellano
and Hahn (2007, p. 392)); “Uniform” is the integrated likelihood estimator
with uniform prior πi ∝ 1; “Lancaster” is the integrated likelihood with the
uniform prior on the orthogonal parameters written in terms of the original
effects (see equation (35)); “Robust, observed” refers to the integrated like-
lihood with the robust prior constructed from observed quantities (see (36)),
while “Robust, infeasible” refers to the integrated likelihood with the robust
prior estimated using expected quantities where the true parameter θ0 is as-
sumed known (see (37)); “Robust, iterated 1” refers to the same estimator, but
when the expectation in (37) is evaluated at θ̂, the “Robust” integrated likeli-
hood estimator; then, “robust, iterated ∞” is obtained iterating this procedure
until convergence; “random effects” is the Gaussian random effects estimator;
“Conditional logit” is Chamberlain’s (1980) conditional logit.23

Table I shows that the bias of the MLE can be large: it is equal to 33% for
T = 5 and still 6% for T = 20. The corrections based on the concentrated like-
lihood and the various integrated likelihoods give roughly the same results. In
all cases considered, using one of these corrections reduces the bias by a factor
of between 2 and 3. The best performance, in terms of bias, mean squared er-
ror (MSE), and mean absolute error (MAE), is achieved by Lancaster’s (1998)
integrated likelihood given by equation (35). Note that the infeasible estimator
based on (37) and the iterated corrections do not give better results than the
correction based on observed quantities.

The Gaussian random effects MLE gives rather good results. Our experi-
ments (not reported) showed that the relative performance of REML wors-
ens when the correlation between αi0 and xi increases, and when the sampling
distribution of the individual effects departs from the normal. Last, the con-
ditional logit estimator is consistent for fixed T . Still, note that several cor-
rected/integrated estimators yield MSE and MAE comparable to—or lower
than—those of conditional logit for T = 10 and T = 20. This suggests that

23Both the random effects and conditional logit estimators were computed using the STATA
xtlogit and clogit commands, respectively. The other estimators were computed using GAUSS.
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TABLE I

VARIOUS ESTIMATORS OF θ IN THE STATIC LOGIT MODELa

Mean Median STD p̂� �05 p̂� �10 MSE MAE

T = 5
Uncorrected 1�33 1�30 �235 �929 1�08 �163 �335
Corrected 1�12 1�08 �188 �838 �868 �0489 �170
Uniform 1�61 1�62 �260 1�22 1�29 �442 �613
Lancaster 1�06 1�05 �150 �800 �843 �0260 �126
Robust, observed 1�11 1�09 �199 �821 �867 �0523 �176
Robust, infeasible 1�18 1�17 �146 �950 �963 �0530 �193
Robust, iterated 1 1�13 1�14 �184 �878 �914 �0504 �172
Robust, iterated ∞ 1�23 1�22 �195 1�01 1�03 �0907 �236
Random effects 1�14 1�13 �163 �854 �905 �0418 �178
Conditional logit �997 �983 �172 �749 �793 �0283 �138

T = 10
Uncorrected 1�13 1�13 �117 �950 �994 �0296 �140
Corrected 1�06 1�05 �0975 �902 �927 �0136 �0943
Uniform 1�26 1�26 �147 1�05 1�06 �0893 �263
Lancaster 1�02 1�03 �0911 �880 �899 �00880 �0790
Robust, observed 1�05 1�05 �109 �884 �909 �0145 �0974
Robust, infeasible 1�07 1�06 �100 �895 �933 �0142 �0946
Robust, iterated 1 1�04 1�04 �0892 �918 �932 �00976 �0785
Robust, iterated ∞ 1�08 1�06 �0896 �939 �970 �0139 �0938
Random effects 1�03 1�03 �0986 �865 �906 �00848 �0832
Conditional logit �997 �998 �0961 �859 �884 �0105 �0754

T = 20
Uncorrected 1�06 1�06 �0683 �947 �971 �00826 �0757
Corrected 1�02 1�03 �0606 �912 �946 �00424 �0530
Uniform 1�12 1�11 �0683 �990 1�03 �0184 �119
Lancaster �997 �997 �0548 �900 �921 �00298 �0429
Robust, observed 1�01 1�00 �0702 �905 �929 �00500 �0527
Robust, infeasible 1�04 1�04 �0613 �923 �955 �00558 �0629
Robust, iterated 1 1�01 1�00 �0673 �885 �934 �00459 �0536
Robust, iterated ∞ 1�02 1�02 �0688 �893 �948 �00525 �0567
Random effects 1�02 1�01 �0664 �920 �940 �00579 �0523
Conditional logit 1�01 �995 �0682 �905 �920 �00492 �0535

aEstimates of θ in model (38); N = 100 simulations; θ0 = 1.

for intermediate values of T , it may not be obvious to choose a fixed-T con-
sistent estimator rather than bias-corrected alternatives. Hahn, Kuersteiner,
and Newey (2004) showed that bias-corrected estimators are second-order ef-
ficient. Clearly, under suitable regularity conditions, our robust integrated like-
lihood estimator falls into the class considered by these authors.24 In contrast,

24A second-order Laplace approximation of the integrated likelihood (as in Tierney, Kass, and
Kadane (1989)) is necessary to prove this result formally.
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FIGURE 1.—Likelihood functions in the static logit model (T = 10, N = 100, θ0 = 1). The thin
line represents the likelihood function, the thick line represents the bias-corrected likelihood
using DiCiccio and Stern (1993), and the dashed line represents the robust integrated likelihood.

there is a potential efficiency loss in conditioning on the sufficient statistic in
the conditional logit model.

Finally, in Figure 1 we draw the likelihood function of the static logit model
(thin line). The thick line and the dashed line show the bias-corrected like-
lihood function (using the DiCiccio and Stern formula) and the robust in-
tegrated likelihood. The two pseudo-likelihoods are concave. Moreover, it is
clear on the figure that they both correct bias with respect to the MLE.

7.2. Dynamic AR(1)

Next, we consider the dynamic AR(1) model:

yit = μ10yit−1 +αi0 +εit (i= 1� � � � �N� t = 1� � � � �T )�(39)

Individual effects are drawn in each simulation from a standard distribution.
Moreover, the initial condition yi0 is drawn in the stationary distribution of
yit for fixed i. Last, εit are i.i.d. standard normal draws and μ10 is set to �5. As
before,N is 100. The standard deviation of errors, set to 1, is treated as known.

With non-i.i.d. data, the choice of local approximation of the formulas for
prior distributions may be important, as illustrated in Figure 2. The left panel
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FIGURE 2.—Likelihood functions in the dynamic AR(1) model (one simulation, T = 10,
N = 100, μ10 = �5). The thin line represents the likelihood function and the thick line repre-
sents the robust integrated likelihood. Left: Prior based on equation (12). Right: Prior based on
equation (14).

in Figure 2 shows the likelihood function of the dynamic AR(1) model (thin
line). The thick line shows the integrated likelihood with prior given by the
formula (30), obtained using expected quantities. The function is degenerate
around μ1 = �8. Moreover, a close look at the figure shows two local extrema.
The local maximum corresponds to μ1 around �5, which means that inference
from this local maximum is bias reducing. Still, the flatness of the curve sug-
gests that one might have trouble trying to find this maximum using standard
maximization algorithms. This problem is likely to be worse in situations with
more parameters to consider. The right panel on the same figure shows the
integrated likelihood for the prior (31). The situation there is strikingly differ-
ent, as the pseudo-likelihood is nicely concave. Moreover, its maximum is still
much closer to the truth than the MLE. In the rest of this section, we use the
prior (31) to estimate common parameters.

Table II shows some statistics of the empirical distributions of some esti-
mators for T = 10: the MLE (“Observed”) and diverse corrections based on
various degrees of trimming (from q = 1 to q = 3); then the integrated like-
lihood based on the uniform prior (“Uniform”) and on the Lancaster prior
(“Lancaster”) given by (33); the “Robust” expression of the prior is based on
(14) where the outer product is estimated using observed quantities with var-
ious degrees of trimming; the “Expected” prior is the one given by (31) and
plugged into the “Robust, q = 2” result to start the iterations in “Iterated”;
“GMM” refers to the estimator discussed in Arellano and Bond (1991); “Ran-
dom effects (uncorr.)” and “Random effects (corr.)” refer to the Gaussian ran-
dom effects estimators assuming that the individual effects are independent of
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TABLE II

VARIOUS ESTIMATORS OF μ1 IN THE DYNAMIC AR(1) MODELa (T = 10)

Mean Median STD p̂� �05 [p̂� �10] MSE MAE

Uncorrected .333 .328 .0320 .288 .300 �0290 �167
Corrected, q= 1 .391 .390 .0341 .336 .342 �0131 �109
Corrected, q= 2 .402 .402 .0327 .348 .359 �0107 �0984
Corrected, q= 3 .384 .384 .0343 .328 .340 �0145 �116
Uniform .336 .335 .0330 .277 .296 �0281 �164
Lancaster .504 .506 .0374 .435 .455 �00140 �0302
Robust, observed q= 1 .393 .394 .0296 .335 .352 �0123 �107
Robust, observed q= 2 .409 .413 .0304 .356 .368 �00920 �0910
Robust, observed q= 3 .394 .395 .0345 .332 .342 �0125 �106
Robust, infeasible .500 .502 .0302 .449 .455 �000903 �0240
Robust, iterated 1 .479 .477 .0299 .429 .436 �00133 �0299
Robust, iterated ∞ .499 .497 .0323 .445 .455 �00104 �0264
GMM .455 .459 .0608 .340 .373 �00567 �0602
Random effects (uncorr.) .562 .560 .0501 .448 .498 �00629 �0663
Random effects (corr.) .500 .498 .0348 .435 .461 �00120 �0274

aEstimates of μ1 in model (39); N = 100 simulations; μ10 = �5.

initial conditions or allowing that the mean depends linearly on the initial con-
dition.25

We find a large bias of the MLE (30%) that is corrected for by almost one-
half by both the corrections of the concentrated likelihood and the robust in-
tegrated likelihood. In both cases the preferred degree of trimming is 2. The
uniform prior yields no bias reduction at all, and the Lancaster prior based on
the available orthogonalization gives almost no bias. Interestingly, the infeasi-
ble robust prior based on expected quantities and the true value of μ10 gives
even better results in terms of bias, MSE, and MAE. Moreover, the iterated
estimators have also very good finite-sample properties. In our simulations, we
found that two iterations were enough to get very close to the infinitely iter-
ated estimator. As the formulas of these priors are not based on parameter
orthogonalization, these results suggest that iteration of the analytical expres-
sions of the prior such as (14) can be useful for dealing with non-i.i.d. data.
Last, note that the GMM estimator suffers from a small bias, which disappears
whenN grows (recall thatN = 100 in the experiments). Moreover, it has larger
variance than all the other estimators. The result is that the integrated likeli-
hood functions with priors based on analytical calculations (infeasible and iter-
ated) compare favorably with the fixed-T consistent GMM estimator in terms
of MSE and MAE.

25We computed the GMM estimator using the STATA command xtabond2, with the option
noleveleq. The other estimators were programmed in GAUSS.
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The last two rows of Table II show the behavior of random effects estima-
tors. In the dynamic AR(1) model, Alvarez and Arellano (2003) showed that
the Gaussian RE pseudo-likelihood based on αi ∼ N (m1 +m2yi0� s

2) reduces
bias. Then Cho, Hahn, and Kuersteiner (2004) showed that this is also the case
of the random effects specification αi ∼ N (m� s2), where the mean of αi is
misspecified to be independent of the initial observation yi0. We have shown
that this result generalizes to dynamic AR(p) models without exogenous co-
variates. The numbers reported show that, in spite of the theoretical result,
the uncorrelated REML estimator is substantially biased compared to its cor-
related counterpart. Thus, in dynamic linear models, it may be important to
allow (even parametrically) for correlation between the individual effects and
the initial conditions in the estimation. Last, note that the correlated random
effects estimator compares favorably to all other estimators studied, except the
infeasible and infinitely iterated robust integrated likelihood estimators.

7.3. Dynamic AR(2)

We end this simulation section by considering the dynamic AR(2) model:

yit = μ10yit−1 +μ20yit−2 +αi0 + εit (i= 1� � � � �N� t = 1� � � � �T )�(40)

As before, the individual effects are drawn in each simulation from a standard
distribution, and the initial conditions yi�−1 and yi0 are drawn in the stationary
distribution of (yit� yit+1) for fixed i. Then εit are i.i.d. standard normal draws,
μ10 is set to �5, and μ20 is set to 0. Last, N is 100 and the standard deviation of
errors, set to 1, is treated as known.

To estimate the priors, we use the robust formula given in (14). Analytical
expressions are given in the Supplemental material. Table III presents the re-
sults for T = 10. We find that the MLE is biased. A difference with the AR(1)

TABLE III

VARIOUS ESTIMATORS OF (μ1�μ2) IN THE DYNAMIC AR(2) MODELa (T = 10)

Mean μ̂1 MSE μ̂1 Mean μ̂2 MSE μ̂2

Uncorrected .385 �0146 −�0774 �00700
Corrected, q= 1 .419 �00808 −�101 �0111
Corrected, q= 2 .423 �00734 −�0780 �00715
Uniform .369 �0189 −�104 �0119
Robust, observed q= 1 .451 �00371 −�137 �0198
Robust, observed q= 2 .435 �00602 −�0873 �00868
Robust, infeasible .451 �00352 −�00801 �00117
Robust, iterated 1 .441 �00455 −�0262 �00203
Robust, iterated ∞ .446 �00405 −�0187 �00175
GMM .440 �00739 −�0278 �00297

aEstimates of μ1 and μ2 in model (39); N = 100 simulations; μ10 = �5, μ20 = 0.
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case is that if the corrected concentrated likelihood and the robust integrated
likelihood estimated using observed quantities reduce bias, they do so only
for the first autoregressive parameter. In that case, only the analytical correc-
tion (“infeasible”) reduces both biases. Interestingly, as before only one or two
iterations starting with the “Robust” estimate get close to these infeasible es-
timates. Moreover, as in the AR(1) case, the iterated analytical corrections
compare favorably with the GMM estimator. Note that in the AR(2) case no
orthogonal reparameterization is available. The results obtained for the iter-
ated estimators thus seem remarkable, both in terms of bias and mean squared
error.

8. CONCLUSION

Many approaches to the estimation of panel data models rely on an average
likelihood that assigns weights to different values of the individual effects. In
this paper, we study under which conditions such weighting schemes are robust,
in that they yield biases of order 1/T 2 as opposed to 1/T .

We find that robust weights, or priors, will in general satisfy two conditions.
First, they depend on the data unless an orthogonal reparameterization is
available. Second, they do not impose prior independence between the com-
mon parameters and the individual effects, as we show that random effects
specifications are not bias reducing, in general.

We propose two bias-reducing priors, which deal with the incidental parame-
ter problem by taking into account the uncertainty about the individual effects.
Our approach, based on prior distributions and integration, has a natural con-
nection with simulation-based estimation techniques, such as MCMC. In addi-
tion, we argue that asymptotically valid confidence intervals can be read from
the quantiles of the posterior distribution.

We show that, in general, standard random effects estimation of policy pa-
rameters is inconsistent for large T , whereas the posterior mean is large-T
consistent, and we provide conditions for bias reduction. Priors that are bias
reducing for the common parameters do not lead to bias reduction of marginal
effects, and bias-reducing priors for marginal effects are specific to the effect
considered.

We also show that in random effects models, both the estimators of common
parameters and the posterior means of marginal effects have first-order biases
that depend on the Kullback–Leibler distance between the population distri-
bution of the effects and its best approximation in the random effects family.
So, while updating the prior given the data lowers the bias on the marginal
effects by an order of magnitude, the bias can be further reduced by using ei-
ther a bias-reducing prior or an approximating family sufficiently close to the
distribution of the effects.

The Monte Carlo evidence suggests rather good finite-sample properties of
integrated likelihood estimates based on robust priors. It seems very interest-
ing to investigate the behavior of our method as the complexity of the model
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increases. If what we propose turns out to be feasible and satisfying, then struc-
tural microeconometric models would be a natural field of application.

APPENDIX: PROOFS

This appendix provides proofs of the results in Sections 2, 3, 4.1, and 4.2.
Proofs of the results from Section 4.3 are in the Supplemental material.

PROOF OF LEMMA 1: Let us fix i and denote

LIi (θ)=
∫

exp[T	i(θ�αi)]πi(αi|θ)dαi�

Assuming that 	i(θ�αi) has a unique maximum α̂i(θ) and using a Laplace ap-
proximation as in Tierney, Kass, and Kadane (1989) we obtain

LIi (θ)= πi(̂αi(θ)|θ)
∫

exp
(
T	i(θ� α̂i(θ))+ T

2
v
αi
i (θ� α̂i(θ))

× (αi − α̂i(θ))2

)
dαi

(
1 +Op

(
1
T

))
= πi(̂αi(θ)|θ)exp[T	i(θ� α̂i(θ))]

×
∫

exp
(
T

2
v
αi
i (θ� α̂i(θ))(αi − α̂i(θ))2

)
dαi

(
1 +Op

(
1
T

))
= πi(̂αi(θ)|θ)

√
2π{−Tvαii (θ� α̂i(θ))}−1/2

× exp[T	i(θ� α̂i(θ))]
(

1 +Op
(

1
T

))
�

It thus follows that

	Ii (θ)− 	ci (θ)= 1
2T

ln
(

2π
T

)
− 1

2T
ln
(−vαii (θ� α̂i(θ)))(A1)

+ 1
T

lnπi(̂αi(θ)|θ)+Op
(

1
T 2

)
�

where Assumption 1 allows us to take logs.
Now by expanding the sample moment condition vi(θ� α̂i(θ)) = 0 around

αi(θ), we immediately find that

α̂i(θ)− αi(θ)= A√
T

+Op
(

1
T

)
�
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where A=Op(1) and Eθ0�αi0[A] = 0. This implies that

v
αi
i (θ� α̂i(θ))= v

αi
i (θ�αi(θ))+ B√

T
+Op

(
1
T

)
= Eθ0�αi0[vαii (θ�αi(θ))] + C√

T
+Op

(
1
T

)
�

where B and C are Op(1) with zero mean. Expanding the log yields

Eθ0�αi0 ln
(−vαii (θ� α̂i(θ)))= ln Eθ0�αi0[−vαii (θ�αi(θ))] +O

(
1
T

)
�(A2)

Likewise, using Assumption 2 we obtain

Eθ0�αi0 lnπi(̂αi(θ)|θ)= lnπi(αi(θ)|θ)+O
(

1
T

)
�(A3)

Taking expectations in (A1) and combining the result with (A2) and (A3)
yields

Eθ0�αi0[	Ii (θ)− 	ci (θ)] = 1
2T

ln
(

2π
T

)
− 1

2T
ln Eθ0�αi0[−vαii (θ�αi(θ))]

+ 1
T

lnπi(αi(θ)|θ)+O
(

1
T 2

)
� Q.E.D.

PROOF OF THEOREM 1: Immediate from (4) and (5). Q.E.D.

PROOF OF THEOREM 2: Immediate using (8). Q.E.D.

In preparation for the proof of Proposition 1, we state the following lemma:

LEMMA A1:

∂

∂θ

∣∣∣∣
θ0

αi(θ)= {
Eθ0�αi0[−vαii (θ0�αi0)]

}−1
Eθ0�αi0[vθi (θ0�αi0)](A4)

≡ ρi(θ0�αi0)�

PROOF: By differentiating the moment condition solved by αi(θ) with re-
spect to θ,

Eθ0�αi0[vi(θ�αi(θ))] = 0� Q.E.D.
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PROOF OF PROPOSITION 1: The bias of the integrated score is

bi(θ0)= ∂

∂θ

∣∣∣∣
θ0

lnπi(αi(θ)|θ)

− ∂

∂θ

∣∣∣∣
θ0

(
ln
(
Eθ0�αi0[−vαii (θ�αi(θ))]

{
Eθ0�αi0[v2

i (θ�αi(θ))]
}−1/2))

︸ ︷︷ ︸
A

�

In addition to Lemma A1, we need the information matrix equality at true
values:

Eθ0�αi0[−vαii (θ0�αi0)] = TEθ0�αi0[v2
i (θ0�αi0)]�(A5)

To simplify the notation, we drop the arguments inside the expectation terms
when they are evaluated at true values. We obtain

A= E(v
αiθ
i )+ ρiE(vαiαii )

E(v
αi
i )

− 1
2

· 2E(vθi vi)+ 2ρiE(v
αi
i vi)

E(v2
i )

= −1
E(−vαii )

{
E(v

αiθ
i )+ TE(vθi vi)+ ρi[E(vαiαii )+ TE(v

αi
i vi)]

}
= −1

E(−vαii )2

{
E(−vαii )(E(vαiθi )+ TE(vθi vi))

+ E(vθi )(E(v
αiαi
i )+ TE(vαi vi))

}
= −1

E(−vαii )2

{
E(−vαii )

∂

∂αi

∣∣∣∣
θ0�αi0

Eθ�αi (v
θ
i (θ�αi))

− E(vθi )
∂

∂αi

∣∣∣∣
θ0�αi0

Eθ�αi (−vαii (θ�αi))
}
�

where

Eθ�αi (v
θ
i (θ�αi))=

∫
vθi (θ�αi)fi(y;θ�αi)dy;

and

Eθ�αi (v
αi
i (θ�αi))=

∫
v
αi
i (θ�αi)fi(y;θ�αi)dy�

It follows that

A= − ∂

∂αi

∣∣∣∣
θ0�αi0

({
Eθ�αi [−vαii (θ�αi)]

}−1
Eθ�αi [vθi (θ�αi)]

)
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and the proposition is proved. Q.E.D.

PROOF OF PROPOSITION 2: We have

bi(θ0)= ∂

∂θ

∣∣∣∣
θ0

lnπi(αi(θ)|θ)− ∂

∂θ

∣∣∣∣
θ0

ln
(
Eθ0�αi0[−vαii (θ�αi(θ))]

× {
Eθ0�αi0[Tv2

i (θ�αi(θ))]
}−1/2)

�

Note that it follows from the invariance property of ML that

ψi(θ)=ψi(αi(θ)�θ)�
Moreover, it is easily verified that

Eθ0�αi0[−vαii (θ�αi)] =
(
∂ψi(αi� θ)

∂αi

)2

Eθ0�αi0[−vψii (θ�ψi(αi� θ))]

− ∂2ψi(αi� θ)

∂α2
i

Eθ0�αi0[vi(θ�ψi(αi� θ))]

and

Eθ0�αi0[v2
i (θ�αi)] =

(
∂ψi(αi� θ)

∂αi

)2

Eθ0�αi0[v2
i (θ�ψi(αi� θ))]�

where with some abuse of notation we have written vi(θ�ψi) for the score of
the reparameterized likelihood with respect to the new fixed effects. Evalu-
ating these two equalities at (θ�αi(θ)) and using that Eθ0�αi0[vi(θ�ψi(θ))] = 0
yields

Eθ0�αi0[−vαii (θ�αi(θ))] =
(
∂ψi(αi(θ)�θ)

∂αi

)2

Eθ0�αi0[−vψii (θ�ψi(θ))]

and

Eθ0�αi0[v2
i (θ�αi(θ))] =

(
∂ψi(αi(θ)�θ)

∂αi

)2

Eθ0�αi0[v2
i (θ�ψi(θ))]�

Hence

bi(θ0)= ∂

∂θ

∣∣∣∣
θ0

lnπi(αi(θ)|θ)− ∂

∂θ

∣∣∣∣
θ0

ln
(
Eθ0�αi0[−vψii (θ�ψi(θ))]

× {
Eθ0�αi0[Tv2

i (θ�ψi(θ))]
}−1/2)
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− ∂

∂θ

∣∣∣∣
θ0

ln
∣∣∣∣∂ψi(αi(θ)�θ)∂αi

∣∣∣∣
= ∂

∂θ

∣∣∣
θ0

ln π̃i(ψi(θ)|θ)− ∂

∂θ
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θ0

ln
(
Eθ0�ψi0[−vψii (θ�ψi(θ))]

× {
Eθ0�ψi0[Tv2

i (θ�ψi(θ))]
}−1/2)

�

The proposition follows. Q.E.D.

PROOF OF PROPOSITION 3: A stochastic expansion of vi(θ� α̂i(θ)) in the
neighborhood of (θ�αi(θ)) yields

α̂i(θ)− αi(θ)= {
Eθ0�αi0[−vαii (θ�αi(θ))]

}−1
vi(θ�αi(θ))+Op

(
1
T

)
�

This yields

Eθ0�αi0 (̂αi(θ)− αi(θ))=O
(

1
T

)
and

Eθ0�αi0[(̂αi(θ)− αi(θ))2] = {
Eθ0�αi0[−vαii (θ�αi(θ))]

}−2

× Eθ0�αi0[v2
i (θ�αi(θ))] +O

(
1
T 2

)
�

Hence

V̂ar(̂αi(θ))= [πRi (αi(θ)|θ)]−2 +Op
(

1
T 2

)
�

Thus, as V̂ar(̂αi(θ))=Op(1/T) we have

πRi (αi(θ)|θ)∝ 1√
V̂ar(̂αi(θ))

(
1 +Op

(
1
T

))
�

Equation (15) follows by noting that

πRi (̂αi(θ)|θ)= πRi (αi(θ)|θ)
(

1 +Op
(

1
T

))
�

by the same arguments as in the proof of Lemma 1.
To show the second part of the proposition, let πi be a nondogmatic prior

satisfying

πi(̂αi(θ)|θ)∝ 1√
V̂ar(̂αi(θ))

(
1 +Op

(
1
T

))
�
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Then the proof of Lemma 1 shows that the only quantity that matters for bias
reduction is lnπi(̂αi(θ)|θ). This result comes directly from the Laplace ap-
proximation to the integrated likelihood and does not require Assumption 2 to
hold. As

lnπi(̂αi(θ)|θ)= lnπRi (̂αi(θ)|θ)+Op
(

1
T

)
and as πRi is robust, it follows that πi is also bias reducing. Q.E.D.

PROOF OF LEMMA 2: The first-order conditions of the maximization imply
that

0 =
N∑
i=1

∂	RE
i (θ; ξ̂(θ))
∂ξ

=
N∑
i=1

1
T

∫
exp[T	i(θ�αi)]{∂πi(αi; ξ̂(θ))/∂ξ}dαi∫

exp[T	i(θ�αi)]πi(αi; ξ̂(θ))dαi
�

A Laplace approximation of the two integrals yields, as in the proof of
Lemma 1,∫

exp(T	i(θ�αi))
∂πi(αi; ξ̂(θ))

∂ξ
dαi

= √
2π
(−Tvαii (θ� α̂i(θ)))−1/2

exp[T	i(θ� α̂i(θ))]
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(
1 +Op

(
1
T

))
�∫

exp(T	i(θ�αi))πi(αi; ξ̂(θ))dαi

= √
2π
(−Tvαii (θ� α̂i(θ)))−1/2

exp[T	i(θ� α̂i(θ))]

×πi(̂αi(θ); ξ̂(θ))
(

1 +Op
(

1
T

))
�

Hence we obtain

1
N

N∑
i=1

∂ lnπi(̂αi(θ); ξ̂(θ))
∂ξ

(
1 +Op

(
1
T

))
= 0�
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Then taking the probability limit we have

plim
N→∞

1
N

N∑
i=1

Eπ0

(
Eθ0�αi0

∂ lnπi(̂αi(θ);ξ(θ))
∂ξ

)
=O

(
1
T

)
�

Last, using that Eθ0�αi0 (̂αi(θ)− αi(θ))=O(1/T), we obtain

plim
N→∞

1
N

N∑
i=1

Eπ0

(
∂ lnπi(αi(θ);ξ(θ))

∂ξ

)
=O

(
1
T

)
�

Q.E.D.

PROOF OF THEOREM 3: Let πi(αi� ξ) be a class of random effects distrib-
utions indexed by ξ. Also, let π0G be a population joint density of individual
effects and exogenous covariates. Lemma 2 implies that the pseudo true value
ξ(θ0) satisfies

Eπ0G

(
∂ lnπi(αi0;ξ(θ0))

∂ξ

)
=O

(
1
T

)
�(A6)

Note that ξ(θ0) is population specific. Moreover, it follows from the analysis
in Section 4 that πi(αi� ξ) is bias reducing if and only if πi(αi� ξ(θ0)) is bias
reducing, that is,

Eπ0G

(
∂

∂αi

∣∣∣∣
αi0

ρi(θ0�αi)+ ρi(θ0�αi0)
∂ lnπi(αi0;ξ(θ0))

∂αi

)
= o(1)�(A7)

Here we ask the question: In which case is πi(αi� ξ) bias reducing for all
π0G? Clearly, this will hold if and only if (A7) holds for all π0G such that (A6)
is satisfied. We now provide a linear algebra interpretation of this statement,
which leads to an explicit solution.

Let us consider the Hilbert space L2, endowed with the inner product

〈ϕ�ψ〉 =
∫
ϕ(α)ψ(α)dα� (ϕ�ψ) ∈L2 ×L2�

We have, for any function ψ,

Eπ0G(ψ(αi0))= 〈π0G�ψ〉�
So (A6) is equivalent to〈

∂ lnπi(·;ξ(θ0))

∂ξ
−AT�π0G

〉
= 0(A8)
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and (A7) is equivalent to〈
∂ρi(θ0� ·)
∂αi

+ ρi(θ0� ·)∂ lnπi(·;ξ(θ0))

∂αi
−BT�π0G

〉
= 0�(A9)

where AT =O( 1
T
) and BT = o(1).

So πi(αi� ξ) is bias reducing for all π0G if and only if, for all π0G ∈ L2 such
that (A8) holds, (A9) holds also.26

Let A⊥ denote the orthogonal complement of A⊂L2. πi(αi� ξ) is thus bias
reducing for all π0G if and only if

∂ρi(θ0� ·)
∂αi

+ ρi(θ0� ·)∂ lnπi(·;ξ(θ0))

∂αi
−BT

∈
[(
∂ lnπi(·;ξ(θ0))

∂ξ
−AT

)⊥]⊥
�

Now, as there is a finite number of first-order conditions in (A6), the vector
space spanned by (∂ lnπi(·;ξ(θ0)))/∂ξ − AT is finite dimensional, so (e.g.,
Griffel, (1989, p. 66))[(

∂ lnπi(·;ξ(θ0))

∂ξ
−AT

)⊥]⊥
= Vect

(
∂ lnπi(·;ξ(θ0))

∂ξ
−AT

)
�

where Vect(V ) denotes the vector space spanned by V .
So (A7) and (A6) hold for all π0G if and only if there exists a matrix Γ (θ0),

with as many columns as the number of hyperparameters ξ, such that

∂

∂αi

∣∣∣
αi0

ρi(θ0�αi)+ ρi(θ0�αi0)
∂ lnπi(αi0;ξ(θ0))

∂αi
−BT

− Γ (θ0)

(
∂ lnπi(αi0;ξ(θ0))

∂ξ
−AT

)
= 0

or, equivalently,

∂

∂αi

∣∣∣
αi0

ρi(θ0�αi)+ ρi(θ0�αi0)
∂ lnπi(αi0;ξ(θ0))

∂αi

− Γ (θ0)
∂ lnπi(αi0;ξ(θ0))

∂ξ
= o(1)�

26Strictly speaking, bias reduction holds for any density π0G, so equations (A8) and (A9) hold
only for all π0G ∈ L2 that are nonnegative and integrate to 1. However, this does not matter for
the argument.
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that is,

∂

∂αi

∣∣∣∣
αi0

(
ρi(θ0�αi)πi(αi;ξ(θ0))

)− Γ (θ0)
∂πi(αi0;ξ(θ0))

∂ξ
= o(1)�

This ends the proof. Q.E.D.

PROOF OF COROLLARY 1: In the location–scale case, we have π(αi) =
1
σ
f ((αi − μ)/σ), where f is a known pdf, and μ and σ2 are hyperparameters.

Then (22) yields27

ρi(θ�αi)= Γ1(θ)+ Γ2(θ)

(
αi −μ(θ)
σ(θ)

)
+ o(1)�

The corollary follows. Q.E.D.

PROOF OF COROLLARY 2: In that case πi(αi)= 1
σ
f ((αi − x′

iμ)/σ), and (22)
yields

ρi(θ�αi)= Γ1(θ)xi + Γ2(θ)

(
αi − x′

iμ(θ)

σ(θ)

)
+ o(1)�

Q.E.D.
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