
Econometrica, Vol. 71, No. 4 (July, 2003), 1121–1159

THE TIME SERIES AND CROSS-SECTION ASYMPTOTICS
OF DYNAMIC PANEL DATA ESTIMATORS

By Javier Alvarez and Manuel Arellano1

In this paper we derive the asymptotic properties of within groups (WG), GMM, and
LIML estimators for an autoregressive model with random effects when both T and N
tend to infinity. GMM and LIML are consistent and asymptotically equivalent to the WG
estimator. When T /N → 0 the fixed T results for GMM and LIML remain valid, but WG,
although consistent, has an asymptotic bias in its asymptotic distribution. When T /N tends
to a positive constant, the WG, GMM, and LIML estimators exhibit negative asymptotic
biases of order 1/T , 1/N , and 1/�2N − T �, respectively. In addition, the crude GMM
estimator that neglects the autocorrelation in first differenced errors is inconsistent as
T /N → c > 0, despite being consistent for fixed T . Finally, we discuss the properties of a
random effects pseudo MLE with unrestricted initial conditions when both T and N tend
to infinity.

Keywords: Autoregressive models, random effects, panel data, within-groups,
generalized method of moments, maximum likelihood, double asymptotics.

1� introduction

In a regression model for panel data containing lags of the dependent vari-
able, the within-groups (WG) estimator can be severely downward biased when
the time series (T ) is short regardless of the cross-sectional size of the panel (N ).
This has been a well known fact since the Monte Carlo simulations reported
by Nerlove (1967, 1971) and the exact calculation of the bias for the first-order
autoregressive model derived by Nickell (1981). Moreover, Anderson and Hsiao
(1981) showed the sensitivity of maximum likelihood estimators to alternative
assumptions about initial conditions and asymptotic plans. As a result, they pro-
posed to estimate their model in first-differences by instrumental variables using
either the dependent variable lagged two periods or its first-differences as instru-
ments. Anderson and Hsiao argued that the advantage of these estimators was
that they were consistent whatever the form of the initial conditions and whether
T or N or both were tending to infinity. Inconsistency for fixed T as N tends to
infinity has been regarded as an undesirable property since in most micro pan-
els T is small while N is large. Subsequently, Holtz-Eakin, Newey, and Rosen

1 We thank Gary Chamberlain, Jan Magnus, Enrique Sentana, Neil Shephard, a co-editor, three
anonymous referees, and seminar audiences at CEMFI, IFS, London, and CentER, Tilburg, for useful
comments. An earlier version of this paper was presented at the International Conference on Panel
Data, Göteborg, June 1998, and at the Econometric Society European Meeting in Berlin, September
1998. All remaining errors are our own. The first author acknowledges research funding from a
CEMFI Ph.D. scholarship, from the Spanish DGI, Grant BEC2002-03097, and from Generalitat
Valenciana, Grant CTIDIB/2002/175.
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(1988) and Arellano and Bond (1991) proposed GMM estimators that used all
the available lags at each period as instruments for the equations in first differ-
ences, hence relying on a number of orthogonality conditions that grew at the
rate of T �T − 1�/2. These estimates were shown to be consistent for fixed T ,
and the simulations reported by Arellano and Bond suggested significant effi-
ciency gains of the GMM estimates relative to those of the Anderson-Hsiao type.
However, applied econometricians have tended to use in practice less than the
total number of instruments available when that number (which depends on T )
was judged to be not sufficiently small relative to the cross-sectional sample size.
This practice reflects a concern with the small sample properties of GMM esti-
mators, which have been shown not to be free from bias either, as reported in,
for example, Kiviet (1995) or Alonso-Borrego and Arellano (1999). This concern
led Alonso-Borrego and Arellano to consider symmetrically normalized GMM
estimators of the LIML type, which in simulations exhibited less bias but more
dispersion than conventional GMM.
In this paper we show that further insight into the relative merits of dynamic

panel data estimators can be obtained by allowing both N and T to tend to
infinity and studying their behavior for alternative relative rates of increase for
T and N . Our analysis is motivated by the increasing availability of micropanels
in which the value of T is not negligible relative to N (such as the household
incomes panel in the US (PSID), or the balance-sheet-based company panels that
are available in many countries). Thus this paper does not belong to the recent
literature on country or regional macropanels (which has focused on models with
unit roots, or models with more general forms of heterogeneity as, for example,
in Pesaran and Smith (1995), and Canova and Marcet (1995)), although some of
our results may be also relevant in that context. The importance of the results in
this paper is that they lead to a reassessment of alternative panel data estimators
for autoregressive models existing in the literature.
Specifically, we establish the asymptotic properties of WG, GMM, and LIML

estimators for a first-order autoregressive model with individual effects when
both N and T tend to infinity. We show that the three estimators are con-
sistent when T /N → c for 0 < c ≤ 2. The basic intuition behind this result is
that, contrary to the structural equation setting where too many instruments pro-
duces overfitting and undesirable closeness to the OLS coefficients (cf. Kunitomo
(1980), Morimune (1983), or Bekker (1994), who show that 2SLS is inconsistent
as the number of instruments tends to infinity), here a large number of instru-
ments is associated with larger values of T , and in such a case closeness to OLS
(the WG estimator) becomes increasingly desirable since the “endogeneity bias”
tends to zero as T tends to infinity. Nevertheless, WG, GMM, and LIML exhibit
a bias term in their asymptotic distributions; the biases are of orders 1/T �1/N ,
and 1/�2N − T �, respectively. Provided T < N , the asymptotic GMM bias is
always smaller than the WG bias, and the LIML bias is smaller than the other
two. When T =N the expressions for the three asymptotic biases are all equal.
When T /N → 0 the fixed T results for GMM and LIML remain valid. Con-
versely, the asymptotic bias in the WG estimator only disappears when N/T → 0.
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Some other results emerge from this setting. The three estimators are asymp-
totically normal and have the same asymptotic variance, given by the large T
variance of least-squares when the individual effects are known. Another inter-
esting result is that a crude GMM estimator that neglects the first-difference
structure of the errors is inconsistent as T tends to infinity, while it would only
be asymptotically inefficient for fixed T as N tends to infinity. The intuition here
is again that with an increasingly large number of instruments the instrumental
variables estimates will approach the OLS estimates in first differences, which
cannot be consistent as T →�.
Finally, we consider a random effects (pseudo) maximum likelihood estimator

(RML) that leaves the mean and variance of initial conditions unrestricted but
enforces time series homoskedasticity. For fixed T , RML is more efficient but less
robust than GMM or LIML, since unlike the latter RML requires homoskedas-
ticity for consistency. However, as both T and N tend to infinity RML becomes
robust to time series heteroskedasticity, and its asymptotic variance coincides
with those of GMM and LIML. The difference is that unlike GMM or LIML,
RML does not exhibit an asymptotic bias, because it does not entail incidental
parameters in the N or T dimensions.
The paper is organized as follows. Section 2 presents the model and the esti-

mators. In Section 3 we establish the asymptotic properties of WG, GMM, and
LIML estimators, and provide some discussion of the implications of the results.
We also show the inconsistency of the crude GMM estimator in first-differences,
and discuss the properties of the RML estimator in the large T and N context.
Section 4 reports some Monte Carlo simulations to evaluate the accuracy of the
approximations. Finally, Section 5 contains some concluding remarks and plans
for future work.

2� the model and the estimators

The Model. We consider an autoregressive process for panel data given by

yit =�yit−1+�i+vit �t = 1� � � � � T � i = 1� � � � �N��(1)

where � � �< 1 and vit has zero mean given �i� yi0� � � � � yit−1. For notational con-
venience we assume that yi0 is also observed. Moreover, for the presentation of
the estimators below, it is convenient to introduce the notation xit = yit−1 and
write model (1) in the form:

yi = �xi+�i	T +vi(2)

where yi = �yi1� � � � � yiT �
′� xi = �xi1� � � � � xiT �

′� 	T is a T × 1 vector of ones, and
vi = �vi1� � � � � viT �

′.

The Within-Groups Estimator. The within-groups or covariance estimator is
given by

�̂WG =
∑N

i=1 x
′
iQT yi∑N

i=1 x
′
iQT xi

(3)

where QT = IT − 	T 	′T /T is the WG operator of order T .
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The WG estimator can also be written as OLS in orthogonal deviations
(cf. Arellano and Bover (1995)). The forward orthogonal deviations operator A
is the �T −1�×T upper triangular matrix such that A′A=QT and AA′ = IT−1.
Thus, if var�vi�= 
2IT , the �T −1�×1 vector of errors in orthogonal deviations
v∗i =Avi also has var�v∗i � = 
2IT−1.2 Notice that since A	T = 0, in the equation
in orthogonal deviations the individual effects are differenced out:

y∗i = �x∗i +v∗i �(4)

and letting x∗ = �x∗
′

1 � � � � � x
∗′
N �

′ and y∗ = �y∗
′

1 � � � � � y
∗′
N �

′ we have

�̂WG = x∗′y∗

x∗′x∗
�(5)

The GMM Estimator. For any value of T �E�x∗itv
∗
it� �= 0 and as a consequence

�̂WG is inconsistent for fixed T as N tends to infinity. However,

E�zitv
∗
it�= 0 �t = 1� � � � � T −1�(6)

where zit = �xi1� � � � � xit�
′, and therefore GMM estimators of � based on such

moment conditions will be consistent for fixed T (cf. Arellano and Bond (1991)
and Arellano and Bover (1995)). In (6) there are q = T �T −1�/2 orthogonality
conditions that can be written as

E�Z′
iv

∗
i �= 0

where Zi is a �T −1�×q block diagonal matrix whose tth block is z′it . Moreover,
provided vit has constant variance 
2 given �i� yi0� � � � � yit−1,

E�Z′
iv

∗
i v

∗′
i Zi�= 
2E�Z′

iZi��(7)

in which case an asymptotically efficient GMM estimator of � relative to the
moment conditions in (6) is given by

�̂GMM = x∗′Z�Z′Z�−1Z′y∗

x∗′Z�Z′Z�−1Z′x∗
(8)

where Z = �Z′
1� � � � �Z

′
N �

′. This is the GMM estimator whose properties we ana-
lyze in this paper. A computationally useful alternative expression for �̂GMM is

�̂GMM =
∑T−1

t=1 x
∗′
t Mty

∗
t∑T−1

t=1 x
∗′
t Mtx

∗
t

�(9)

2 The vector v∗i has elements of the form

v∗it = ct

[
vit −

1
�T − t� �vit+1+· · ·+viT �

]
�t = 1� � � � � T −1�

with c2t = �T − t�/�T − t+1�.
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where x∗t and y
∗
t are the N ×1 vectors whose ith elements are x∗it and y

∗
it , respec-

tively, Mt = Zt�Z
′
tZt�

−1Z′
t and Zt is the N × t matrix whose ith row is z′it .

3

Notice that invertibility of Z′Z requires that N ≥ T − 1, but the projections
involved remain well defined in any case. We shall retain the condition that
N ≥ T −1 for simplicity, and because the GMM estimator is motivated in a
situation in which T is smaller than N . Nevertheless, it is straightforward to
extend the results in this paper to allow for any combination of values of T
and N by considering a generalized formulation of (9) using Mt = Zt�Z

′
tZt�

+Z′
t

where �Z′
tZt�

+ denotes the Moore-Penrose inverse of Z′
tZt . In this way, Mt =

Zt�Z
′
tZt�

−1Z′
t if t < N and Mt = IN if t ≥ N . Thus, the contributions of terms

with t >N to the GMM formula coincide with the corresponding terms for WG.
Finally, �̂GMM can also be written using the equations in first differences as

opposed to orthogonal deviations (cf. Arellano and Bover (1995)). In such case:

�̂GMM = �x′Z�Z′�IN ⊗H�Z−1Z′�y
�x′Z�Z′�IN ⊗H�Z−1Z′�x

(10)

where �x and �y are �T − 1�N × 1 vectors of the variables in first differences,
and H is a �T − 1�× �T − 1� matrix whose diagonal elements are equal to two,
the elements in the first subdiagonal are equal to minus one, and the remaining
elements are equal to zero.
As shown by Ahn and Schmidt (1995), the orthogonality conditions in (6) are

not the only restrictions on the data second-order moments implied by condi-
tional mean independence and homoskedasticity of vit , but these are the only
ones that remain valid in the absence of homoskedasticity or lack of correlation
between vit and �i.

The LIML Estimator. The “limited information maximum likelihood” (LIML)
analog estimator solves the following problem:

�̂LIML = argmin
a

�y∗ −ax∗�′Z�Z′Z�−1Z′�y∗ −ax∗�
�y∗ −ax∗�′�y∗ −ax∗� �(11)

It is a symmetrically normalized estimator of the kind considered by Alonso-
Borrego and Arellano (1999), and it is asymptotically equivalent to the GMM
estimator for fixed T as N → �. It can also be regarded as a “continuously
updated” GMM estimator in the terminology of Hansen, Heaton, and Yaron
(1996). That is, instead of keeping 
2 fixed in the weighting matrix of the GMM
criterion, it is continuously updated by making it a function of the argument
in the estimating criterion. It does not correspond to any meaningful maximum

3 In our notation, for the sake of simplicity, the individual-specific matrix Zi is distinguished from
the period-specific matrix Zt by the choice of index. Similarly, vi and vt denote individual �T ×1� and
period specific �N ×1� vectors, respectively. Throughout, the index i is the only one used to denote
individuals, whereas time periods are denoted by t and other indices.
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likelihood estimator; it is only a LIML analog estimator in the sense of the mini-
max instrumental-variable interpretation given by Sargan (1958) to the original
LIML estimator.4

We can write down a simple explicit expression for �̂LIML by noticing that the
minimized criterion in (11) is the minimum generalized characteristic root �̂ of
the polynomial equation:

det���W ∗′W ∗�−W ∗′Z�Z′Z�−1Z′W ∗= 0(12)

where W ∗ = �y∗ � x∗�. As N →� for fixed T � �̂
p→0 since the population projec-

tion matrix is singular.
Now the first order conditions for (11) are

�1�−a��W ∗′Z�Z′Z�−1Z′W ∗ − �̂W ∗′W ∗
(

0
−1

)
= 0(13)

from which we obtain

�̂LIML = x∗′Z�Z′Z�−1Z′y∗ − �̂�x∗′y∗�
x∗′Z�Z′Z�−1Z′x∗ − �̂�x∗′x∗� �(14)

3� asymptotic properties of the estimators

Assumptions. In this section we derive the asymptotic properties of the pre-
vious estimators when both T and N tend to infinity under the following
assumptions:

Assumption A1: �vit� �t = 1� � � � � T � i = 1� � � � �N� are i.i.d. across time and
individuals and independent of �i and yi0, with E�vit�= 0� var�vit�= 
2, and finite
moments up to fourth order.

Assumption A2: The initial observations satisfy

yi0 =
�i

1−� +wi0 �i = 1� � � � �N��

where wi0 is independent of �i and i.i.d. with the steady state distribution of the
homogeneous process, so that wi0 =

∑�
j=0�

jvi�−j�.

Assumption A3: �i are i.i.d. across individuals with E��i� = 0� var��i� = 
2
�,

and finite fourth order moment.

While these assumptions will be used in deriving the asymptotic properties
of the estimators, the estimators themselves do not rely on the specification of
initial conditions.

4 We nevertheless prefer to keep the LIML label to refer to these estimators, since much of their
motivation draws on the finite sample literature for LIML in the instrumental variable context.
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3�1� The WG Estimator

We first consider the covariance or WG estimator defined in (3) and (5):

�̂WG−�= x∗′v∗

x∗′x∗
�(15)

The results collected in the following lemma are useful in establishing the
asymptotic properties of the WG estimator. All proofs are in the Appendix.

Lemma 1: Under Assumptions A1 and A2,

E�x∗
′
v∗�=−N 
2

�1−��
[
1− 1

T

(
1−�T
1−�

)]
�(16)

Moreover, as T →�, regardless of whether N is fixed or tends to infinity,

var
(

x∗′v∗

�NT �1/2

)
→ 
4

�1−�2�
�(17)

1
NT

�x∗
′
x∗�

p→ 
2

�1−�2�
�(18)

It is well known that �̂WG is consistent as T →� regardless of the asymptotic
behavior of N (cf. Anderson and Hsiao (1981), or Nickell (1981)). Indeed, in view
of (16) and (17), �x∗′v∗�/NT converges to zero in mean square, which implies
that plim�x∗′v∗/NT �= 0. Together with (18), this implies that

�̂WG
p→� as T →��(19)

We now turn to consider asymptotic normality. The result is contained in the
following theorem.

Theorem 1 (Asymptotic normality of the WG estimator): Let conditions A1
and A2 hold. Then, as T →�, regardless of whether N is fixed or tends to infinity:

�NT �−1/2��x∗
′
v∗�−E�x∗′v∗� d→�

(
0�


4

�1−�2�

)
�(20)

Moreover, provided N/T 3 → 0,
√
NT

[
�̂WG−

(
�− 1

T
�1+��

)]
d→� �0�1−�2��(21)

The implication of Theorem 1 is that even if the covariance estimator is always
consistent provided T →�, its asymptotic distribution may contain an asymptotic
bias term when N →�, depending on the relative rates of increase of T and N .
If lim�N/T �= 0 (which includes N fixed) there is no asymptotic bias:

√
NT ��̂WG−�� d→� �0�1−�2�(22)

but if lim�N/T � > 0, the bias term in expression (21) must be kept.
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Of these two situations, the second is more relevant here since we wish to com-
pare WG estimates with GMM and LIML estimates in environments in which
T is not larger than N , and for such datasets the assumption N/T → 0 is not
very realistic. Notice that (21) has been obtained under the assumption that
N/T 3 → 0. The asymptotic bias will contain additional terms for lower relative
rates of increase of T . For example, if lim�N/T 3� �= 0 but N/T 5 → 0, the bias
will include a T 2 term as the one shown in the proof to Theorem 1.
The result in Theorem 1 has been independently found by Hahn and Kuer-

steiner (2002) under slightly more general conditions. Hahn and Kuersteiner
(2002)’s paper has a different focus since they are concerned with the develop-
ment of a bias-corrected estimator when both N and T are large.

3�2� The GMM Estimator

We now turn to consider the GMM estimator defined in (8), (9), or (10):

�̂GMM −�= x∗′Mv∗

x∗′Mx∗
(23)

where M = Z�Z′Z�−1Z′. As before, some preliminary results are collected in a
Lemma.

Lemma 2: Under Assumptions A1, A2, and A3,

E�x∗
′
Mv∗�=−T 
2

�1−��
[
1− 1

T �1−��
T∑
t=1

�1−�t�
t

]
�(24)

Moreover, as both N and T tend to infinity, provided �logT �2/N → 0,

var
(
x∗′Mv∗

�NT �1/2

)
→ 
4

�1−�2�
�(25)

1
NT

�x∗
′
Mx∗�

p→ 
2

1−�2
�(26)

and provided T /N → c�0≤ c <�,

1
NT

�v∗
′
Mv∗�

p→
2 c

2
�(27)

The condition �logT �2/N → 0 provides a limit on how slow N can tend to
infinity relative to T . Since the GMM estimator is motivated in environments
with T smaller than N , this is not an unreasonable assumption. It would be
certainly satisfied if T /N → c for 0≤ c <�. Given these results, we can consider
the consistency and asymptotic normality of �̂GMM in the following Theorem.
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Theorem 2 (Consistency and asymptotic normality of the GMM estimator):
Let conditions A1, A2, and A3 hold. Then as both N and T tend to infinity,
provided �logT �2/N → 0� �̂GMM is consistent for �:

�̂GMM
p→��(28)

Moreover, provided T /N → c�0≤ c <�,

√
NT

[
�̂GMM −

(
�− 1

N
�1+��

)]
d→� �0�1−�2��(29)

When T → �, the number of the GMM orthogonality conditions
q = T �T −1�/2 also tends to infinity. In spite of this fact, the theorem shows
that �̂GMM remains consistent. This is in contrast to the situation in the structural
equation setting where the two-stage least squares estimator has been shown to
be inconsistent when both the number of instruments and the sample size tend
to infinity, while their ratio tends to a positive constant (cf. Kunitomo (1980),
Morimune (1983), and Bekker (1994)). The intuition for the consistency of �̂GMM

is that in our context as T tends to infinity, the “endogeneity bias” tends to zero,
and so closeness of �̂GMM to �̂WG for larger values of T becomes a desirable
property of the GMM estimator.
The theorem also shows that as T → �� �̂GMM is asymptotically normal but

unless lim�T /N�= 0, it exhibits a bias term in its asymptotic distribution. When
0< lim�T /N� <�, Theorems 1 and 2 provide a clean comparison between the
GMM and WG estimators. Namely, they have the same asymptotic variance, and
a similar expression for their (negative) asymptotic biases, which nevertheless
differ in their orders of magnitude: �1+��/N for GMM and �1+��/T for WG.

For a class of linear GMM problems, Koenker and Machado (1999) found that
q3/N → 0 was a sufficient condition for the validity of conventional asymptotic
inference about heteroskedasticity-robust GMM estimators, where q is the num-
ber of moment conditions. It is interesting to notice that in our case if T /N → 0
as N → � the fixed T homoskedastic asymptotic inferences about �̂GMM are
valid. Since here q = T �T −1�/2, it turns out that there is a much tighter condi-
tion for the validity of standard fixed T inferences in the homoskedastic dynamic
panel data context.

3�3� The LIML Estimator

The LIML estimator defined in (14) can be written as

�̂LIML−�= x∗′Mv∗ − �̂�x∗′v∗�
x∗′Mx∗ − �̂�x∗′x∗� �(30)

The limit in probability of �̂ is given in the following lemma.
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Lemma 3: Under Assumptions A1, A2, and A3 as both N and T tend to infinity,
and T /N → c�0≤ c ≤ 2,

�̂
p→ c

2
�(31)

An implication of this result is that c ≤ 2 is a necessary condition for the
consistency of the LIML estimator. In effect, for a given d, under the assumptions
of Lemma 3

�y∗ −dx∗�′M�y∗ −dx∗�
�y∗ −dx∗�′�y∗ −dx∗�

p→ �d−��2+ �1−�2�c/2
�d−��2+ �1−�2�

�(32)

Provided c ≤ 2, the limiting criterion is minimized at d= �, taking the value c/2.
If, on the contrary, c > 2, the limiting criterion can be reduced for any d > �,
tending to one as d → ±�. However, the condition lim�T /N� ≤ 2 should not
be regarded as a restrictive assumption since the LIML estimator is motivated
in a situation in which T is smaller than N , and the actual formula we consider
is only defined for �T −1�/N ≤ 1. The following theorem considers consistency
and asymptotic normality of �̂LIML.

Theorem 3 (Consistency and asymptotic normality of the LIML estimator):
Let conditions A1, A2, and A3 hold. Then as both N and T tend to infinity,
provided T /N → c�0≤ c ≤ 2� �̂LIML is consistent for �:

�̂LIML
p→��(33)

Moreover,

√
NT

[
�̂LIML−

(
�− 1

�2N −T ��1+��
)]

d→� �0�1−�2��(34)

The theorem shows that like GMM, the LIML estimator is consistent despite
T → � and T /N → c. Also, �̂LIML is asymptotically normal with the same
asymptotic variance as the GMM and WG estimates. Unless T /N → 0, it has
a (negative) asymptotic bias with a similar expression as the asymptotic biases
of WG and GMM, but again differing in its order of magnitude: �1+��/T for
WG, �1+��/N for GMM, and �1+��/�2N −T � for LIML. Therefore, provided
T < N , the LIML asymptotic bias is the smallest of the three.

3�4� The Crude GMM Estimator in First Differences

We noticed in equation (10) that the asymptotically efficient GMM estimator
could also be written using the moment conditions in first differences as opposed
to orthogonal deviations. In such a case, however, the optimal weighting matrix
becomes �Z′�IN ⊗H�Z−1 instead of �Z′Z�−1 in order to take into account the
serial correlation in the errors in first-differences. In this section we consider
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the crude IV or GMM estimator in first differences that uses �Z′Z�−1 as the
weighting matrix:

�̂CIV = �x′Z�Z′Z�−1Z′�y
�x′Z�Z′Z�−1Z′�x

�(35)

For fixed T as N tends to infinity, this estimator is asymptotically inefficient
relative to �̂GMM , but it is still consistent and asymptotically normal, and as such it
may be regarded as a computationally simpler alternative to �̂GMM (for example,
Holtz-Eakin, Newey, and Rosen (1988) use CIV estimators as their one-step
GMM estimates). However, the results in the previous sections suggest that, since
the “endogeneity bias” in first differences does not tend to zero as T →�, there
may be more fundamental differences between �̂CIV and �̂GMM when both T and
N tend to infinity. We address this issue in the following theorem.

Theorem 4 (Inconsistency of the crude GMM estimator in first differences):
Let conditions A1, A2, and A3 hold. Then as both N and T tend to infinity,
provided T /N → c�0≤ c <�,

1
NT

��x′M�v�
p→−
2 c

2
�(36)

1
NT

��x′M�x�
p→
2

(
c

2
+ 1−�

1+�
)
�(37)

and

�̂CIV
p→�− �1+��

2

(
c

2− �1+���2−c�/2
)
�(38)

The crude GMM estimator is therefore inconsistent when T →� unless c= 0.
Moreover, the bias may be qualitatively relevant. In a squared panel (c = 1)
the biases will be enormous, but even in a panel whose cross-sectional size is
ten times the time series dimension (c = 0�1) the biases are substantial (some
numerical calculations of the bias are reported in the next section). Notice that
at c = 2, the bias of �̂CIV coincides with that of the OLS regression in first
differences. This result further illustrates the shortcomings of large N , fixed T
asymptotics in evaluating the relative merits of the estimators. In effect, according
to the fixed T approximations, in the comparison between �̂GMM and �̂CIV there
is only a second order difference in precision, whereas when T /N → c > 0� �̂GMM
is still consistent but �̂CIV is not.

3�5� The Random Effects ML Estimator

In this section we discuss the random effects ML estimator �̂RML when
��i� yi0� � � � � yiT � are jointly normally distributed and Assumption A1 is satisfied.
Let the covariance matrix of �i and yi0 be

var

(
�i

yi0

)
=

(

2
� ��0

��0 �00

)
�(39)
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Under Assumption A2 ��0 = 
2
�/�1−�� and �00 = �
2

�/�1−��2+
2/�1−�2�,
but here ��0 and �00 are free parameters. Thus �̂RML is also the conditional MLE
given yi0. As a result, it will be robust to alternative initial conditions when T is
small, and yet the likelihood in this case does not depend on parameters whose
number grows with T or N , so that no asymptotic biases will occur when both N
and T tend to infinity. From the point of view of the large N , fixed T asymptotics,
RML is more efficient but less robust than GMM or LIML, since contrary to the
latter RML requires time series homoskedasticity for consistency. However, as
both T and N tend to infinity RML turns out to be robust to heteroskedasticity,
but unlike GMM or LIML it does not exhibit an asymptotic bias. This is, there-
fore, another instance in which the N and T asymptotics suggests a reassessment
of the relative merits of competing estimators.5

As shown in the Appendix, the log Gaussian density of �yi1� � � � � yiT � given yi0
can be written as

log f �yi1� � � � � yiT � yi0�=−�T −1�
2

log
2− 1
2
2

�y∗i −�x∗i �′�y∗i −�x∗i �(40)

− 1
2
log�2− 1

2�2
�ȳi−�x̄i−�yi0�2

where ȳi = T −1∑T
t=1 yit� x̄i = T −1∑T

t=1 xit , and ����2� are the linear projection
coefficients of �ȳi − �x̄i� on yi0 given by � = ��0/�00, and �2 = 
2

� − �2�00 +

2/T . Hence, by concentrating ���2, and 
2 out of the log likelihood, the RML
estimator can be expressed as

�̂RML = argmin
a

{
log��y∗ −ax∗�′�y∗ −ax∗�(41)

+ 1
�T −1�

log��ȳ−ax̄�′S0�ȳ−ax̄�
}

where S0 = IN − y0y
′
0/�y

′
0y0�� y0 = �y10� � � � � yN0�

′� ȳ = �ȳ1� � � � � ȳN �
′, and x̄ =

�x̄1� � � � � x̄N �
′.6 Consistency and asymptotic normality of �̂RML is considered in

the following theorem. The data are not assumed to be normally distributed, so
we regard �̂RML as a pseudo ML estimator.

Theorem 5 (Consistency and asymptotic normality of the RML estimator):
Let conditions A1, A2, and A3 hold. Then as both N and T tend to infinity, �̂RML
is consistent for �:

�̂RML
p→��(42)

5 We thank Gary Chamberlain for suggesting we consider the RML estimator in this context.
6 The estimator in (41) does not restrict 
 2

� to be nonnegative. We may obtain ML estimates
of � that enforce 
 2

� ≥ 0, from an alternative concentrated likelihood that is only a function of �
and 
 2

�/

2. In such case, a boundary solution at 
 2

� = 0 may occur. This problem was discussed by
Maddala (1971).
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Moreover, provided 0≤ lim�N/T � <�,
√
NT ��̂RML−�� d→� �0�1−�2��(43)

Obviously, the RML estimator is also consistent and asymptotically normal for
fixed T as N →� under the stated conditions, but in such a case the asymptotic
variance will take a different expression.
This estimator and a generalized least squares estimator of the same model

were considered by Blundell and Smith (1991) and have been discussed further
by Blundell and Bond (1998) (in their formulation the model is not transformed
into orthogonal deviations together with an average equation as we do).7

4� monte carlo evidence

In this section we report some Monte Carlo simulations of the estimators dis-
cussed above for various combinations of values of N and T . We wish to assess
the accuracy of the asymptotic approximations derived in Section 3. Various sim-
ulation exercises for dynamic panel data estimators have already been conducted
in other work, but since the existing results typically concentrate on small values
of T , they do not provide the type of evidence required here (an exception is the
recent Monte Carlo analysis in Judson and Owen (1997)).
In Table I we report medians, interquartile ranges, and median absolute errors

of the WG, GMM, LIML, CIV, and RML estimators for � = 0�2�0�5, and 0.8,
and for N = 100 with T o = 10, 25, and 50, where T o = T + 1 (the actual num-
ber of time series observations in the data). Similar experiments with N = 50 are
reported in Table II. For all cases we conducted 1000 replications from the model
specified in Sections 2 and 3 under normality with 
2 = 1 and 
2

� = 0. While the
exact distribution of the WG estimator is invariant to both 
2

� and 
2, the distri-
butions of the other estimators are only invariant to �
2

�/

2�. Their dependence

on 
2
� , however, vanishes as T tends to infinity, and for the values of T that we

consider here, the effect of changing 
2
� on the results turned out to be small

(as can be seen from Tables A1–A4 in the Appendix, which contain the results
for 
2

� = 0�2 and 1).
In Table III we calculate and subtract from the value of � the asymptotic

biases of the estimates, using the theoretical results in Section 3 (RML is not
reported because it has no asymptotic bias). A comparison of those figures with
the Monte Carlo medians in Tables I and II reveals that the asymptotic biases
provide a very accurate approximation to the finite sample median biases of all
the estimators in our experiments. It is interesting to notice that the bias of the
GMM estimator is always smaller than the WG bias (even in a squared panel
with T o = 50 and N = 50), and that the bias of LIML is in turn smaller than the
GMM bias. It is also noticeable that the GMM bias changes with N , and the

7 The problem with the GLS estimates of � and � based on preliminary estimates of �2 and 
 2

is that they are only consistent if based on consistent estimates of �2 and 
 2, and they are only
asymptotically equivalent to ML if based on asymptotically efficient estimates of �2 and 
 2.
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TABLE I
Medians, Interquartile Ranges, and Median Absolute Errors of the Estimators (N = 100)a

�= 0�2 �= 0�5 �= 0�8

WG GMM LIML CIV RML WG GMM LIML CIV RML WG GMM LIML CIV RML

T o = 10
median 0.065 0.188 0.196 0�139 0.202 0.318 0.481 0.493 0.384 0.500 0.554 0.763 0.792 0.514 0.799
iqr 0.047 0.056 0.057 0�074 0.056 0.048 0.060 0.061 0.083 0.058 0.044 0.069 0.074 0.124 0.073
mae 0.135 0.030 0.029 0�062 0.028 0.182 0.032 0.031 0.116 0.029 0.246 0.046 0.037 0.286 0.036

T o = 25
median 0.149 0.187 0.193 0�048 0.199 0.434 0.483 0.492 0.235 0.500 0.714 0.774 0.790 0.281 0.799
iqr 0.026 0.028 0.029 0�040 0.028 0.025 0.028 0.029 0.045 0.028 0.021 0.027 0.029 0.061 0.024
mae 0.051 0.017 0.015 0�152 0.014 0.065 0.019 0.015 0.265 0.014 0.086 0.025 0.015 0.519 0.012

T o = 50
median 0.175 0.188 0.192 −0�068 0.199 0.468 0.485 0.491 0.077 0.499 0.760 0.779 0.789 0.112 0.799
iqr 0.019 0.019 0.020 0�026 0.019 0.017 0.018 0.019 0.029 0.018 0.014 0.015 0.017 0.036 0.014
mae 0.025 0.014 0.011 0�268 0.009 0.032 0.015 0.012 0.423 0.009 0.040 0.020 0.012 0.688 0.007

a 
2
� = 0�
2 = 1, 1000 replications, iqr is the 75th–25th interquartile range; mae denotes the median absolute error.
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TABLE II
Medians, Interquartile Ranges, and Median Absolute Errors of the Estimators (N = 50)a

�= 0�2 �= 0�5 �= 0�8

WG GMM LIML CIV RML WG GMM LIML CIV RML WG GMM LIML CIV RML

T o = 10
median 0.063 0.176 0.191 0�084 0.201 0.317 0.462 0.486 0�292 0.499 0.556 0.729 0.781 0�358 0.793
iqr 0.068 0.079 0.081 0�101 0.078 0.067 0.083 0.086 0�119 0.082 0.060 0.096 0.111 0�157 0.093
mae 0.136 0.042 0.041 0�116 0.039 0.183 0.049 0.044 0�207 0.041 0.244 0.074 0.058 0�442 0.048

T o = 25
median 0.149 0.178 0.187 −0�065 0.200 0.436 0.470 0.484 0�081 0.502 0.714 0.756 0.780 0�117 0.800
iqr 0.039 0.041 0.043 0�049 0.042 0.038 0.040 0.044 0�058 0.041 0.029 0.037 0.043 0�070 0.034
mae 0.050 0.027 0.023 0�265 0.021 0.064 0.031 0.024 0�419 0.020 0.086 0.044 0.025 0�683 0.017

T o = 50
median 0.176 0.178 0.180 −0�222 0.200 0.468 0.471 0.475 −0�093 0.500 0.760 0.764 0.770 −0�015 0.799
iqr 0.027 0.027 0.029 0�028 0.027 0.024 0.025 0.028 0�033 0.025 0.019 0.021 0.026 0�037 0.020
mae 0.025 0.023 0.021 0�422 0.014 0.031 0.029 0.025 0�593 0.012 0.040 0.036 0.030 0�815 0.010

a 
2
� = 0�
2 = 1, 1000 replications, iqr is the 75th–25th interquartile range; mae denotes the median absolute error.



1136 j. alvarez and m. arellano

TABLE III
Asymptotic Biases of the Estimatesa

�= 0�2 �= 0�5 �= 0�8

WG GMM LIML CIV WG GMM LIML CIV WG GMM LIML CIV

N = 100
T o = 10 0.067 0.188 0.194 0�137 0.333 0.485 0.492 0�381 0.600 0.782 0.791 0�512
T o = 25 0.150 0.188 0.193 0�047 0.437 0.485 0.491 0�235 0.725 0.782 0.790 0�281
T o = 50 0.175 0.188 0.192 −0�069 0.469 0.485 0.490 0�076 0.763 0.782 0.788 0�112

N = 50
T o = 10 0.067 0.176 0.187 0�081 0.333 0.470 0.483 0�287 0.600 0.764 0.780 0�352
T o = 25 0.150 0.176 0.184 −0�065 0.437 0.470 0.480 0�081 0.725 0.764 0.776 0�116
T o = 50 0.175 0.176 0.176 −0�224 0.469 0.470 0.471 −0�095 0.763 0.764 0.765 −0�015

aFor WG the figures show �− �1+��/T ; for GMM, �− �1+��/N ; for LIML, �− �1+��/�2N −T �, and for CIV,
�− �1+��

2
( c
2−�1+���2−c�/2

)
, where c = T /N .

LIML bias changes with both N and T o as expected. The tables also provide an
assessment of the CIV bias. Notice that even with T o = 10 the biases of the CIV
estimator are substantial. In fact, except for � = 0�2 and 0.5 with T o = 10 and
N = 100, they are always larger than the WG bias! Finally, as expected, RML is
virtually median unbiased in all experiments.
Turning to dispersion, LIML always has a larger interquartile range than

GMM, but the difference between the two is very small (although less so with
� = 0�8 and N = 50). WG has the smallest interquartile range. The differ-
ences with GMM, LIML, and RML are noticeable when T o = 10, but become
small with T o = 25 or 50. The large T asymptotic interquartile range (that is,
1�349��1−�2�/NT 1/2) does not approximate well the GMM or LIML interquar-
tile ranges for T o = 10, but becomes a reasonable approximation when T o = 25
or 50, specially for the smaller values of �. Concerning CIV, this estimator always
has the largest dispersion, which suggests that in addition to biases there are
substantial efficiency losses in using the crude GMM estimator.
Finally, concerning median absolute errors, RML is the estimator that per-

forms best in all the experiments. Among the others, LIML is always the esti-
mator with the smallest median absolute error in the experiments with 
2

� = 0
(Tables I and II), followed by GMM, WG, and CIV, except for three cases in
which the mae of CIV is smaller than that of WG. Nevertheless, the ranking
is less obvious in the experiments with 
2

� > 0. When N = 100, GMM outper-
forms LIML in terms of mae on three occasions (Tables A1 and A2), and with
N = 50�T o = 50�
2

� = 1, WG has the smallest mae followed by GMM, LIML,
and CIV (Table A4).

5� conclusions

In this paper we show that in autoregressive panel data models, the GMM
and LIML estimators that use all the available lags at each period as instruments
are consistent and asymptotically normal when both N and T tend to infinity.
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They attain the same asymptotic variance as the least squares estimator when the
individual effects are known and T →�. In addition, we establish that when T /N
tends to a positive constant the WG, GMM, and LIML estimators are asymptot-
ically biased with negative asymptotic biases of order 1/T �1/N , and 1/�2N −T �,
respectively. When T /N → 0 the fixed T results for GMM and LIML remain
valid. Conversely, the asymptotic bias in the WG estimator only disappears when
N/T → 0. We also show that the crude GMM estimator that neglects the auto-
correlation in the first differenced errors is inconsistent as T /N → c > 0, despite
being consistent for fixed T . Finally, we consider a random effects MLE that
leaves the mean and variance of initial conditions unrestricted but enforces time
series homoskedasticity; this estimator has no asymptotic bias because it does not
entail incidental parameters in the N or T dimensions, and it becomes robust to
heteroskedasticity as T tends to infinity. The results of some Monte Carlo sim-
ulations for data with T o = 10, 25, 50 and N = 50, 100 suggest that the asymp-
totic approximations are a reliable guidance for the sampling distributions of the
estimators.
Our results highlight the importance of understanding the properties of panel

data estimators as the time series information accumulates even for micropan-
els with moderate values of T : In a fixed T framework, GMM and LIML are
asymptotically equivalent, but as T increases LIML exhibits a smaller asymp-
totic bias than GMM. Moreover, for fixed T the IV estimators in orthogonal-
deviations and first-differences are both consistent, whereas as T increases the
former remains consistent but the latter is inconsistent.
In future work we plan to extend the current results in three directions. Firstly,

we would like to relax the initial conditions and homoskedasticity assumptions. A
second natural extension is to study the properties of “two-step” GMM estimators.
These estimators use weighting matrices that remain consistent estimates of the
covariance of the moments under heteroskedasticity. Finally, we plan to consider
the properties of estimators that allow for time dummies when T is not fixed.
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APPENDIX

A�1� Within-Groups

Lemma 1

Proof of (16): Firstly, note that

E�x∗′v∗�= E

( N∑
i=1

x′
iQT vi

)
=NE�x′

iQT vi��(A1)
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Next, since E�x′
ivi�= TE�yit−1vit�= 0, we have

E�x′
iQT vi�= E�x′

ivi�−
1
T
	′T E�vix

′
i�	T =−
 2

T
	′T CT 	T(A2)

where E�vix′
i�= 
 2CT . Notice that the �t� s�th element of CT is 
 2��s−t−1� for t < s, and zero other-

wise. Adding up the elements of this matrix the result follows.

Proof of (17) and (18): Let wit be the homogeneous AR(1) process

wit = yit −
�i

�1−��(A3)

with corresponding vectors wi = �wi1� � � � �wiT �
′ and wi�−1� = �wi0� � � � �wi�T−1��

′, so that w∗
i =Awi =

y∗i �w
∗
i�−1� =Awi�−1� = x∗

i . Moreover, letting v̄i = T −1v′i	T , etc., we have:

�NT �−1/2x∗′v∗ = �NT �−1/2
∑
i

∑
t

vitwit−1− �T /N�1/2
∑
i

v̄iw̄i�−1��(A4)

Firstly

var
(

1√
NT

∑
i

∑
t

vitwit−1

)
= var

(
1√
T

∑
t

vitwit−1

)
→

�∑
j=−�

�j = �0(A5)

= E�v2itw
2
it−1�= E�v2it�E�w

2
it−1�=


 4

1−�2

where �j = E�vitwit−1vi�t−j�wi�t−1−j��= 0 for j �= 0 (cf. Anderson (1971)).
Next

var
((

T

N

)1/2 ∑
i

v̄iw̄i�−1�

)
= T

N
var

(∑
i

v̄iw̄i�−1�

)
= T var�v̄iw̄i�−1��=O

(
1
T

)
(A6)

since var�v̄iw̄i�−1��=O�T −2� as justified below.
Therefore, (17) follows:

var
(

1√
NT

x∗′v∗
)
= 
 4

1−�2
+O

(
1
T

)
�

To prove (18) we establish convergence in mean square. Let us write

x∗′x∗

NT
= 1
NT

∑
i

w′
i�−1�Qwi�−1� =

1
N

∑
i

(
1
T

∑
t

w2
i�t−1�− w̄2

i�−1�

)
(A7)

E

(
x∗′x∗

NT

)
= E�w2

i�t−1��−E�w̄2
i�−1��= E�w2

i�t−1��−O�T −1�(A8)

= 
 2

1−�2
− 1
T


 2

�1−�2�

[
�1+��
�1−�� −

1
T

2��1−�T �
�1−��2

]
�

The explicit expression (A8) will be of later use. We have used the fact that E�w̄2
i�−1�� =

T −2	′T E�wiw
′
i�	T and the �t� s� element of E�wiw

′
i� is 


2��t−s�/�1−�2�. Thus,

E

(
x∗′x∗

NT

)
→ 
 2

1−�2
�

Moreover,

var
(
x∗′x∗

NT

)
= 1
N

var
(
1
T

∑
t

w2
i�t−1�− w̄2

i�−1�

)
→ 0(A9)

since var��1/T �
∑

t w
2
i�t−1��=O�T −1� and var�w̄2

i�−1��=O�T −2�.
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Finally, let us justify the assertion that var�w̄2
i�−1�� and var�v̄iw̄i�−1�� are O�T −2�. Given our assump-

tions, these two variances are finite for any T . As T →��√T w̄i�−1�
d→�i ∼ � �0�
 2/�1−��2�, which

implies var�T w̄2
i�−1��→ var��2

i � and var�w̄2
i�−1�� = O�T −2�. Similarly,

√
T �v̄i� w̄i�−1��

d→��i� �i�, which
are jointly normally distributed with a singular covariance matrix, so that var�T v̄iw̄i�−1��→ var��i�i�
and var�v̄iw̄i�−1��=O�T −2�.

Theorem 1

Proof of (20): In view of (16) we have

�NT = E��NT �−1/2x∗′v∗=−
(
N

T

)1/2

 2

�1−�� +
N 1/2

T 3/2


 2�1−�T �
�1−��2 �(A10)

Subtracting �NT from (A4),

�NT �−1/2�x∗′v∗�−�NT = �NT �−1/2
∑
i

∑
t

vitwit−1−RNT(A11)

where

RNT = �T /N�1/2
∑
i

v̄iw̄i�−1�+�NT �

Clearly, E�RNT � = 0 and in view of (A6) limT→� var�RNT � = 0, which suffices to establish that RNT

is op�1�.
Finally, from a standard central limit theorem for autoregressive processes (cf. Anderson (1971,

Ch. 5, Theorem 5.5.7), and Anderson (1978)):

�NT �−1/2
∑
i

∑
t

vitwit−1
d→�

(
0�


 4

�1−�2�

)
�(A12)

Since RNT is op�1�, also

�NT �−1/2�x∗′v∗�−�NT

d→�

(
0�


 4

�1−�2�

)
�

which establishes the first result of the theorem.

Proof of (21): In view of (18), by Cramer’s theorem we have(
x∗′x∗

NT

)−1

��NT �−1/2�x∗′v∗�−�NT 
d→� �0�1−�2�

or

√
NT ��̂WG−��−

[
E

(
x∗′x∗

NT

)]−1

�NT −Ro
NT

d→� �0�1−�2�(A13)

where

Ro
NT =

{(
x∗′x∗

NT

)−1

−
[
E

(
x∗′x∗

NT

)]−1}
�NT �

Because of (A9) we have

x∗′x∗

NT
−E

(
x∗′x∗

NT

)
=Op�1/

√
NT ��(A14)
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and by the delta method also(
x∗′x∗

NT

)−1

−
[
E

(
x∗′x∗

NT

)]−1

=Op�1/
√
NT ��

Thus, since �NT =O�
√
N/T � the term Ro

NT is op�1� as T →� regardless of N .
Moreover, a second order expansion of the inverse of the expected value of �x∗′x∗�/NT given in

(A8) gives [
E

(
x∗′x∗

NT

)]−1

= �1−�2�


 2

[
1+ 1

T

�1+��
�1−��

]
+O�T −2�(A15)

and therefore[
E

(
x∗′x∗

NT

)]−1

�NT =−
(
N

T

)1/2

�1+��−
(
N

T 3

)1/2
�1+����+�T �

�1−�� +O
[(

N

T 5

)1/2]
�(A16)

The second result of the theorem follows from noticing that when N/T 3 → 0 the second term of the
right-hand side in the expression above is also negligible.

A�2� GMM

The following two preliminary lemmae collect the basic building blocks that will be used in proving
Lemma 2 and Theorem 2.

Lemma C1: Let �3 and �4 be the third and fourth-order cumulants of vit . Also let dt and ds be N ×1
vectors containing the diagonal elements of Mt and Ms, respectively, so that tr�Mt�= d′

t 	= t� tr�Ms�=
d′
s	= s, and d′

tds ≤min�t� s�. Then, under Assumption A1, for l ≥ r ≥ t�p ≥ q ≥ s, and t ≥ s:

cov�v′lMtvr � v
′
pMsvq�=


2
 4s+�4E�d

′
tds�≤ �2
 4+�4�s if l = r = p = q,

�3E�d
′
tMsvq� if l = r = p �= q < t,


 4s if l = p �= r = q,
0 otherwise,

(A17)

where �E�d′
tMsvq�� ≤ �st�1/2
 .

Proof: We begin by showing that the following holds:

covt�v
′
lMtvr � v

′
pMsvq�=


2
 4s+�4d

′
tds if l = r = p = q,

�3d
′
tMsvq if l = r = p �= q < t,


 4s if l = p �= r = q,
0 otherwise,

(A18)

where Et��� denotes an expectation conditional on �i and �vi�t−j���j=1.
We have

covt�v
′
lMtvr � v

′
pMsvq�= Et�v

′
lMtvrv

′
pMsvq�−Et�v

′
lMtvr �Et�v

′
pMsvq��

If p < t, then v′pMsvq is constant and the covariance vanishes.
The conditional mean terms are given by:

Et�v
′
lMtvr �= tr�MtEt�vrv

′
l�=

{

 2 tr�Mt�= 
 2t if l = r ,
0 if l �= r ,

(A19)

Et�v
′
pMsvq�= tr�MsEt�vqv

′
p�=

{

 2 tr�Ms�= 
 2s if p = q,
0 if p �= q.

(A20)
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As for the leading term we have

Et�v
′
lMtvrv

′
pMsvq�=


Et�v

′
lMtvlv

′
lMsvl� if l = r = p = q,

Et�v
′
lMtvlv

′
l�Msvq if l = r = p �= q < t,

tr�MtEt�vrv
′
r �MsEt�vlv

′
l� if l = p �= r = q,

0 otherwise.

(A21)

Firstly, note that in view of the form of the mean terms above there is only a nonzero mean-
product subtraction in covariances with l = r = p = q.

For the first type of nonzero terms,

Et�v
′
lMtvlv

′
lMsvl�=

∑
i

∑
j

∑
k

∑
�

m
�t�
ij m

�s�

k� Et�vilvjlvklv�l�(A22)

= �3
 4+�4�d
′
tds +
 4

∑
i

∑
k �=i
m

�t�
ii m

�s�

kk +2
 4
∑
i

∑
j �=i
m

�t�
ij m

�s�
ij

= �4d
′
tds +
 4 tr�Mt� tr�Ms�+2
 4 tr�MtMs�

= �4d
′
tds +
 4ts+2
 4s�

where m�t�
ij and m�s�

k� denote elements of Mt and Ms , respectively. Subtracting the product of means,
the result follows.

For the second type,

Et�v
′
lMtvlv

′
l�Msvq = �3d

′
tMsvq�(A23)

and finally

tr�MtEt�vrv
′
r �MsEt�vlv

′
l�= 
 4 tr�MtMs�= 
 4s�(A24)

Given (A18), the unconditional covariances follow from

cov�v′lMtvr � v
′
pMsvq�= E�covt�v

′
lMtvr � v

′
pMsvq�+ cov�Et�v

′
lMtvr ��Et�v

′
pMsvq�

and the fact that the second term vanishes.
To prove �E�d′

tMsvq�
2 ≤ ts
 2 notice that

�d′
tMsvq�

2 ≤ �d′
tMsdt��v

′
qMsvq�≤ d′

tdt�v
′
qMsvq�≤ t�v′qMsvq��(A25)

hence

E��d′
tMsvq�

2≤ tE�v′qMsvq�= ts
 2�(A26)

Finally, since E��d′
tMsvq�

2= var�d′
tMsvq�+ �E�d′

tMsvq�
2, it turns out that

�E�d′
tMsvq�

2 ≤ ts
 2� Q�E�D�(A27)

Lemma C2: Under Assumptions A1, A2, and A3, as T → � regardless of whether N → � or is
fixed we have

1
NT

T−1∑
t=1

w′
t−1Mtwt−1

m�s�→ 
 2

1−�2
�(A28)
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Proof: Let wt−1 = yt−1−� where �= ��1� � � � ��N �
′ and �i = �i/�1−�� with variance 
 2

�. Also
let �∗

t be the N ×1 vector of errors of the population linear projection of � on Zt :

�∗
t = �−Zt�t(A29)

where �t = �E�zitz
′
it�

−1E�zit�i�. Also letting Vt be the t× t autoregressive matrix whose �j�k� ele-
ment is given by ��j−k�/�1−�2�, and �= 
 2

�/

2:

�t = ���	t	
′
t +Vt�

−1	t =
�

1+�	′tV −1
t 	t

V −1
t 	t �(A30)

Hence, using the triangular decomposition of V −1
t , we obtain the following expression for the ith

component of �∗
t :

�∗
it = �i−z′it�t = �i�1− 	′t�t�− �wi0� � � � �wi�t−1���t(A31)

= 1
1+�	′tV −1

t 	t

[
�i−��wi0� � � � �wi�t−1��V

−1
t 	t

]
= 1

1+�	′tV −1
t 	t

[
�i−��1−�2�wi0−��1−���vi1+· · ·+vi�t−1��

]
where

	′tV
−1
t 	t = 1−�2 + �t−1��1−��2�(A32)

Note that 	′tV
−1
t 	t = O�t� and that �∗

it is a linear combination of �t+ 1� independent random
variables. Thus,

E��∗2
it �=


 2
�

1+��1−�2 + �t−1��1−��2 =O

(
1
t

)
�(A33)

Moreover, given the existence of fourth-order moments of �i and vit , we also have

E��∗4
it �=O

(
1
t2

)
�(A34)

Now consider the decomposition:

w′
t−1Mtwt−1 =w′

t−1wt−1−w′
t−1�IN −Mt�wt−1(A35)

=w′
t−1wt−1−�∗′

t �IN −Mt��
∗
t �

where the second equality follows from the fact that wt−1 = yt−1 − Zt�t − �∗
t and �IN −Mt�×

�yt−1−Zt�t�= 0.
Therefore,

1
N�T −1�

T−1∑
t=1

E�w′
t−1Mtwt−1�= E�w2

i�t−1��+
1

N�T −1�

T−1∑
t=1

E��∗′
t �IN −Mt��

∗
t �(A36)

Moreover,

�∗′
t �IN −Mt��

∗
t ≤ �max�IN −Mt���

∗′
t �

∗
t ��(A37)

where �max�IN −Mt� denotes the maximum eigenvalue of �IN −Mt�, which is equal to 1 because
�IN −Mt� is idempotent,8 so that

1
NT

T−1∑
t=1

E��∗′
t �IN −Mt��

∗
t ≤

1
NT

T−1∑
t=1

E��∗′
t �

∗
t �=

1
T

T−1∑
t=1

E��∗2
it �=

1
T
O�logT �→ 0�(A38)

8 In a case in which N < T − 1 and Mt = Zt�Z
′
tZt�

+Z′
t , for values of t such that t > N we have

Mt = IN so that �∗′
t �IN −Mt��

∗
t = 0.
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Hence

1
NT

T−1∑
t=1

E�w′
t−1Mtwt−1�→ E�w2

i�t−1��=

 2

1−�2
�(A39)

To establish mean-square convergence, we now show that the variances of �NT �−1∑T−1
t=1 w

′
t−1wt−1

and �NT �−1∑T−1
t=1 �

∗′
t �

∗
t tend to zero. First,

var
(

1
NT

T−1∑
t=1

w′
t−1wt−1

)
= 1
N

var
(
1
T

T−1∑
t=1

w2
i�t−1�

)
= 1
N
O

(
1
T

)
→ 0�(A40)

Finally,

var
(

1
NT

T−1∑
t=1

�∗′
t �

∗
t

)
= 1
N

var
(
1
T

T−1∑
t=1

�∗2
it

)
(A41)

= 1
N

[
1
T 2

∑
t

var��∗2
it �+

2
T 2

∑
s

∑
t>s

cov��∗2
it ��

∗2
is �

]

≤ 1
N

[
1
T 2

∑
t

O

(
1
t2

)
+ 2
T 2

∑
s

∑
t>s

O

(
1
t

)
O

(
1
s

)]
→ 0� Q�E�D�

Lemma 2

We shall use the decomposition:

1√
NT

T−1∑
t=1

x∗′
t Mtv

∗
t =

1√
NT

T−1∑
t=1

�tw
′
t−1Mtv

∗
t −

1√
NT

T−1∑
t=1

ct ṽ
′
tTMtv

∗
t(A42)

where

x∗
t = �twt−1−ct ṽtT �(A43)

�t = ct

(
1− ��T−t

T − t
)
�(A44)

ṽtT = 1
T − t ��T−tvt +· · ·+�1vT−1��(A45)

and �j = �1−�j�/�1−��, so that Et�x
∗
it�= �twi�t−1�.

Proof of (24): Only the second term in the right-hand side of (A42) has nonzero mean, so that

E�x∗′Mv∗�=−
T−1∑
t=1

E�ctṽ
′
tTMtv

∗
t �(A46)

and

E�ctṽ
′
tTMtv

∗
t �=

1
�T − t+1�

E

[(
vt −

�vt+1+· · ·+vT �
�T − t�

)′
Mt��T−tvt +· · ·+�1vT−1�

]
(A47)

= t
 2

�T − t+1�

(
�T−t −

�T−t−1+· · ·+�1

T − t
)

= 
 2

�1−��
t

�T − t+1�

(
�T−t
T − t −�

T−t
)
= 
 2t

�1−��
(
�T−t
T − t −

�T−t+1

T − t+1

)
�
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where we have used the fact that E�v′t+jMtvt+k� equals t
 2 for j = k and zero for j �= k, and also
that �1 +· · ·+�j−1 = �j−�j�/�1−�� and �j = �j−1 +�j−1. Finally, adding terms and changing the
index of the sum to s = T − t+1, we get

E�x∗′Mv∗�=− 
 2

�1−��
T∑
s=2

�T − s+1�
(
�s−1

s−1
− �s

s

)
(A48)

=− 
 2

�1−��
(T−1∑
s=1

�T − s��s

s
−

T∑
s=2

�T − s+1�
�s

s

)

=− 
 2

�1−��
(T−1∑
s=1

�T − s��s

s
−

T∑
s=2

�T − s��s

s
−

T∑
s=2

�s

s

)

=− 
 2

�1−��
(
�T −1�−

T∑
s=2

�s

s

)
=− T
 2

�1−��
[
1− 1

T �1−��
T∑
t=1

�1−�t�
t

]
�

Proof of (25): Letting v̄tT = �vt+· · ·+vT �/�T − t+1�, we further decompose the two terms of
(A42) as follows:9

1√
NT

x∗′Mv∗ =
(

1√
NT

T−1∑
t=1

w′
t−1Mtvt −�11NT −�12NT

)
− ��21NT −�22NT �(A49)

where

�11NT = 1√
NT

T−1∑
t=1

w′
t−1Mtv̄tT �(A50)

�12NT = 1√
NT

T−1∑
t=1

ct��T−t
�T − t� w

′
t−1Mtv

∗
t �(A51)

�21NT = 1√
NT

T−1∑
t=1

ṽ′tTMtvt�(A52)

�22NT = 1√
NT

T−1∑
t=1

ṽ′tTMtv̄tT �(A53)

The variance of the leading term satisfies:

var
(

1√
NT

T−1∑
t=1

w′
t−1Mtvt

)
= 1
NT

T−1∑
t=1

var�w′
t−1Mtvt�=


 2

NT

T−1∑
t=1

E�w′
t−1Mtwt−1��(A54)

This is so because for t > s cov�w′
t−1Mtvt�w

′
s−1Msvs�= E�w′

t−1MtEt�vt�w
′
s−1Msvs= 0. Thus, in view

of Lemma C2 we have

var
(

1√
NT

T−1∑
t=1

w′
t−1Mtvt

)
→ 
 4

1−�2
�(A55)

To prove that this is also the limit of var��NT �−1/2x∗′Mv∗, we now show that the variances of
�11NT ��12NT ��21NT , and �22NT tend to zero. Firstly, note that

var��11NT �=
1
NT

T−1∑
t=1

T−1∑
s=1

E�w′
t−1Mtv̄tT v̄

′
sTMsws−1��(A56)

9 Note that v∗t = �vt − v̄tT �/ct .
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For t ≥ s,

E�w′
t−1Mtv̄tT v̄

′
sTMsws−1�= E�w′

t−1MtEt�v̄tT v̄
′
sT �Msws−1=


 2E�w′
t−1Msws−1�

�T − s+1�
(A57)

= 
 2

�T − s+1�
E�Es�w

′
t−1�Msws−1

= 
 2

�T − s+1�
�t−sE�w′

s−1Msws−1��

Also,

E�w′
s−1Msws−1�≤ E�w′

0M1w0� for s ≥ 1�(A58)

Therefore,

var��11NT � ≤ 
 2

NT
E�w′

0M1w0�

[(
1
T

+ 1
T −1

+· · ·+ 1
2

)
+ 2
T
��+· · ·+�T−2�(A59)

+ 2
T −1

(
�+· · ·+�T−3

)+· · ·+ 2
3
�

]
= 
 2

NT

E�w′
0M1w0�

�1−��
[
�1+��

(
1
2
+· · ·+ 1

T

)
−2

(
�

2
+· · ·+ �T−1

T

)]
≤ 
 2

T �1−�� �E�w
2
i0�+E��∗2

i1 �

[
�1+��

(
1
2
+· · ·+ 1

T

)
−2

(
�

2
+· · ·+ �T−1

T

)]
→ 0�

Next,

var��12NT �=
1
NT

var
(T−1∑

t=1

ct��T−t
�T − t� w

′
t−1Mtv

∗
t

)
(A60)

= 1
NT

T−1∑
t=1

�2�2
T−t

�T − t��T − t+1�
var�w′

t−1Mtv
∗
t �

= 
 2

NT

T−1∑
t=1

�2�2
T−t

�T − t��T − t+1�
E�w′

t−1Mtwt−1�

≤ 
 2E�w′
0M1w0�

N

1
T

T−1∑
t=1

�2�2
T−t

�T − t��T − t+1�
→ 0�

This is so because

var�w′
t−1Mtv

∗
t �= E�w′

t−1Mtv
∗
t v

∗′
t Mtwt−1�(A61)

= E�w′
t−1MtEt�v

∗
t v

∗′
t �Mtwt−1= 
 2E�w′

t−1Mtwt−1��

and the covariance terms are zero. In effect, for t > s,

cov�w′
t−1Mtv

∗
t �w

′
s−1Msv

∗
s �= E�w′

t−1Mtv
∗
t v

∗′
s Msws−1�(A62)

= E�w′
t−1MtEt�v

∗
t v

∗′
s �Msws−1= 0

since Et�v
∗
t v

∗′
s �= 0.
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Turning to consider the variance of �21NT , in view of Lemma C1, the only nonzero terms are as
follows:

var��21NT �=
1
NT

var
[T−1∑
t=1

1
�T − t� v

′
tMt��T−tvt +· · ·+�1vT−1�

]
= a0NT +a1NT(A63)

where

a0NT = 1
NT

T−1∑
t=1

1
�T − t�2

[
�2
T−t var�v

′
tMtvt�+· · ·+�2

1 var�v
′
tMtvT−1�

]
(A64)

= 1
NT

T−1∑
t=1

1
�T − t�2

{
�2
T−t �2


4t+�4E�d
′
tdt�+ ��2

T−t−1+· · ·+�2
1�


4t
}

and

a1NT = 2
NT

T−2∑
t=1

[
�2
T−t−1 cov�v

′
tMtvt+1� v

′
t+1Mt+1vt+1�

�T − t��T − t−1�
(A65)

+· · ·+ �2
1 cov�v

′
tMtvT−1� v

′
T−1MT−1vT−1�

�T − t�
]

= 2
NT

T−2∑
t=1

[
�2
T−t−1�3E�d

′
t+1Mtvt�

�T − t��T − t−1�
+· · ·+ �2

1�3E�d
′
T−1Mtvt�

�T − t�
]
�

Using Lemma C1 and the fact that �2
j < 1/�1−��2 for all j ,

a0NT ≤ 1
NT

T−1∑
t=1

t

�T − t�2
[
�2
T−t�2


4+�4�+ ��2
T−t−1+· · ·+�2

1�

4
]

(A66)

≤ 1
�1−��2

1
NT

T−1∑
t=1

t

�T − t�2
[
�2
 4+�4�+ �T − t−1�
 4

]
= 
 4

�1−��2
1
NT

T−1∑
t=1

t

�T − t� +
�
 4+�4�

�1−��2
1
NT

T−1∑
t=1

t

�T − t�2 =O

(
logT
N

)
�

The latter follows from

T−1∑
t=1

t

�T − t� =
T−1∑
s=1

T − s
s

= T
T−1∑
s=2

1
s
+1=O�T logT ��(A67)

Moreover, in view of the triangle inequality, and the fact that �E�d′
t+jMtvt�� ≤ �t+ j�
 :

�a1NT � ≤
2��3�

�1−��2

1
NT

T−2∑
t=1

1
�T − t�

(
�t+1�

�T − t−1�
+· · ·+ �T −1�

1

)
(A68)

≤ 2��3�

�1−��2

1
NT

(
1
2
+· · ·+ 1

T −1

)[
T

(
1
2
+· · ·+ 1

T −1

)
+1

]
=O

(
�logT �2

N

)
�

Finally, we must consider the term �22NT . We begin by establishing the order of magnitude of
var�v̄′tTMtṽtT �. Let ṽitT and v̄itT denote the ith elements of ṽtT and v̄tT , respectively, and let

ritT = �T − t�1/2
(
c2t ṽitT −

1
�1−�� v̄itT

)
(A69)

≡− c2t
�T − t�1/2

��T−tvit +· · ·+�vi�T−1�+viT �
�1−��
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so that var�ritT �=O�1/�T − t�. Now let us consider the order of magnitude of the variances of the
terms in the expression

�T − t�c2t ṽitT v̄itT = 1
�1−�� �T − t�v̄2itT +

√
T − tv̄itT ritT �(A70)

Clearly, var��T − t�v̄2itT  = O�1�. Moreover, since var�
√
T − tv̄itT � = O�1� we have that

var�
√
T − tv̄itT ritT �= o�1�. Therefore, var��T − t�c2t ṽitT v̄itT �=O�1� and also

var�ṽitT v̄itT �=O

(
1

�T − t�2
)
�(A71)

Hence, since the elements of v̄tT and ṽtT are iid,

var�v̄′tT ṽtT �= var�v̄1tT ṽ1tT �+· · ·+ var�v̄NtT ṽNtT �=O

(
N

�T − t�2
)

(A72)

and also vart�v̄′tTMtṽtT �=O�t/�T − t�2 so that10

var�v̄′tTMtṽtT �=O

(
t

�T − t�2
)
�(A73)

The variance of �22NT is given by

var��22NT �=
1
NT

var
(T−1∑

t=1

v̄′tTMtṽtT

)
= b0NT +b1NT(A74)

where

b0NT = 1
NT

T−1∑
t=1

var�v̄′tTMtṽtT �=
1
NT

O

(T−1∑
t=1

t

�T − t�2
)
=O

(
1
N

)
(A75)

and

b1NT = 2
NT

∑
s

∑
t>s

cov�v̄′tTMtṽtT � v̄
′
sTMsṽsT ��(A76)

Now, since � cov�v̄′tTMtṽtT � v̄
′
sTMsṽsT �� ≤ var�v̄′tTMtṽtT �

1/2 var�v̄′sTMsṽsT �
1/2,

�b1NT � ≤
2
NT

∑
s

∑
t>s

� cov�v̄′tTMtṽtT � v̄
′
sTMsṽsT ��(A77)

≤ 2
NT

∑
s

∑
t>s

O

( √
t

T − t
)
O

( √
s

T − s
)

≤ 2
NT

∑
t

O

(
t

T − t
)∑

s

O

(
1

T − s
)
=O

(
�logT �2

N

)
�

Provided �logT �2/N → 0� b1NT also converges to zero and it follows that var��22NT �→ 0.

10 This follows from the fact that Mt = C ′
t�tCt where Ct is an orthogonal matrix and

�t =
(
It 0
0 0

)
�
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Proof of (26): Using the decomposition in (A43) we have

1
NT

�x∗′Mx∗�= 1
NT

T−1∑
t=1

�2
t w

′
t−1Mtwt−1−

2
NT

T−1∑
t=1

ct�tw
′
t−1MtṽtT +

1
NT

T−1∑
t=1

c2t ṽ
′
tTMtṽtT �(A78)

The first term of the right-hand side converges in probability to 
 2/�1−�2� in view of Lemma C2
and the fact that �2

t = 1−O�1/�T − t�. The second term has zero mean and its variance is shown
to tend to zero using similar arguments as used for �11NT . The third term is analogous to �22NT . Its
mean is given by

E

(
1
NT

T−1∑
t=1

c2t ṽ
′
tTMtṽtT

)
= 1
NT

T−1∑
t=1

c2t E
{
tr�MtEt�ṽtT ṽ

′
tT �

}
(A79)

= 1
NT

T−1∑
t=1

c2t tE�ṽ
2
itT �

= 
 2

NT

T−1∑
t=1

t

�T − t��T − t+1�
��2

T−t +· · ·+�2
1�

=O

(
logT
N

)
�

so that it converges to zero as long as logT /N → 0. Finally, its variance is shown to tend to zero in
the same way as done for �22NT .

Proof of (27): Using the fact that Et�v
∗
t v

∗′
t �= 
 2IN and tr�Mt�= t, we have

E

(
1
NT

v∗′Mv∗
)
= 1
NT

T−1∑
t=1

E�tr�MtEt�v
∗
t v

∗′
t ��=


 2

NT

T−1∑
t=1

t→ 
 2 c

2
�(A80)

Moreover, using v∗t = �vt − v̄tT �/ct ,

1
NT

v∗′Mv∗ = 1
NT

T−1∑
t=1

c−2
t v′tMtvt −

2
NT

T−1∑
t=1

c−2
t v̄′tTMtvt +

1
NT

T−1∑
t=1

c−2
t v̄′tTMtv̄tT �(A81)

In view of Lemma C1 var�v′tMtvt�≤ �2
 4+�4�t and cov�v′tMtvt� v
′
sMsvs�= 0 for t �= s. Hence, the

variance of the first term satisfies

var
(

1
NT

T−1∑
t=1

c−2
t v′tMtvt

)
= 1
N 2T 2

T−1∑
t=1

c−4
t var�v′tMtvt�(A82)

≤ �2
 4+�4�
1

N 2T 2

T−1∑
t=1

t

(
1+ 1

T − t
)2

→ 0�

The second and third terms of the right-hand side of (A81) are analogous to �21NT and �22NT ,
and their variances are shown to tend to zero using similar arguments as used for those terms.

Theorem 2

Proof of (28): Consistency follows directly from Lemma 2: From (24) and (25) �x∗′Mv∗�/NT
converges to zero in mean square, and therefore also in probability, whereas from (26) �x∗′Mx∗�/NT
is bounded in probability.

Proof of (29): In the right-hand side of expression (A49), −��21NT −�22NT � is the only term
that has nonzero mean, which is given by (24) scaled by �NT �−1/2. Since we showed that the variances
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of �11NT ��12NT ��21NT , and �22NT tend to zero, it follows that

1√
NT

T−1∑
t=1

x∗′
t Mtv

∗
t −�†

NT = 1√
NT

T−1∑
t=1

w′
t−1Mtvt +op�1�(A83)

= 1√
NT

T−1∑
t=1

w′
t−1vt −

1√
NT

T−1∑
t=1

w′
t−1�IN −Mt�vt +op�1�(A84)

where

�†
NT = �NT �−1/2E�x∗′Mv∗�=−

(
T

N

)1/2

 2

�1−�� + �NT �
−1/2 
 2

�1−��2
T∑
t=1

�1−�t�
t

�(A85)

Also, the second term in (A84) is op�1� since it has zero mean and, using Lemma C2, its variance
satisfies

var
(

1√
NT

T−1∑
t=1

w′
t−1�IN −Mt�vt

)
= 1
NT

T−1∑
t=1

var�w′
t−1�IN −Mt�vt(A86)

= 
 2

NT

T−1∑
t=1

E�w′
t−1�IN −Mt�wt−1

= 
 2

NT

T−1∑
t=1

E��∗′
t �IN −Mt��

∗
t 

= 1
T
O�logT �→ 0�

Therefore, using (A12):

1√
NT

T−1∑
t=1

x∗′
t Mtv

∗
t −�†

NT = 1√
NT

T−1∑
t=1

w′
t−1vt +op�1�

d→�

(
0�


 4

�1−�2�

)
�(A87)

Moreover, in view of (26), by Cramer’s theorem,(
x∗′Mx∗

NT

)−1

��NT �−1/2x∗′Mv∗ −�†
NT 

d→� �0�1−�2�(A88)

or

√
NT ��̂GMM −��−

(
x∗′Mx∗

NT

)−1

�†
NT

d→� �0�1−�2��(A89)

The result follows from noticing that, since �†
NT =O�

√
T /N�,(

x∗′Mx∗

NT

)−1

�†
NT = �1−�2�


 2
�†
NT +op�1�=−

(
T

N

)1/2

�1+��+O
(
logT√
NT

)
+op�1��(A90)

A�3� LIML

Lemma 3

Proof of (31): Using the results in Lemmae 1 and 2, simple algebra reveals that

1
NT

�W ∗′W ∗�
p→ 
 2

�1−�2�

(
1 �

� 1

)
�(A91)

1
NT

�W ∗′MW ∗�
p→ 
 2

�1−�2�

(
�2 + c

2 �1−�2� �

� 1

)
�(A92)
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Since �̂ =min eigenvalue �W ∗′MW ∗�W ∗′W ∗�−1, due to the continuity of the min eigenvalue func-
tion, �̂ converges in probability to the smallest root of the equation

det

[(
�2 + c

2 �1−�2� �

� 1

)
−�

(
1 �
� 1

)]
= 0(A93)

or equivalently

�1−�2��1−��
(
c

2
−�

)
= 0�(A94)

Thus, the roots are 1 and �c/2�, with the latter being the smallest provided c ≤ 2.

Theorem 3

Proof of (33): From Lemmae 1, 2, and 3

�NT �−1�x∗′Mv∗ − �̂x∗′v∗�
p→0(A95)

and

�NT �−1�x∗′Mx∗ − �̂x∗′x∗�
p→
(
1− c

2

)

 2

1−�2
(A96)

from which consistency of �̂LIML follows.

Proof of (34): Turning to asymptotic normality, in view of Lemma 3

�NT �−1/2�x∗′Mv∗ − �̂x∗′v∗�− ��†
NT − �̂�NT �(A97)

= ��NT �−1/2x∗′Mv∗ −�†
NT −

c

2
��NT �−1/2x∗′v∗ −�NT +op�1��

Moreover, in view of (A11) and (A87) the expression above equals(
1− c

2

)
�NT �−1/2

T−1∑
t=1

w′
t−1vt +op�1�

d→�

(
0�

(
1− c

2

)2

 4

�1−�2�

)
�(A98)

Now, by Cramer’s theorem:(
x∗′Mx∗ − �̂x∗′x∗

NT

)−1[
�NT �−1/2�x∗′Mv∗ − �̂x∗′v∗�− ��†

NT − �̂�NT �
] d→� �0�1−�2�(A99)

or

√
NT ��̂LIML−��−

(
x∗′Mx∗ − �̂x∗′x∗

NT

)−1

��†
NT − �̂�NT �

d→� �0�1−�2��(A100)

For 0< c ≤ 2, the result follows from noticing that(
x∗′Mx∗ − �̂x∗′x∗

NT

)−1

��†
NT − �̂�NT �=

[(
1− T

2N

)

 2

1−�2

]−1(
�†
NT −

T

2N
�NT

)
+op�1�(A101)

= �NT �1/2
�1+��
�2N −T � +O

(
2N

�2N −T �
logT√
NT

)
+op�1��

For c = 0, we have �†
NT = o�1�� �̂ = op�1�, and �NT = O��N/T �1/2. Nevertheless, it is still the case

that �̂�NT = op�1�, which ensures that the asymptotic bias vanishes when c = 0. We prove the latter
assertion by showing that when c = 0(

N

T

)1/2

�̂
p→0�(A102)
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Since �̂ is the minimum of the criterion given in (11), we have

�̂≤ v∗
′
Mv∗

v∗′v∗
�(A103)

From the proof of (27) in Lemma 2 it is easy to see that the result(
N

T

)1/2(
v∗

′
Mv∗

NT

)
p→
 2 c

1/2

2
(A104)

also holds for c = 0. Moreover, since from Lemma 111

v∗
′
v∗

NT

p→
 2(A105)

with c = 0, we have(
N

T

)1/2(
v∗

′
Mv∗

v∗′v∗

)
p→0�(A106)

which given the inequality above implies that �N/T �1/2 �̂= op�1�.

A�4� Crude GMM

Theorem 4

Proof of (36): The CIV estimation error is given by

�̂CIV −�=
(T−1∑

t=1

�x′
t+1Mt�xt+1

)−1 T−1∑
t=1

�x′
t+1Mt�vt+1(A107)

where �xt+1 = �wt , and we use

�xt+1 =−�1−��wt−1+vt�(A108)

Thus,

1
NT

T−1∑
t=1

�x′
t+1Mt�vt+1 =− 1

NT

T−1∑
t=1

v′tMtvt +
1
NT

T−1∑
t=1

v′tMtvt+1(A109)

+ �1−�� 1
NT

T−1∑
t=1

w′
t−1Mtvt − �1−��

1
NT

T−1∑
t=1

w′
t−1Mtvt+1�

Note that the only term in the right-hand side that has nonzero mean is the first one since
E�v′tMtvt�= 
 2t. From a similar derivation to (A80) and (A82) it turns out that

1
NT

T−1∑
t=1

v′tMtvt
p→
 2 c

2
�(A110)

The variance of the second term is seen to tend to zero in a way similar to the first one. Finally, the
third and fourth terms are shown to converge to zero in probability as a straightforward application
of Lemma C2.

11 The result (A105) follows immediately from Lemma 1 and the fact that y∗′y∗/�NT � converges
to the same probability limit as x∗′x∗/�NT �:

v∗′v∗

NT
= y∗′y∗

NT
−�2

(
x∗′x∗

NT

)
−2�

(
x∗′v∗

NT

)
p→
 2�
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Proof of (37): Next, using the results in the previous proof and Lemma C2:

1
NT

T−1∑
t=1

�x′
t+1Mt�xt+1 = �1−��2 1

NT

T−1∑
t=1

w′
t−1Mtwt−1+

1
NT

T−1∑
t=1

v′tMtvt(A111)

− �1−�� 2
NT

T−1∑
t=1

w′
t−1Mtvt

p→�1−��2 
 2

1−�2
+
 2 c

2
�

Proof of (38): The result follows immediately from the previous two.

A�5� Random Effects Maximum Likelihood

Expression for log density (40): The model can be written as

Byi = �yi0di+ui(A112)

where B is a T ×T matrix given by

B =



1 0 � � � 0 0

−� 1 � � � 0 0

���
���

���
���

0 0 � � � −� 1


and yi = �yi1� � � � � yiT �

′�di = �1�0� � � � �0�′�uit = �i+vit , and ui = �ui1� � � � � uiT �
′.

The conditional density of yi given yi0 can be written as

f �yi � yi0�= f �ui � yi0�det�B�(A113)

but det�B�= 1, since B is triangular. Moreover,

f �ui � yi0�= f �ūi� u
∗
i � yi0��det�H��(A114)

where H = �	T /T �A
′�′ is the triangular transformation matrix that produces Hui = �ūi� u

∗′
i �

′. There-
fore, also T 1/2�det�H�� = 1.

From condition A1 var�ui�= 
 2�IT +��	T 	′T � where �� = 
 2
�/


2. Hence,

var�Hui�= 
 2

(
1
T
+�� 0

0 IT−1

)
�(A115)

Thus, the Gaussian density factors as

f �ūi� u
∗
i � yi0�= f �ūi � yi0�f �u∗

i �(A116)

since E�ūiu∗
i � yi0�= 0 and u∗

i is independent of yi0. Then, the result follows from noting that f �ūi � yi0�
and f �u∗

i � are, respectively, the univariate and �T − 1�-variate normal densities � ��yi0��
2� and

� �0�
 2IT−1�.
The zero-mean property of the score E�� log f �yi1� � � � � yiT � yi0�/������
 2��2�= 0 can be written

as the following “GLS type” orthogonality conditions:

E�x∗′
i �y

∗
i −�x∗

i �=−
 2

�2
E�x̄i�ȳi−�x̄i−�yi0��(A117)

1
�2
E�yi0�ȳi−�x̄i−�yi0�= 0�(A118)

E��y∗i −�x∗
i �

′�y∗i −�x∗
i �−
 2= 0�(A119)

E��ȳi−�x̄i−�yi0�2 −�2= 0�(A120)



asymptotics of panel data estimators 1153

or equivalently,

E�X̃ ′
i �̃

−1�ỹi− X̃i �= 0�(A121)

E��ỹi− X̃i ��ỹi− X̃i �
′= �̃�(A122)

where

ỹi =
(
ȳi

y∗i

)
� X̃i =

(
x̄i yi0

x∗
i 0

)
�  =

(
�

�

)
� �̃=

(
�2 0

0 
 2IT−1

)
�

Note that under Assumption A2, (A117) multiplied by N corresponds to expression (16).

Theorem 5

Consistency of the RML: From (41) �̂RML is the minimizer of

log
[

1
NT

�y∗ −ax∗�′�y∗ −ax∗�
]
+ 1
�T −1�

log
[
1
N
�ȳ−ax̄�′S0�ȳ−ax̄�

]
�(A123)

As T → � regardless of the asymptotic behavior of N , the second term in (A123) vanishes so
that the limiting criterion is the same as the log limiting criterion for within-groups. Consistency
of RML then follows from the consistency of WG as T → �. However, unlike WG, RML is also
consistent when T is fixed and N → � provided conditions (A117)–(A120) hold (including time
series homoskedasticity).

Asymptotic Normality of the RML: The first and second derivatives at a= � of the con-
centrated log likelihood:

L�a�=−N�T −1� log��y∗ −ax∗�′�y∗ −ax∗�−N log��ȳ−ax̄�′S0�ȳ−ax̄�(A124)

are given by

�L���

�a
=

(
v∗′v∗

N�T −1�

)−1

�x∗′v∗�+
(
ū′S0ū

N

)−1

�x̄′S0ū��(A125)

1
NT

�2L���

�a2
=−

(
v∗′v∗

N�T −1�

)−1(
x∗′x∗

NT

)
+2

(
v∗′v∗

NT

)−2(
x∗′v∗

NT

)2(
T −1
T

)
(A126)

− 1
T

(
ū′S0ū

N

)−1(
x̄′S0x̄

N

)
+ 2
T

(
ū′S0ū

N

)−2(
x̄′S0ū

N

)2

�

Hessian: We show that as both N and T tend to infinity, regardless of the relative rate of
increase:

1
NT

�2L���

�a2
p→− 1

�1−�2�
�(A127)

To verify (A127), first note that from Lemma 1 as T → �, regardless of whether N is fixed or
tends to infinity,

x∗′v∗

NT

p→0�
x∗′x∗

NT

p→ 
 2

1−�2
�

v∗′v∗

NT

p→
 2�

Moreover, as both N and T tend to infinity,

plim
(
ū′S0ū

N

)
= plim

(
ū′ū
N

)
−
(
plim

y′0y0
N

)−1(
plim

ū′y0
N

)2

(A128)

= 
 2
� −�−1

00 �
2
�0�
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This is so because E�ū′ū/N� = E�ū2
i � = 
 2

� + �
 2/T �→ 
 2
� , and var�ū′ū/N� = N−1 var�ū2

i �→ 0,
since given finite fourth moments for �i and vit var�ū2

i � = O�1�. Similarly, E�ū′y0/N� = E�ūiyi0� =
E��iyi0�= ��0, and var�ū′y0/N�=N−1 var�ūiyi0�→ 0, since var�ūiyi0�=O�1�.

Using similar arguments we obtain

plim
(
x̄′S0x̄

N

)
= plim

(
x̄′x̄
N

)
−
(
plim

y′0y0
N

)−1(
plim

x̄′y0
N

)2

(A129)

= 
 2
�

�1−��2 −�
−1
00

(

 2
�

�1−��2
)2

and

plim
(
x̄′S0ū

N

)
= plim

(
x̄′ū
N

)
−
(
plim

y′0y0
N

)−1(
plim

x̄′y0
N

)(
plim

ū′y0
N

)
(A130)

= 
 2
�

�1−�� −�
−1
00

(

 2
�

�1−��2
)
��0�

Score: Now the scaled score can be written as

�NT �−1/2 �L���

�a
= 1

 2
�NT �−1/2�x∗′v∗ −E�x∗′v∗�+!NT +op�1�(A131)

where

!NT =
(
N

T

)1/2[(
ū′S0ū

N

)−1(
x̄′S0ū

N

)
+ 1

 2
E

(
x∗′v∗

N

)]
�(A132)

Moreover, using (A117) we have

!NT =
(
N

T

)1/2{(
ū′S0ū

N

)−1(
x̄′S0ū

N

)
− 1
�2

[
E�x̄iūi�−�E�x̄iyi0�

]}
�(A133)

Note also that in view of (A128) and (A130), as N and T tend to infinity,

(
ū′S0ū

N

)
−�2 p→0�

(
x̄′S0ū

N

)
− �E�x̄iūi�−�E�x̄iyi0�

p→0�

Thus, if N and T tend to infinity, provided 0≤ lim�N/T � <��!NT = op�1� and from result (20) in
Theorem 1

�NT �−1/2 �L���

�a

d→�

(
0�

1
�1−�2�

)
�(A134)

Given (A127) and (A134), the asymptotic normality result

√
NT ��̂RML−�� d→� �0�1−�2�

follows from Theorem 4.1.3 in Amemiya (1985).
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TABLE A1
Medians, Interquartile Ranges, and Median Absolute Errors of the Estimators (N = 100)a

�= 0�2 �= 0�5 �= 0�8

WG GMM LIML CIV RML WG GMM LIML CIV RML WG GMM LIML CIV RML

T o = 10
median 0.065 0.186 0.196 0�127 0.202 0.318 0.474 0.492 0.348 0.499 0.554 0.724 0.784 0.353 0.796
iqr 0.047 0.067 0.069 0�077 0.055 0.048 0.080 0.084 0.098 0.058 0.044 0.109 0.133 0.153 0.078
mae 0.135 0.033 0.034 0�073 0.027 0.182 0.040 0.041 0.152 0.029 0.246 0.078 0.067 0.447 0.039

T o = 25
median 0.149 0.187 0.194 0�036 0.200 0.435 0.480 0.490 0.199 0.500 0.714 0.761 0.783 0.175 0.799
iqr 0.026 0.031 0.032 0�041 0.027 0.025 0.032 0.034 0.051 0.027 0.021 0.034 0.043 0.069 0.025
mae 0.051 0.018 0.017 0�164 0.014 0.065 0.021 0.018 0.301 0.014 0.086 0.039 0.024 0.625 0.012

T o = 50
median 0.175 0.187 0.192 −0�080 0.199 0.468 0.483 0.490 0.050 0.499 0.760 0.774 0.784 0.058 0.799
iqr 0.019 0.020 0.021 0�027 0.019 0.017 0.019 0.021 0.029 0.018 0.014 0.017 0.022 0.037 0.015
mae 0.025 0.014 0.012 0�280 0.010 0.032 0.017 0.012 0.450 0.009 0.040 0.026 0.017 0.742 0.007

a 
2
� = 0�2�
2 = 1, 1000 replications, iqr is the 75th–25th interquartile range; mae denotes the median absolute error.
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TABLE A2
Medians, Interquartile Ranges, and Median Absolute Errors of the Estimators (N = 100)a

�= 0�2 �= 0�5 �= 0�8

WG GMM LIML CIV RML WG GMM LIML CIV RML WG GMM LIML CIV RML

T o = 10
median 0.065 0.182 0.194 0�115 0.201 0.318 0.465 0.489 0.312 0.499 0.554 0.680 0.767 0.257 0.796
iqr 0.047 0.074 0.077 0�084 0.055 0.048 0.091 0.098 0.109 0.058 0.044 0.130 0.205 0.168 0.077
mae 0.135 0.037 0.038 0�085 0.028 0.182 0.050 0.049 0.188 0.029 0.246 0.120 0.104 0.543 0.039

T o = 25
median 0.149 0.186 0.193 0�026 0.200 0.435 0.479 0.490 0.178 0.500 0.714 0.754 0.778 0.142 0.799
iqr 0.026 0.031 0.033 0�042 0.027 0.025 0.033 0.036 0.052 0.027 0.021 0.039 0.051 0.071 0.025
mae 0.051 0.019 0.017 0�174 0.014 0.065 0.023 0.020 0.322 0.013 0.086 0.046 0.028 0.658 0.012

T o = 50
median 0.175 0.187 0.192 −0�087 0.199 0.468 0.483 0.490 0.039 0.499 0.760 0.772 0.782 0.047 0.799
iqr 0.019 0.020 0.022 0�027 0.019 0.017 0.020 0.023 0.030 0.018 0.014 0.018 0.024 0.037 0.015
mae 0.025 0.014 0.012 0�287 0.010 0.032 0.017 0.013 0.461 0.009 0.040 0.028 0.018 0.753 0.007

a 
2
� = 1�
2 = 1, 1000 replications, iqr is the 75th–25th interquartile range; mae denotes the median absolute error.
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TABLE A3
Medians, Interquartile Ranges, and Median Absolute Errors of the Estimators (N = 50)a

�= 0�2 �= 0�5 �= 0�8

WG GMM LIML CIV RML WG GMM LIML CIV RML WG GMM LIML CIV RML

T o = 10
median 0.063 0.171 0.189 0�068 0.200 0.317 0.450 0.484 0�242 0.499 0.556 0.674 0.764 0�197 0.795
iqr 0.068 0.091 0.097 0�102 0.079 0.067 0.103 0.115 0�130 0.084 0.060 0.140 0.212 0�186 0.110
mae 0.136 0.049 0.047 0�132 0.039 0.183 0.060 0.058 0�258 0.042 0.244 0.129 0.108 0�602 0.055

T o = 25
median 0.149 0.175 0.185 −0�082 0.200 0.436 0.463 0.478 0�041 0.501 0.714 0.735 0.760 0�042 0.800
iqr 0.039 0.044 0.049 0�052 0.041 0.038 0.044 0.051 0�065 0.040 0.029 0.048 0.078 0�078 0.034
mae 0.050 0.030 0.027 0�282 0.021 0.064 0.037 0.030 0�459 0.020 0.086 0.065 0.045 0�758 0.017

T o = 50
median 0.176 0.176 0.178 −0�234 0.200 0.468 0.468 0.468 −0�114 0.500 0.760 0.756 0.748 −0�043 0.800
iqr 0.027 0.028 0.031 0�029 0.028 0.024 0.025 0.033 0�033 0.025 0.019 0.023 0.048 0�037 0.019
mae 0.025 0.024 0.023 0�435 0.014 0.031 0.032 0.032 0�614 0.012 0.040 0.044 0.052 0�843 0.010

a 
2
� = 0�2�
2 = 1, 1000 replications; iqr is the 75th–25th interquartile range; mae denotes the median absolute error.
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TABLE A4
Medians, Interquartile Ranges, and Median Absolute Errors of the Estimators �N = 50�a

�= 0�2 �= 0�5 �= 0�8

WG GMM LIML CIV RML WG GMM LIML CIV RML WG GMM LIML CIV RML

T o = 10
median 0.063 0.165 0.185 0�047 0.200 0.317 0.436 0.474 0�193 0.499 0.556 0.622 0.714 0�123 0.796
iqr 0.068 0.102 0.112 0�114 0.079 0.067 0.121 0.143 0�148 0.084 0.060 0.168 0.373 0�196 0.112
mae 0.136 0.055 0.055 0�153 0.040 0.183 0.074 0.074 0�307 0.041 0.244 0.178 0.194 0�676 0.056

T o = 25
median 0.149 0.172 0.182 −0�095 0.200 0.436 0.460 0.474 0�020 0.501 0.714 0.727 0.745 0�021 0.800
iqr 0.039 0.045 0.051 0�054 0.041 0.038 0.045 0.056 0�065 0.040 0.029 0.051 0.103 0�078 0.034
mae 0.050 0.032 0.029 0�295 0.021 0.064 0.042 0.033 0�480 0.020 0.086 0.073 0.059 0�779 0.017

T o = 50
median 0.176 0.176 0.176 −0�242 0.200 0.468 0.467 0.466 −0�124 0.500 0.760 0.753 0.737 −0�050 0.800
iqr 0.027 0.029 0.033 0�030 0.028 0.024 0.026 0.037 0�033 0.025 0.019 0.024 0.060 0�037 0.019
mae 0.025 0.025 0.026 0�442 0.014 0.031 0.033 0.034 0�624 0.013 0.040 0.047 0.062 0�850 0.010

a 
2
� = 1�
2 = 1, 1000 replications; iqr is the 75th–25th interquartile range; mae denotes the median absolute error.
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