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We discuss the estimation of linear panel-data models with sequential moment restrictions using 
symmetrically normalized generalized method of moments (GMM) estimators (SNM) and limited 
information maximum lilcelihood (LIML) analogues. These estimators are asymptotically equivalent 
to standard Glklhf but are invariant to normalization and tend to have a smaller finite-sample bias, 
especially when the instruments are poor. We study their properties in relation to ordinary GMM 
and minimum distance estimators for .4R(1) models with individual effects by mean of simulations. 
Finally. as empirical illustrations. we estimate by SNM and LIML employment and wage equations 
using panels of U.K. and Spanish firms. 
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This work is motivated by a concern with the finite- 
sample bias in panei data instrumental-varizble ( IV)  esti- 
mators when the instruments are we&. A linear panel-data 
model with predetermined variables [like vector autoregres- 
sions (VAR'sP or linear Euler equations] is typically esti- 
mated by IV techniques in first-di5erences using all the 
available lags o f  the predetermined variables as instruments. 
The specification o f  the equation error in first-differences 
reflects the fact that the analysis is conditional on an un- 
observable individual effect. Because the number o f  instru- 
ments increases with the time series dimension (T ) ,  the 
model generates many overidentifying restrictions even for 
moderate values o f  T .  although the quality o f  these instru- 
ments is often poor. 

The effect o f  weak instruments on the distributions o f  
two-stage least squares (2SES) and lipiced information 
maxin~um likelihood (LTMLJ differs substantially, despite 
the fact that both estimators have the same asymptotic dis- 
tribution. Although the distribution of  LIML is centered at 
the parameter val~ae, 2SLS is biased toward ordinary least 
squares (OLS), and in the completely unidentified case con- 
verges to a random variable with the OLS probabilitjl limit 
as its central value. On the other hand, LIML has no fi- 
n i ~ e  moments regardless o f  the sample size, and as a con- 
sequence its distribution has thicker tails than that o f  2SLS 
and a higher probability o f  extreme values [see Phillips 
(1983) for a good survey o f  the literature]. As a result o f  nu- 
merical comparisons of  the two distributions involving me- 
dian bias, interquartile ranges, and rates o f  approach to nor- 
mality, Anderson, Kennitorno, and Sawa (1982) concluded 
that ZLML was to be strongly preferred to 2SLS, particu- 
larly i f  the number of instruments is large. Similar conclu- 
sions emerge from the results o f  asymptotic approximations 
based on an increasing number o f  instl-umenfs as the sam- 
ple size tends to infinity: under these sequences, LIML is 
a consistent estimator but 2SLS is inconsistent (Kunitomo 
1980; Morimune 1983; and. more recently, Beltker 1994). 

(In our context, these approximations would amount to af- 
lowing T to increase to infinity at a chosen rate as opposed 
to the standard fixed T ,  large N asympsotics.) 

Despite this favorable evidence, LIML has not been used 
as much in applications as IV estimators. In the past, 
LIML was at a Qisadvantage relative to 2SLS on compu- 
tational grounds. More fundamentally, applied econometri- 
cians have often regarded 2SLS as a more "flexible" choice 
than EIML from the point o f  view o f  the restrictions they 
were willing to impose on their models. In effect, the 111 
techniques used for a panel-data model with predetermined 
instruments are not standard 2SES estimators because the 
model gives rise to a system o f  equations (one for each time 
period) with a different number o f  instruments available 
for each equation. Moreover, concern with heteroscedas- 
ticity has led to considering alternative ("tu~o-step") gener- 
alized method o f  moments (GMM) estimators that use as 
weighting matrix more robust estimators o f  the variances 
and covariances o f  the orthogonality conditions (foilowing 
the work o f  Chamberlain 1982; Hansen 1982; White 1982). 

In a recent article, Hillier (1990) showed that the al- 
ternative normalization rules adopted by EHML and 2SLS 
are at the root o f  their different sampling behavior. Hillier 
also showed that a symmetrically normalized 2SLS esti- 
mator has properties similar to those of  LIME. This re- 
sult motivate~ our focus on symetrically normalized esti- 
mation. Symmetrically normalized %SLS, unliite EIML, is 
a CMM estimator based on structural-form orthogonality 
conditions, and it therefore can be readily extended to two- 
step weighting matrices and the nonstandard IV situations 
that are o f  interest in dynamic panel-data models, while re- 
lying on standard GMM asymptotic theory. In this article, 
we discuss both nonrobusr and robust LIML analogues and 
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s) mmetncaSPy normallzed GMM est~mates m the panel-data 
context 

The symixeti~caliy normal~zed estimator can be de- 
scribed In a sam~le  example as foEBows Coras~der d struc- 
tural equation wsth a snng'e endogeno~s explanatory Pall- 
able and a nnatn:t of Instruments Z.  

with associated reduced-form equations 

y = ZT, f t J 1  

,c = Zy, + 212 

Both sywwetncaily narmahzed 2SLS and LPML are least 
squares estmators of the reduced form ( 2 )  lmpos~ng the 
overtdentifylng restrnctions 7i = 7 3 Let us define 

Concei~trating 3 oat of the ;east squares criterion, wc obtain 

( y  - 3 r ~ ) ' Z ( Z ' z ) - ~ Z ' ( g  - Ax) 
3-,. = arg niirl 

3 (1. -3 / )V(L -3')' 
(4) 

LIML 1s $, w ~ t b  7' equal to the reduced-form res~d- 
alai covaraance matrb-6, uhereas symmetr~cally norrnallzed 
2SLS ns Sv wath 3" equal to an ~dent~ny rnatrlx (Mailnvaud 
1970, GoEdberger and Olkm 1971, KeHler 1975; Anderson 
1996) sc that both LIML and syrnmetracally norunal17ed 
2SES solve mnlmeam elgenvdue problems SymmetracaPly 
norrnal~zed 2SES can also be descrnbed as a GMM estnrna- 
tor based on the unli-length ortbogonainty condltlor s 

Note that the asymptotic distribution of ,& does not de- 
pend an the choice of V because optimal minimum dis- 
tance estimators (WIDE) of :$ based on (ii - ;!d, 5 - -;) and 
on (? - ?,3) are asymptotically equivalent. Note $!so that 
ordinary and symetrically normalized 2SLS are given, re- 
spectively, by the ordinary and the orthogonal regressions 
of 6 on P ( f j  = Z? ;ii"lnd 2 = ZT), and although the former 
diEers from indirect 2SLS (the inverse regression (sf 2 on 
51, the latter is invariant to normalization. 

This article is organized as follows. Section P d'evelops 
the relationship between symmetrically normaBized GMM 
(SNNI) and LIME in the context of a linear equation 
:For panel data with sequential moment restrictions. We 
also present two-step SNIa estimators and test sl.alislics 
of ~veridentifying restrictions and compare them with ro- 
lsust LIME analogues. The latter are the "continuo~~sly np- 

dated GMM" estnmators considered by Hansen. ;-Beaton, and 
Yaron (1995). Section 2 compares the hnlte-sample proper- 
ties of SNM and LIML to those of ordnnary GMM and 
MDE for 5rs'a-order atatoregress~ve [AR(I)] models ahlath 
nndivndual effects Sectnon 3 reestnrndtes the employment 
equatnons for a sample of U K. firms repolted by Arellano 
and Bond (1991) usnng SNM, LIML, and ind~rect GKM es- 
t~mators This sect1011 further nllustraies the technaques by 
presenting symmetr~cally normahzed est~rnates and boot- 
strap confidence nnteivals of employment and wage VAR's 
from a larger panel of Spanash finms F~laally, Sectaon 4 con- 
cludes. 

Consider a n~odel with individual eEects for panel data 
gnven by 

gzt = + ,,.it. t = I . .  . . , T ;  i = 1.. . . ?V. 

u,t = 1 1 ~  +  it (6 )  

The model specifies sequential moment conditions of the 
form E ( v , ~ ~ z ~ )  = 0, where z: = (z:, . . .z:,)' is a vector of 
instruments. which may include current or lagged values of 
ytt and xzt. Thus, this setting is suficiently genera? to cover 
models with strictly exogenous. predetermined, and endoge- 
nous explanatory variables. Observations across individuals 
are asstamed to be independent and identically distributed. 

Estimation wiPI be based on a sequence of orthogonsliay 
conditions of the form 

where starred variables denote forward orthogonal devia- 
tions of the original variables (Arellano and Bover 1995). 
41 is convenient to rewrite the transformed model as 

where y: = (y: yz;T-l))'. m d s o  forth. 
The k x 1 parameter vector 6, is usually estarnated by 

GMM leading to estamators of the form (Holtz-Zaknn, 
Newey, and Rosepi 1988; Arellano and Bond 1991: Cham- 
berlain 1992; Arellano and Bover 1995: Ahn and Schsidh 
1995) 

where y* = (y;' . . . yi;)'. X" = (X;'. . . XAT!)', and Z = 
(2; . . . Zi7)'.  Zi is a (T- 1) x q block diagonal matrix whose 
teh block is zf and an optimal choice of As is such that 
it is a consistent estimate of the inverse of E ( Z ~ ~ L : I L ~ ' Z ~ ) .  
Under "classicaP" errors [i,e,, when E(U; z i )  = o2 and 
E(t~,toi(t+,) 2:) = 3 for j > 0 and all tj, E(Zlu,*uS'Z;) = 

02E(Z(Z,) ,  and hence the "one- step^' nonrobust choice 
AN = (e2Z'Z)-I is optimal (C2, which denotes the residual 
variance, is irrelevant for esiimation, but it is kept here for 
notational convenience). Alternatively, the standard "'two- 

,ui!ui Z,)-l ,  where step" robust choice is A:\, = ( X I  Z!-*-*' 
G," is a vector of residuals evaluated using some prelimi- 
nary consistent estimate of 6,. Given identification, i G l ~ n ~  
is consistent and asymptotica4ly normal as N i x for 
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fixed T. In addition, for either choice of AN> provided the 
conditions under which they are optimal choices are satis- 
fied, a consistent estimator of the asymptotic variance of 
dGlr-\r is 6?(dGIIM) = (x*'zA\-z'x*)-~. Moreover, let- 
ting 6" = y* - XXbGMhI3 the Sargan or GMM statistic of 
overidentifying restriciions is given by 

Now. partition X *  = ( X ,  , X,) and 6, = (6:, .6;,)' to dis- 
tinguish between nonexogenous and exogenous variables, 
such that the k ,  colums of X i  are linear combinations of 
those of Z brat the kl columns of X ;  are not. SNM is the 
GMNI estimator of 6, based on the orthogonality conditions 

Because E [ v , i 6 , ) ~ ~ ( 6 ~ ) j  = E ( Z ~ u ~ u ; ' Z 2 ) / ( 1  + 6L1b01)3 a 
conslsient esblmate of the Inverse of E(Z,'u:u;'Z,) remains 
an optimal weighting matrix for the SNM esiimator. There- 
fore. 

where A f  = ZA>\-Z'. Minimizing the criterion with respect 
to J2 we obtain a concentrated criterion that oniy depends 
on S1. This gives us 

ils3.jnr = arg min d\11/~i'(114 - 1tf2)T!bi;dl /did1 
61 

and 

where = (y", X;).-dl = (1, -hi)', i22f2 = -%iX* 2 

(X,"I~)~X,')-~X,"'M, and X = min eigen[H~;'(Af-:Lf2)T~I/7~~. 
Notice also that 

Equivalently; 

with 

[if no columns of X* are perfectly predictable from 2, or 
if the entire vector of coefficients is normalized to unity, 
then A = I and X = mill eigen(14-*'Mi/V"), wifh W* = 

( g * .  X*)]. In the just-identified case, ;\ = 0,  with the result 
that GMM and SNM coincide. 

Because and dsNLr are asymptotically equivalent, 
iG(8Gsinr) is also a consistent estimate of the asymp- 
totic variance of 6sKL31. An alternative natural estimator of 
var(isNhr), however. suggested by the previous expression, 
is Gii[isNLI) = (X"' ,%fX* - Moreover, because X 

is a minimized optimal GMM criterion it can be used as an 
alternative test statistic of overideniifying restrictions. We 
have that 

which is asymptotically equivalent to the Sargan test. 
Let us nowT turn to consider LHML analogues or "con- 

tinuously updated GMM" estimators in the terminology of 
Hansen et al. (1996). The nonrobust LIML analogue ~LII\/ILI 

minimizes a criterion of the form 

l ( d ) = ( y * - X " 6 ) ' Z A ~ ( 6 ) Z ' ( y * - X * b )  (18) 

with Av(6) = ( Z ' Z ) - ~ / ( ~ "  - XX6)'(y" - X*b). The result- 
ing estimator is 

where, letting d = (1. -Sr)', 

i = min d " v l ' " ' Z ( Z ' Z ) - 1 ~ ' ~ " d / ( d ' ~ 7 * ' k ~ * d )  

= min e i g e n [ W * ' ~ ( ~ ' ~ ) - l ~ '  ~f %(w"'u'*)-'1. (20) 

On the other hand, the robust LIML analogue JLInlLz 

minimizes a criterion of the same form as (18) with 

where u," (6) = yf - XZ+S. Therefore, LIML2: unlike LIME1 
or the SNM estimators, does not solve a simple minimum 
eigenvalue problem and requires the use of numerical opti- 
mization methods. 

Both the SWM and the LIME analogues are invariant to 
normalization, but the ordinary GMM estimator is not. That 
is, if the equation is solved for an endogenous variable other 
than g,, contrary to the case with ordinary GMM, the in- 
direct estimates obtained from SNM or LIME analogues 
coincide with the direct SNM or LHML estimates, respec- 
tively. [Notice that empirical likelihood estimators of the 
type considered by Qin and Lawless (1994) and Imbens 
(1997) will also be invariant to normalization due to the 
invariance property of maximum likelihood estimators.] 

Symmetrically normalized estimators are potentially at- 
tractive alternatives to ordinary GMM on at least two 
grounds (aside from the desirability of invariance to nor- 
malization in its own right). ]First, they tend to have a 
smaller finite-sample bias than the GMM estimators. Hillier 
(1998) showed that, for the normal case in a standard linear 
structural equation with two endogenous variables, sym- 
metrically normalized 2SLS and LIML are "spherically 
unbiased" in finite samples [meaning that the density of 
6 = dl j ( ~ l d l ) l / '  defined on the unit circle is symmetric 
about the true points ia = idl/(d;dl) 'i2 having modes at 
f a ] .  However, 2SLS does not have this property. 

Second, the concentration of the densities of the symmet- 
rically normalized estimators depends on the quality of the 
instruments. In the completely unidentified case, as shown 
by Hillier, these estimators have a uniform distribution on 
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the unit circk. This is in contrast with 2SLS, which con- 
verges to the same limit as OLS and whose distribution is 
determined exclusively by the normalization adopted. When 
the instruments are poor, as well as when the number of in- 
struments is large relative ro the sample size, 2SLS tends 
to provide results that are biased in the direction of OLS 
and also large discrepancies between "direct" and "indirect" 
2SLS when using different normalizations. This situation 
has been stressed in several recent works (Bekker 1994; 
23ound, Jaeger, and Baker 1995; Awgrist and Krueger 1995; 
Saaiger and Stock 1994, among others). In contrasit, with 
poor instrumeats the distributions of LIME and synnmetri- 
tally normalized 2SLS accurately reproduce the fact that 
the i~mformation on the structural parameters is very small. 

Although the LTML analogues and the SNM estlrnators 
are asymptotica!3y equivalent (and in the Hillier setting ex- 
hibit similar finite-sample properties as well), SNM has 
some disadvantages relative to the other estimators. The 
main one is that in general the results are not indepeaadeiat 
of the units in which the vriables are measured, so that a 
sensible choice of units may be important. In contrast, or- 
dinary GMM is iravarianb to units but not to normalization, 
and LHML is invariant to units and asormaEization. This prob- 
lem does not arise in the autoregressive panel-data models 

Table 1. hfodel 1: hlonrobust Estimates 

CT: = 0 Median 
% bias 
iqr 
iq80 
F\I!AE 

0: = .2 Median 
% bias 
iqr 
iq80 
MAE 

02, = 1 Median 
% bias 
iqi 
iq80 
MAE 

17; = 0 Median 
% bias 
iqi 
iq80 
MAE 

0: = .2 Median 
% bias 
iclr 
iq80 
MAE 

a$ = l Median 
O/O bias 
iqr 
iq80 
MAE 

INOTE. 1,000 replications IV = 100, D E  = 1 % bias gives the percentage rnediaii bias ior ail 
the estmates: iqr is the 75rh-25th interquartfie range: q 8 0  1s the 90th-10th ~nterquanttle range. 
MAE denotes the median absolute error. 

discussed Iaeer because in that case :he SNM estimator is 
invariant to units and to normalization (just because in the 
autoregressive case a change in the units of the right-side 
variable leads trivially to a similar change in the units of the 
left-side variable). Another disadvantage of SPJM is that the 
distinction between exogeaous and nonexogenous variables 
is relevant for the specification of the estimator. This is so 
because in the case of SNM only the length of the coeffi- 
cient vector for the nonexogenous variables is normalized 
to unity, and. contrary to LIh'IL, this differs from normal- 
izing to unity the entire coefficient vector. SNM, however, 
does have a computational advantage over LPML when we 
consider two-step or robust estimators, Indeed. kIML2, or 
continuouslg~ updated GMM, no longer solves a minimum 
eigemalue problem, whereas two-step SNM only invo8ves 
simple calcuHations that are similar to those perfwrrned for 
two-step ordinary GMM. Of course, SNM Is limited to lin- 
ear models, but in such context it is 01 interest to see if 
SWM> which is considerably faster and silnpler than LZBAL2, 
can provide the benefits of the Inore complicated estimators 
and perhaps avoid problems of nonconvergence in the case 
of LIM/I&2. 

2. EXPERIMENTAL COMPARISONS 

The purpose of this section is to study the finite-sample 
properties of the symmetrically normalized estimators con- 
sidered previously in relation to ordinary GMM for an 
AR(P) model with individual effects. The IV restrictions im- 
plied by various versions of the model can be represented 
as simple structures on the covariance matrix of the data, 
so we can also male  comparisons with the MDE of these 
covariance structures. The emphasis is not on assessing the 
value of enforcing particular restrictions in the model, as 
done, for example, by Ahn and Schmidt (1995). ArelXanc 
and Bover (1995), and BLundelE and Bond (1998). Rather, 
we wish to evaluate the effects in snall samples of  sing 
alternative estimating criteria that produce asymptoticaily 
equivalent estimators for fixed 2' and Barge 1Y. We concen- 
trate on a random-effects AR(1) model because of its sim- 
plicity and the fact that it is a case that has received much 
attention in thc literature. 

2.1 Models and Estimators 

Let us consider a random sample of individual time series 
of size T ,  y: = ( g i 1 3 . .  . . y 7 ~ ) ' ( i  = 1, .  . .51\7) with second- 
order n-aornent matrix ~(y:y:) = R = (dt , ) .  VJe assume 
that the joint distributiorl of y: and the unobservable time- 
invariant eRect q, satisfies Assumption A: 

~ (u , , (y : - ' )  = 0 (23)  

where E(r/,) = - .  E(ui) = CT?, and var(r7,) = a;. 
Not~ce that the dependence between v, and L , ~  is not re- 

stricted by Assumption A, nor 1s the possabllity of con- 
datlonal hereroscedast~citgi ruled out, because E(c,', y : ~ ' )  
need not co~ncide wlth c:. 

FolPowlng Aiellano and Bond (1991). Assu~a~ptzon A rrn- 
plies (T - 2)(T - 1 ) / 2  Ianear moment restrlcerons of the 
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form based on (24) may not be fully efficient asymptotically is 
that the dependence between 77, and y: may be nonlinear. 

E [ Y ~ - ~ ( A Y , ~  - aAy7(t-1))l = 0. 124) Another reason would be unaccounted conditional hetero- 

These restrictions can also be represented as constraints 
on the elements of Q. Multiplying (22) by y;, for s < t 
and taking expectations gives uts = ~ l ~ ~ ~ ~ - ~ ) ~  i C ,  ( t  = 
2 ,  . . . T ;  s = 1.. . . . t - 1). where c, = E(y,,q,) .  This means 
tlaa~, given Assumption A, the T(T+1)/2 different elements 
of Q can be written as functions of the 2T x 1 parameter 
vector H = (a, e l . .  . . . C T - ~ .  ~ 1 1 , .  . . . uTT)'. 

We call this moment structure Model 1. Because it is a 
special case of the model in Section 1. all the estimators 
discussed in Section 1 can be particularized to the present 
case. Here. however. we express the 111 restrictions using er- 
Tors in fisst-differences as opposed to orehogoaal deviations 
to simplify the mapping with covariance structures. Notice 
that with T = 3 the parameters (a. e l ,  ~ 2 )  are just-identified 
as functio~as of the elements of 0. 

The orthogonality conditions (24) are the only restric- 
tions implied by Assumption A on the second-order mo- 
ments of the data. They are not the only restrictions avail- 
able: however, because (23) also implies that nonlinear func- 
tions of yfP2 are uncorrelatecl with Ac,,. The semiparamet- 
ric efficiency bound for this model can be obtained from 
the results of Chamberlain (1992). One reason estimators 

scedasticity. 
Model 1 is attractive because it is based on minimal as- 

sumptions. We may be willing to impose additional struc- 
ture, however, if this conforms to a priori beliefs. One pos- 
sibility is to assume that the errors vtt are mean independent 
of the individual effect rl, given This situation gives 
rise to Assumption? A': 

Note that Assumptioim A' is more restrictive than As- 
srrrnplion A. When Y' > 4, Assumption A' implies the fol- 
lowing additional T - 3 moment restric" ~lons: 

In effect, we can wrlle E[(y,, - ay,rt-l) - ~ ~ ) ( L l y , ( ~ - ~ )  - 

aAy,,,-2)) = 0 and, because E(q,~lv ,~ , - , , )  = 0, the result 
follows. 

GMM estimators of a that exploit these restrictions in ad- 
d~llon to those m (24) were cons~dered by Ahn and S c h d t  
(19951, but because the addrt~onal restrlctlons are nonl~near 

Table 2 Model I :  Robust Estimates 

0: = .5 a: = .8 

GMM2 SIVW L I M 2  MDE GMM2 SNM2 LlML2 MDE 

0; = 0 IVledtan 
% bias 
iqr 
iq80 
MAE 

a; = .2 Median 
% bias 
iqr 
iq80 
MAE 

5 = 1 Median 
% bias 
iqr 
iq80 
MAE 

u; = 0 Median 
% bias 
iqr 
iq80 
MAE 

5; = .2 Median 
% bias 
iqr 
iq80 
WIAE 

a: = I Median 
% bias 
iqr 
iq80 
MAE 

NOTE. See note to Table 1 
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cve do not slmnlate them here. An alternative representztion 
of the restrictions in (24) is in terms of a recursion of the 
coeficiefits ct introduced previously. Multiplying (22) by 11, 
and tdcing cxpectatisns gives ct = act- l  +o (t = 2 , .  . . . T). 
where o = ?% = E($) SO that cl . . . c ~ - ~  can be writ- 
ten in terms of cl and &. This gives rise to a cov;iriance 
structure inn kvhich R depends on the (T + 3) x 1 paam- 
eter vector ti = (a.  O, cl. dll . .  . . , IL)TT)'. Notice that with 
T = 3 Assumption A' does not imply further restriciions in 
12, with :he result that cu remains jnst-identified relative to 
the second-order moments. 

Other forms of additional structure that can be imposed 
are \la-ious versions of mean or variance stationari1.y con- 
ditions. Assumption B3 which requires the change in y,, to 
be mean independent of the individual effect ql*  is a partic- 
ularly usehl  mean stationarity condition: 

Wotace that gsben Assuxpelon A. Assumption B ~mplles 
thdt E(yLt )  = -/(I - a )  Relat~ve to Assenmptlo~a A and 
Model 1, Assdmptlon B adds the foHlowrng (T - 2) nmomenr 
sestrlctlons on 0 

which were proposed by Arellanc and Bover (1995), who 
developed a linear GMM estimator of cx on the basis ol' (24) 
and (28). Relative to Assumption A', howeve& Assumption 
B only adds one moment restriction. which car, be written 
as Ei jyz3 - ay,2)AyLa] = 0. In terms of the parameters ct, 
the implication of Assumption W is that cc, = . . . = c- i - 1  

if we move horn Assumption A or that cl = q/(i - a) 
if we move from Assumption A'. This gives rise to Model 
2, in which R depends on the (T - 2) x 1 parameter vec- 
tor 0 = ( a ,  @. ul17. . . , uTl.)'. Notice that with 1' = 3. a is 
overidentified under Assumption B. 

The basic specification can be restricted fearther in various 
ways. For example, we could consider time series homo- 
scedasticiry of the form E ( v i )  = u2 for t = 2 , .  . . . T and 
stationarity of the variance of the initial conditions. The 
combination of these assumptions with the previous ones 
would give rise to additional models, some of which were 
discussed in detail by Ahn and Schmidt (1995). In the sim- 
ulations, however, we concentrate on Models I and 2 be- 
cause they embody linear HV restrictions that have Seen 
found lnost useful in applications. Although for Model 6 
we shall simulate the robust and nonrob~ase estimators dis- 
cussed in Section 1, for Model 2 we shall only report robust 
estimaaes-that is. the Arellano and Bover (1995) GMM es- 
timator and its symmetrically normalized and continuously 

Table 3. Model 2: Robust Estimafes 
- -- 

a =  5 a =  8 

GMM2 SNM2 LIIMLP MDE GMM2 SiVM2 LIMLP MDE 

cr:, = 0 Median 
% bias 
iqr 
iq80 
MAE 

cr; = ,2 Median 
% bias 
iqr 
iq8O 
MAE 

u = 1 IVledian 
% bias 
iqr 
iq80 
MAE 

0; = 0 Median 
% bias 
iqf 
iq80 
MAE 

0% = .2 Median 
% bias 
iqr 
iq80 
MAE 

0; = 4 Median 
% bias 
icgr 
iq80 
MAE 

NOTE. See note to Table 1 
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updated counterparts. We do so because the combined set of 
moments in (24) and (28) Back a sequential structure, with 
the result that there is no simple optimal one-step estimator 
under "classical" errors. 

The coeficient a together with the other free parame- 
ters in the covariance structure representations of the pre- 
vious models can be jointly estimated by MW on the ba- 
sis of the matrix of sample second-order moments Sl = 

\- 15'~' z ; = l  y:y". Such estimates have the same asymptotic 
distribution as the corresponding CMM estimators but may 
be cumbersome in more general conditional models because 
they need to solve a nonlinear optimization problem over 
a larger parameter space. It is of some interest, however, 
:o compare their finite-sample performance with the SNM 
and LIML estimates of the random effects AR(H) model. 
Optimal MDE minimize a criterion of the form 

\- m7heae Vy = N-I CL=, IL+,U,( - ljji', 2 = vech(R) denotes 
the T(T i- 1) /2  vector containa~~g the e~emenbs in the upper 
triangle of fi, and similarly ~(8) = vech[Q(O)l and = 

T T-1' 
vecla(ll, Y, ). 

2.2 Monte Carlo Results 

An important issue is how instrument quality affects the 
estimators. Iiz Model 1, thns depends on the values of n 
and r = o:/u2. To see this, note that under stationar~ty the 
sorrelation between Ayt-l and is p = -(1 - n ) [ 2 ( 1  - 
0 i (1 + a ) ~ ) ] - l / ~ ,  which is decreasing in n and r. For this 

reason. we exclude from the simulations models with small 
values of n. which can be expected to perform relatively 
well. "Ne consider cases with cu = 5, 8: a; = 0 ,  .2.1: T = 
-1.7; and S = 100. The variance of the random error o2 is 
kept equal to unity for all cases. For each experiment, we 
generated 1.000 samples of N independent observations of 
(gZ1. . . . yzT) from the process 

and 

Y i t  = QYz(t-1) + 7% + vit. t = 2 ? .  . . , T, (31) 

1~jHth ? J i  = (zjil. . . . z:,~) '  N(0. I) and q2 - N(0: 0;)  inde- 
pendent of vi.  

Tables P and 2 (pp. 39-1.0) report sample medians, per- 
centage biases, interquantile ranges, and median absolute 
errors (MAE'S) for GMM, SNM, and LIME estimators for 
Model 1 (means and standard deviations are not reported 
because the symmetrically normalized estimators can be 
expected to have infinite moments). Table 1 contains the re- 
sults for the nornobust estimators and Table 2 for the robust 
ones. Table 2 also reports the results for the MDE, which 
is also robust. Whereas LPML2 and MDE are one-step esti- 
mators, however, GMM2 and SNMZ are calculated in two 
steps. The weighting m-atrices of GMM2 and SNM2 are 
based on GMMl residuals. SNMl and LHMLl always have 
a smaller bias and a larger dispersion than GMM1. When 
0: = 0, all estimators perform well. but when a; = .2 

Table 4. lViode1 1: Nonrobust Estimates, Quantiles of the t Statistics 

T = 4  T = 7  

a = .5 a = .8 a = .5 a = .8 

GMM7 SNMl LIML? GMMI SNMl blML1 G I  SNMI LlMLI GMMl SNM1 LlMLl 

u$ = 0 

.05 -1.97 -1.84 -1.87 -2.16 -1.90 -2.03 -2.04 -1.66 -1.84 -2.26 -1.62 -1.95 

. I 0  -1.54 -1.42 -1.44 -1.74 -1.46 -1.56 -1.65 -1.27 -1.46 -1.87 -1.25 -1.51 

.25 -.86 -.74 -.75 -.98 - .73 -.78 -1.01 - 5 4  -.79 -1.23 - 31  - 32  

.50 - . I 3  . 0 2  -.01 -.25 .OO -.01 . 3 2  .04 -.08 -.53 .06 -.07 

.75 .53 .62 .64 .41 .59 .64 .37 .74 .64 .17 .73 .68 

.90 1.08 1.17 1.22 .93 1.06 1.15 .98 1.33 1.26 .75 1.29 1.30 

.95 1.41 1.48 1.53 1.20 1.30 1.41 1.33 1.70 1.65 1.10 1.61 1.67 

0; = .2 

.05 -205 -1.89 -1.95 -2.39 -2.00 -2.38 -2.12 1 . 6 5  -1.92 -2.51 -1.57 -2.35 

. I 0  -1.63 -1.49 -1.52 -1.95 --1.55 -1.88 -1.74 -1.27 -1.51 -2.i4 -1.19 -1.86 

.25 . 9 1  . 7 7  . 7 9  -1.22 -.79 -.99 -1.08 - 5 3  - 32  -1.51 - 56  -1.02 

.50 -.18 -.04 . 0 3  - .44 - .03 --.06 - 29  .06 - 30  - 31  .09 - . I3 

.75 .48 .64 .64 .25 .47 .64 .30 .73 .62 -.12 .69 .71 

.90 1.03 1.13 1.19 .71 .82 1.07 .90 1.33 1.27 .48 1.19 1.43 
,535 1.33 1.42 1.50 .92 .99 1.27 1.24 1.65 1.61 ,230 1.47 1.79 

0; = 7 

.05 -2.20 -1.98 -2.13 -2.68 2 . 1 6  -2.83 --2.19 -1.62 -2.03 -2.74 -1.47 -3.18 

.10 -1.74 -1.52 -1.64 -2.20 -1.64 -2.30 -1.83 -4.25 -1.62 -2.40 -1.11 -2.66 

.25 -1.04 . 8 1  . 8 8  -1.52 - 39  -1.46 -1.18 - 51  -.91 -1.79 -.51 -1.52 

.50 -.27 -.05 . 0 5  . 7 4  - . I2 . 3 9  . 4 9  .07 -.I3 -1~10 .I 2 -.28 

.75 .40 .57 .66 . O f  .27 .55 .20 .73 .62 -.40 .65 .85 

.90 .91 1 .OO 1.16 .46 .56 .95 .79 I .29 1.27 .20 1.05 1.69 

.95 1.17 1.23 1.41 .65 .71 1.17 1 .I 1 1.61 1.63 .49 1.27 2.10 

NOTE. 10,000 replical~ons. N = 100. oE = 1 The 5th, 10th. 25th. 50th, 75th. 90th, and 95th quantiles for the standard normal distribution are, respectively, -1.64, -1.28. p.67, 0, 67 ,  1.28, 
and 1.64. 
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or 4. the differences in the distributions of GMM1 and the 
s:y:nmetrically normalized estimators become apparent: The 
higher n: or a, the larger the negative bias of GMMI for a 
given T. whereas SNMI remains essentially mediari unbi- 
ased. The behavior of TIMkl is similar to that of SNM1, 
althougi; in some cases Et shwi:~  somewhat larger "8ascs a n i  
dispersion. SNMI and EZhWL1 have a larger interquartile 
rmge than GMTVIl, bntthe differences are small except in 
the almost anidentified cases (with a = .8 and T = 4). The 
h'IAE7s of the t h e e  estimators are of a similar magaitude, 
althocgh tkose for SMhIJ31 fend to be smaller thsn those for 
SNMl or LIMLl with T = 4 and larger with T = 7 .  

T u r ~ i n , ~  to Table 2, GihYAfi2 znd SNM2 exhbit a very sim- 
ilar behavior to CMh4I and SNIviI, respectively. EIMk2, 
which Is the a-sbust continuously updated GPAM estirna- 
tax, is virttilzlly median unbiased in all the experime:nts, al- 
though it tends :o ha:ve z larger MAE than SNM2. ldML2 
was calculated by numerical optin~ization, and we found 
some instacces of n,-nconn~ergence. Out of 1.000 replice- 
?ions, we found 86 cases of eaoncon~iergeiace for the exper- 
inxnt. with a = ..8 .a2 = 1, and T = 4, and 7 cases in 

' I  
each of the experiments with a = .8.0: = . 2 .  T = 4, and 
CL = .8. c; = 1, T = 7. 

The MDE hzs a smaller interquareilc range than GMh42, 
S;NM2, or L4ML2, a diEerence that is especially notice- 
able for 3 = 4 (vvith O: = 0 and a = .8, the in&erq,uartllc 
ra3ge of the MDE is about thee limes smaller than that of 
tlhe other estimators). As far as median bias is cona:erned, 
lline NTDE is practically '~nbiased when a = .5. but exhibits 
some larger biases when 0; is not 0 and a = .8. 111 com- 

mon with LIMk2, hov\iever. we also found several cases of 
nonconvergence for MDE, with all elre cases arising almost 
e:cclusively in the experiments with a = .8. Specifically, 
with a = .8 and T = 4, we encoslirtered 35, 46, and 86 
cases of nonco~~vergence for .a: = 0. .2, and 1, respecdveljr, 
whereas, with T = 7, tlae number of cases, given in the 
same order, were 22, 35, and 118, 

With T = 7, Tables 1 and 2 clearly indicate that when 
>I' = YO0 t h r e  is information in the data to estimate a with 
sufficient precision but that, contrary to SNM or LIME, 
GMM estimates may still be substantial4y biased. 

The evidence horn Tables 1 and 2 suggests that Hillier's 
basic results for ordinary and symmetric2lly normalized 
2SLS estimators may have a wider applicability. In eEect, 
GMM2 and SNM2, rcniilte 2SLS, are not only lsinctions of 
the second moments of the data but also of the fourth-order 
moments that ecter the weighting matrix of the moment 
conditions. 

Model E is the leading case frwm the point of view that 
HV estimators of structural equations with predetermined 
instruments tend to rely on orthogonality conditions that 
are similar to those in Mode! 1. 

Table 3 (p. 41) presents the results for Model 2, which 
makes use of the restrictions derived from Assuarmptions 
A and B. This model incorporates the quadratic orthogo- 
naiity conditions given in (42). By adding the stationarity 
restrictions, however, the entire list of moment conditions 
adnits a linear representation (Ahn and Schmidt 19951, so 
that GMM2 in Table 3 is a linear %V estimator (as proposed 
by Arellano and Eover 1995). All the estimators in this ta- 

Table 5. Mode! I :  Rok~usl Estimates. Quantiles of the t Siatisfics 
- 

T = 4  T =  7 
? a = .a a = .8 a = .5 u = .8 

2 SNM2 L I M P  GMMP SNM2 LJMLZ GMM2 SNIWZ blML2 GMPA2 SNM2 L i M 2  

0; = 0 

.05 -2.04 -4.97 4 . 9 1  -2.25 -2.12 -2.07 -2.49 -2.24 -2.34 -2.74 -2.24 -2.45 

..I0 -9.64 -1.54. -1.47 -1.80 1 . 6 2  -1.55 -2.01 -1.73 -1.82 -2.28 -1.79 -1.90 

.25 - 3 7  -.78 . 7 3  4 .OO . 8 0  -.75 -1.22 -.91 . 9 2  -1.47 . 9 4  -.92 

.50 -.I 1 .@.I .06 --22 .02 .05 -33  .OO .08 -.57 - .03 .09 

.75 .58 .71 .76 .45 .72 .73 .56 .91 1.05 .28 .85 1.06 

.!30 1 , !  8 i .32 1.35 1 .00 1.28 1.26 -1.30 1.67 1.89 4.03 1.62 < .89 

.95 1.54 1.69 1.71 1.30 1 61 1.55 7.76 2.32 2.42 1.46 2.05 2.37 

0; = .2 

5 2 , 1 5  -2.08 -2.00 -2.68 -2.71 -2.48 -2.62 -2.31 -2.42 -3.28 -2.53 -2.98 
.I0 ? , 7 1  - 6 2  -1.55 -2.15 -2.02 -1.84 2 . 1 1  -1.79 -1.86 -2.73 -1.97 -2.22 
2 5  -,93 -33  -.76 -1.28 -1.01 -.88 -1.30 -.93 - 3 5  -7.88 -1.05 -4.41 
.50 . 1 7  .02 .05 -.43 -.05 .04 -.41 - .02 .06 -97  -.I 1 .05 
.-75 51; .71 .77 .29 .75 .73 .45 .87 1.04 -.05 .81 1.15 
.!30 4.13 ; .31 1.34 77 1.32 1.15 I .24 1.58 1.90 .70 1.60 2.01 
.95 1.44 'I .65 1.66 .98 1.76 1.37 1.69 2.13 2.44 1.13 2.06 2.46 

0; = I 

.05 -2.36 -2.35 -2.26 -3.17 -4.44 -3.01 -2.76 -2.44 -2.55 -3.82 -3.10 -3.72 
10 -1.83 -1.78 -1.67 -2.58 -3.22 -2.26 -2.27 -1.88 -1.96 -3.26 -2.37 -2.77 

.25 -1.09 -.95 . 6 2  -1.68 -1.67 -1.14 -1.44 . 9 5  -1.03 -2.35 -1.31 -1.39 
!50 . S 5  - .05 .03 -.78 -.33 .OO - .56 -.05 .03 -1.37 -.I9 .00 
.'75 .45 .73 .77 .01 70 .70 .32 .87 1.07 -.43 .82 1.26 
.!30 .98 1.33 1.30 .50 7 5 1  1.17 1 .09 I .66 1.94 3 5  1.68 2.14 
.!35 1.28 1 .53 1 .56 .70 2.52 7.40 1.51 2.1 1 2.46 .76 2.94 2.59 

I\iOTE' See note !o Table 4 
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Table 6. Employment €quations: Robust Estimates From the U.K. Sample 

independen7 
Model A Model 5 

variables GMflj2 SlVlW2 LIML.2 Indirect GMIMZ* GMM2 SNM2 LIML2 

An((?-11 ,800 1.596 1.900 1.214 ,825 2.4 86 ,836 
(.048) (. 1 05) (.173) (.056) (.216) (.060) 

An,(t-z) , 1 1 6  , 3 8 4  . I  05 , 2 8 2  , 0 7 4  -.455 ,344 
(.021) (.045) (.053) (.020) (.077) (.038) 

a w~r -.640 - 1.897 .507 -4.638 
(.054) (.I 60) (.224) 

~ w , ( ~ - ~ )  ,564 2.1 38 .487 1.567 ,431 2.841 ,615 
(.066) (. 1 42) (.222) 1.076) (.312) (.080) 

A kit ,219 ,238 -1.353 ,604 
(.051) (.089) (.198) 

Ak,( t - j )  -.077 -.787 -.235 
(.045) (.126) (.049) 

A~s/s,t ,890 1.747 ,674 3.1 05 
(.098) (.204) ( 228) 

Aysitt-i) -374 -2.897 . 0 0 6  -4.101 -.1 45 -2.438 , 4 2 7  
(.1 05) (.229) (.312) (:I 00) (358) (.112) 

Aysiir-2) ,095 1.51 1 . I  26 
(.091) (.266) (.401) 

Sargan test (df)  63.0 (50) 67.1 (50) 44.5 (50) 62.8 (50) 68.3 (54) 66.5 (51) 57.8 (51) 

R2 s for lVk 

Ani( t - I )  ,271 ,269 
Wjt) .I 93 

AW(t - I )  ,309 ,289 
ak,i . I  08 
a k i ( t - ~ ,  .I 58 

" Desendent variable is Aw;?. 
NOTE. The dependent varlable is Anir The sample period 1s 1979-1984 (140 corrpanes) Time dummies are Included In a1 equatons. Asyrnpiot~c slandarc errors robust to heteroscedasticity 
are reported in parentheses Model A trea:s An,,;-,,, Al",t, Aw,(t-i). an0 AK,t as endogenous. Mooel B treats An,;;-,,. AW, ;~-~ , .  and Ak,:;-?) as endogenous. The Instrument set for 
Models A and B includes lags of employment dated i f -  2) and eariier. lags of wages anc capital dated ( t -  21 and ( t-  3).  and The levels and first differences of firm real sales an0 flrm ieai srocks 
dated (I- 2) The instrument set for ail the AR(2) models includes lags of employment dated ( t-  2 )  and earlier a l d  for hose in ihe first three columns also lags of wages dated (t- 2) and eaiiier. 
The R"S for the IV's denote the partial R%etb\~een ihe nst:uments and each enaogenous expianator), varbabie once the exogenous variables nciuoed in the equation have been aartialled out 

ble exhibit small median biases and dispersions, although 
when there is a diEerence in MAE it favors the MDE. The 
diEerences between GMWI2, SNh32, and LIML2 are small 
in most cases without a clear patterr, in the relation. except 
for the fact that LHML2 tended to have a smaller bias and 
kt was the estimator with the highest dispersion in all the 
experiments. 

Both GNiM2 and SNW12 are two-step estimators based 
on one-step GMM residuals that use all the orthogonality 
conditions from Model 2: and the inverse of the second mo- 
menis of the instruments as the weighting matrix. Notice 

that this one-step estimator is not asymptotically efficient, 
not even under classical errors. From calculations based on 
alternative residuals (not reported), we found that the results 
for GMM2 and SNMZ were sensitive to the choice of one- 
seep residuals, an issue which does not arise for LIML2 or 
MDE because they are calculated in one step. (We obtained 
results for GMWf2 and SNW'2 estimates based on GMMl 
residuals from Model 1 and one-step residuals Gom Model 
2. but using an identity as the weighting matrix. As ex- 
pected. the impact of usiing Model I residuals was more 
important when Model B estimates were highly imprecise.) 

Table 7. Employment Equations: Robust Estimates From the U.U. Sample 

Independent AR(2) n/lodels 

variables GMidi? SNM2 LIML.2 GMM2 s1vM2 LlML2 

a n ~ ( t - i )  ,691 
(.051) 

a n , ( t - ~ )  -.114 
(.026) 

AW(t - i ;  ,598 
(.070) 

A v ~ ( ~ - P )  .O1 3 
(.036) 

Sargan test (df) 65.9 (50) 

R23 for IVs 

NOTE See note to Tab e 6 
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Finally, it is possible lo make comparisons across tables. 
The icterqnartile ranges become smaller if we move from 
Tables 1 and 2 to Table 3. Indeed, the efficiency gains from 
enforcing s::atioaaarity restrictions are always substantial for 
all the estimators, but they are particularly important in the 
cases with a = .8 acd LT; = .2 or 1, 

We also investigated the ficite-sample distributions of the 
standardized one- and two-step GMM, SNM and EIML 
"t statistics" for Model I of the form t = V1I2(a - 
a) .  where ii is an estimator and d is the correspond- 
ing estimated asymptotic variance. The t statistics are 
asymptotically N(8.7). Because the usual tests of hypothe- 
ses aad confiderace intervals rely on this approxi;nation, 
it is useful to check the accuracy of the appsoxima- 
tion for che szmple sizes and parameter values considered 
previously. 

Tibles 4 and 5 (pp. 4.243) report finite-sample qtaantiles 
of the t statistics based on 10,000 replications for nornobust 
and robust es.;iiaates, respectively. We use a larger number 
of replicatior~s because iar this case the .90 and .95 quan- 
tiles in the upper tail of the distribution are of special inter- 
est. The median shows that the distributions of the (3MIVI t 
statistics are shiEited to the l e f ~  with the absolute haiue of 
the shiA increasing with o. a:, and T. In contrast, ::he dis- 

tributions of the SNBA and EIML t statistics are centered at 
va.lues that are most of the time very close to 8. Turnimg to 
the .90 and .95 quantiles, when T = 4 the difirences with 
the corresponding N(0,1) quantiles are always smaller for 
the SNM and LIML t statistics than for the GMM, ssme- 
times by a wide margin. This is true for both wonrobust and 
robust t ratios. although the lather show higher ii~terquantile 
ranges. When T = 7, the contrast between robust and non- 
robust t ratios becomes more marked. Although the nor- 
mal approximation works reasonably well for SNMl and 
LIME1, the distributions of SNM2 and EHMLZ exhibit thick 
tails. The distributions of the GMM t ratios with T = 7 re- 
main skewed, but whereas the .95 quantiles are very low for 
GMMB, those for GMM2 tend to be closer to the normar! 
values than those from SNM2 or LHML2. 

Our first illrastration of the previwrls methods proceeds by 
reestimating the employment equatio~s presented by Arel- 
Bano and Bond (1991) using symmetrically normalized and 
indirect GMM estimators. The Arellano-Bond dataset con- 
sists of an unbalanced panel of 140 quoted companies from 
the United Kingdom, whose main activity is naanu'factur- 
ing and for which seven, eight: or nine continuous annual 

Table 8. VAR Estimates for EmplOyment and Wage Equations From the Spanish Sample 
.- 

"Model 1" restrictions 
Jndependeni 

lvafiables G.MM2 SNM2 LIML2 GMM2 SNM2 11ML2 

Anl ( t -1)  

.an,(t-2) 

~ l ~ / l ( t - l  I 

/ 1 v ~ ~ ( ~ - ~ ~  

Sargan test (df) 

Ani(t-1) 
L ~ f ! ( t - 3 )  

A w , ( t - l )  

A L,v\(~(L-~) 

Sargan test (di) 

A w ( t - ~ )  

Ani, equation 

35.5 (36) 

R2 B for li/s 

9 wIt equation 

12.2 (1 8 )  

R2's for IV's 

INOTE. The sample period 1s 1583-1990 (738 companies). Time dummies are Inoluded in all equatlons. The Instrument set for all the employment equatlons Includes iags of employment dated 
(I- 2) and earller and for those in the flrst three coiumns aiso lags of wages datecl ( t  - 2) and earlier. The nstrument set for the wage equation includes iags of swages dated (t - 2) and earller. 
The r?'-s for the 1V.s denote the partal R' between the nstruments and each en(iogenous explanatory "artable once the exogenous variables Included in the equat;on have beer- partlalled out. 
95% asymptotic confldence intervals based on heteroscedastcty-robust standard errors are in palentheses: 95% moment-restricted bootstrap confidence lntervas are In brackets. The bootstrap 
confidence Intervals for the equatlons in the first three coiumns are based on a d1s:ribution that satisfies a larger set of moment condiilons than those In the tast three columns The reason 1s that 
the former include lagged wages as Instruments for the employment equation, whiah are absent from the latter. 
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observations are available for the period 1976-1984. The 
models are all Bog-Linear relationships between the number 
of employees, the average real wage, the stock of capital, a 
measure of industry output, lagged vaEues of the previous 
variables, time dummies: and company effects. The reader 
is referred to the Arellano and Bond article for a detailed 
description of the models and the data. 

Table 6 (pp. 44) contains the results for two different 
models estimated in first digerences using IV9s. Model 
A includes contemporaneous wage and capital variables, 
which are treated as endogenous along with the first lag 
of emplopent .  111 this model, Bagged sales and stocks are 
used as outside instruments in addition to lags of the en- 
dogenous variables included in the equation, Model B only 
includes lagged. values of wages and capital, ard it could 
be interpreted as an approximated Euler equation for ean- 
ployment with quadratic adjustnlaent costs. Colunms labeled 
GMM2 reproduce some of the results obtained by Arel- 
lano and Bond. The SNM2 and LEML2 estimates are cal- 
culated as described in Secfon l ,  and for Model A there 
is an additional column containing indirect GMNI2 esii- 
mates that were obtaiazed by normalizing to unity the co- 
eficient of contemporaneous wages. Finally, b b l e  7 jp. 
44) presents GMM2, SNM2, and LPML2 estimates of some 
simple second-order autoregressive iAR(2)I models for em- 
ployment with and without the in~clusion of lagged wages. 

As Tables 6 and 7 show, SNM2, LEML2 and indirect 
61UM2 estimates are mostly far apart from the direct 
GMM2 estimates. These results uncover the fact that the 
GMM2 estimates from the datasei of U.K. firms are proba- 
bly much less reliable than what their estimated asymptotic 
standard errors would suggest. 

Our second empirical illustration is based on a similar 
but larger balanced panel of 738 Spanish manufacturing 
companies. for which there are available annual observa- 
tions for the period 1983-1990 (see the Appendix for a 
description of these data). We consider a bivariate VAR 
model for the logarithms of employment and wages. The 
ernp90yment equation contains both lagged employment and 
lagged wages. but the wage equation only includes its own 
lags. This model can be regarded as the reduced form of 
an intertemporal model of employment determination un- 
der radonai expectations (see Sargent 1978). To obtain the 
reduced form, an AR(2) process for log wages is assumed, 
and the Euller equation in the Bog of enlployment for the 
optimal contingency plans is solved. 

Table 8 (p. 45) presents GMM2, SNM2. and LHML2 es- 
timates of the two equations, using only lagged variables in 
levels as instruments for equations ir, first-differences (the 
basic set of moment conditions that we called "'Model I"), 
and Table 9 contains the estimates that add lagged variables 
in first-diEerznces as instruments for equations in levels 
( is . ,  including the stationarity restrictions of "Model 2"). 
We also report estimates of a univariate AR(2J process for 
employment for the two modeis dnonrobust estimates are 
not reported but are available on request). 

In addition to asymptotic confidence intervals, for 
GMM2 and SNM2 we calculated 95% semiparametric 
bootstrap confidence intervals based on '8,000 replications 

from the empirical distribution function of the data sub- 
ject to the moment restrictions (Back and Brown 1993). 
Following Brown and Newey 61992), we drew the boot- 
strap samples from the mass-point distribution that esti- 
mated the probability of the ith observation as pi = 1/[1+ 
I;'y (yi. b)liV, where 

and v(y,. 8) is the vector of orthogonality conditions for 
observation 2 evaluated at the appropriate parameter esti- 
mates. (We were unable to obtaln bootstrap confidence in- 
tervals for LIML2 due to computing limitations, because 
each evaluation of LIML2 required numerical optimization 
over a larger parameter space including time dummies.) 

Table 8 (p. 45) confailss some interesting results. GMM2 
estimates of Model ! are still different from SNM2 and 
LIME2 estimates but by a smaller margin than the corre- 
sponding estimates for the U.K. panel. The differences be- 
come even smaller for the univxiate employnent estimates 
that are based on half the number of moments used for the 
estimates in the first three columns. On the other hand, the 
estimates of Model 2 in Table 9 appear to be more precise, 
presumably because the additional orthogonality conditions 
are highly informative. In this case. CMM2 and SNM2 es- 
timates provide very similar results. The Sargan statistics, 

Table 9. VAR Estimates for Employment and Wage Equations 
From the Spanish Sample 

"Model 2" restrictions 
Independent 
variabies GMM2 SNM2 LIML2 

An,, equation 

Sargan test (df) 80.1 (48) 69.1 (48) 50.3 (48) 

O wlt equation 

Sargan test (df) 71.4 (24) 72.2 (24) 71 -4 (24) 

NOTE. The sample per~od is 1983-1990 (738 companies). T~me dummies are nciuded in all 
equations The nstrument set for the employment equations includes iags oi employment and 
wages dated ( I  - 2) and earlier for errors in first differences, and iags of errployment and wages 
in first diiierences dated ( t  - I )  for errors in ievels The Instrument set for the wage equations 
is similar. but excludes lagged ernployment in levels ard  iirs: d~fferences GMM2 and SNM2 are 
two-step estimates based on one-step GFMM residuals that use ail the orthogonality restrictions 
+om Model 2 and the inverse oi the second moments of the instruments as the weighiing matrix. 
9.5% asymDto1;c coniidence intervals based on heteroscedasticity~robust standard errors are n 
parentheses; 95% moment-restricted bootstrap confidence intervals are in brackets. 
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Table i0. VAA Estimates for Employment and Wage Equations From the Spanish Sample 

independent 
variables GiUA/!2 SNn/!2 LIML2 GAJfg2 SNM2 LIML2 

Ani(t-1) 

Ani(t-2) 

Awi(t-1) 

AW(t-2) 

Sargan test (df) 

An,(t-:) 
Al/v,(t-i) 

dW(t-1) 

Awi(t-2) 

Sargan test idf) 

Aw,(t-1, 

,788 
(51 0; ,966) 
i.528; 7.2481 

-.042 
(-.log: ,025) 

[-.265: -.008] 
,337 

(.151: ,523) 
[,099; .680] 

.001 
(-,065; ,067) 
[-.I SO; .059] 

30.2 (36) 

,064 
,080 

-.612 
(-,984; -.240) 
1-.962; ,3591 

-.120 
(-,231; -,009) 
1-232; .1 021 

17,3 (1 8) 

,023 

An,, equation 

1.002 
(.777; 1.227) 

-.I81 
(-,271; -.091) 

,675 
(.452; ,898) 

-.018 
(-,098; ,062) 

24.8 (36) 

R2 's for IV's: 

A w,, Equation 

-1.246 
(-1.509; -.983) 

-.231 
(-,319; -.143) 

9.3 (1 8) 

R2 's for IV's 

NOTE. The sample perod is 1983-1990 (random subsample of 200 companies). See no!e to Table 8 

however, indicate a cleax rejection of the stationaritj, restric- 
tiom in both the employment and the wage equations. It is 
also no:iceable that? although bootstrap confidence intervals 
are always larger than the asymptotic confidence intervals, 
the differences between the two are generally smal!!. As for 
the LiML2 parameter estimates and Sargan statistics, they 
are similar to GbANi2 and SNM2 for the wage equation but 
somewhat different for the employment equation. In par- 
ticnha~. the first lagged employment coefficient estimate is 
higher, and the Szrgan statistic turns out to be much smaller 
than those for the other estimators. 

Vie reestimated Model 4 with a random subsample of 
200 firms, which is shmiler to the size of the U.M. sam- 
ple. I~atereshingly~ some of the results (reported in Table 
10) are closer to t!he U.K. resalts for similar speci.hcations 
than those based on the FdI Spanish sample. In particular, 
the SNM2 estimates of the AR(2) model for employment 
are remarkablj7 stable over the three datasets, but ijtandard 
GMM2 estimates would be seriously downward biased in 
the smaller samples. Moreovel; the discrepancies between 
esyrnprohic and bootstrap co~mfid.ence intervals in the ran- 
dom stabsa~aple were greater than in the full sample. (Boot- 
strap standad errors for the U.K. unbalanced panel were 
not ca!culaeed because they \vouId depend on a mntrivial 
specification of the empirical distribution functior,. for the 
unbalanced observations.) In contrast, perhaps as a result of 
a kaigizel- probability of outliers in small samples, the: LIML2 
estimate of the leading coefficient in the AW(2) mode! for 

employment was a very small number in the U.K. sample 
and a very large one in the Spanish subsampie of 200 firms, 
whereas it was similar to SNM2 for the full Spanish sample. 

Finally, we simulated data as close as possible to the 
AR(2) employment equation to see if the findings that we 
obtained with the subsample of 200 companies were sub- 
stantiated in the Monte Carlo simulations. Random errors 
and individual effects were generated from independent 
normal distributions with variances equal to the values es- 
timated h o m  the SNM2 residuals of the full Spanish sam- 
ple. Because the estimated time effects showed very little 
variability, the constant was set to a common value for all 
periods given by the average estimated time eRech in lev- 
els, although the estimates in the simulations included time 
dummies. As a consequence the model was stationary, and 
we generated (and discarded) 100 preliminary observations 
for each individual to minimize the impact of initial con- 
ditions. The results for GMM2 and SNM2 are reported in 
Table i l and confirm the impression conveyed by the real 
data (unfortunately, we were unable to simulate LilML2 due 
to computing limitations). The SNM2 estimates are almost 
median unbiased, but GMM2 shows large downward biases, 
especially when M = 200. A comparison in terms of MAE'S 
also favors SNM2 for both sample sizes and parameter es- 
timates. Last. looking at the quantiles of the t ratios shown 
in the lower panel of Table 11, it appears that the N(O,l)l 
approximation is reasonable for the SNM t ratios but not 
for the GMM t ratios. 
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Table I I .  /"Monte Carlo Simulations for the 
AR(2) Model for Employment 

M = 738 N = 200 

GUM2 SNM2 GUM2 SNM2 

a 1  Median 
% bias 
iqr 
iq80 
I\IIAE 

a 2  Median 
% bias 
iqr 
iq80 
MAE 

Summary of estimates 

Quantiles of the t statistics 

NOTE. crj = 813. Q 2  = 030, 7 = ,777, 0; = ,038, 0: = 01. i .000 rep!icatlons. 96 blas 
gives the percentage median olas for ali estimates: iqr is the 75th-25th nterquartiie range; lq80 1s 
the 90th-10th lnterquantlle range, MAE denotes the median absol~te error The 33th. 25th. 50th. 
75th. and 90th quantlles for the standard normal distrbution are, respect~vely. -1.28. -67,  0, 
37.  and 1.28 

4. CONCLUSIONS 

There has recently been a renewed interest in the finite- 
sample properties o f  GMM estimators in various rime series 
and cross-sectional contexts. Several worlcs have empha- 
sized the role o f  estimated weighting matrices for the prop- 
erties o f  the estimators in small samples, and several alter- 
native methods have been considered (Angrist and Krueger 
1995: Angrist, Hmbens, and Kxueger 1995; Altonji and Se- 
gal 1996; Hansen et al. 1996; Imbens 19971. In contrast, 
in this article we have focused on the role o f  normaliza- 
tion rules for the finite-sample properties o f  GMM estima- 
tors that make use o f  standard two-step u~eighting matrices. 
Our work is motivated by the results o f  Hillier (1990). who 
argued that the alternative normaiization rules adopted by 
LIML and 2SES are at the basis o f  their diflerent sam- 
pling behavior. Hillier showed that symmetrically normal- 
ized 2SLS has similar finite-sample properties to those o f  
LIME. This result is interesting because, unlike LIML, sym- 
metrically normalized 2SLS is a GMM estimator based on 
structural-form moment conditions, and therefore ii can be 
easily extended to distribution-free environments and robust 
statistics. 

In particular, symmetrically normalized 2SLS is well 
suited for application to the nonstandard IV situations that 
arise in linear panel-data models with predetermined vari- 
ables, which are the models o f  interest in this article. These 
models are typically estimated in orthogonal deviations or 
first-diEerences using all the available lags as instruments. 
Usually, there are many instruments available, but they are 
o f  poor quality because they tend to be only weakly cor- 

related with the first-differenced endogenous variables that 
appear in the equation. 

In this article we have presented symmetrically normal- 
ized GMM (SNM) estimators for dynamic panel-data mod- 
els that are asymptoticallj~ equivalent to ordinary optimal 
G M M  estimators. A bar-product o f  the estimation is a test 
statistic o f  overidentifying restrictions, based on a mini- 
mum eigenvalue calculation. W e  have also discussed the 
relation between robust and nonrobust SNM estimators and 
the LHML analogues. In our context, a nonrobust LHML ana- 
logue in orthogonai deviations is algebraically equivalent to 
an ordinary LIML estimator that solves a minimum eigen- 
value problem. The robust LIME analogue, however, is the 
continuously updated GMM estimator proposed by Hansen 
et al. (19961, which no longer involves a simple minimum 
eigenvalue calculation. 

W e  have reported Monte Carlo evidence on the perfor- 
mance o f  nonrobust and robust GMM, SNM, and LIME 
analogue estimates for an AR(1) model with individual 
effects. For this model we have considered two alterna- 
tive sets o f  moment conditions, as discussed by Arellano 
and Bond (1991) and Arellano and Bover (1995). Because 
for these models the IV restrictions can be expressed as 
straightforward structures on tihe data covariance matrix, 
using these representations we have also calculated M D  es- 
timates for comparisons with the bV estimates. Om findings 
suggest that Hillier's basic results may have a wider appli- 
cability. In most cases, the differences in the behavior of  
SNM and LBML were small, and both had a smaller me- 
dian bias and a larger interquartile range than G M M .  The 
differences in dispersion with ordinary GMM were small, 
however, except in the almost unidentified cases. 

Finally. as an empirical illustration, we have reported es- 
timates o f  employment and. wage equations from U.K. and 
Spanish firm panels. The results show that GMM estimates 
from the (smaller) U.R. panel can be very unreliable when 
the degree o f  overidentification is large. The results from 
the (larger) Spanish panel produce a closer agreement be- 
tween ordinary and synunetrically normalized GMM es- 
timates, although there is evidence that there can still be 
serious biases in GMM estimates. Some o f  these results 
are confirmed by simulating data as close as possible to the 
empirical data. Moment-restricted bootstrap confidence in- 
tervals show that asymptotic confidence intervals are often 
overoptimistic: and Sargan tests tend to reject the restric- 
tions implied by the stationarity o f  initial conditions. 
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Table A. 7 .  Descriptive Statistics 

Std. 
Varjable Mean Median deviation Minimum Maximum 

Empioymenr 31 0.4 124.0 702.4 10.0 1 1,004.0 
Real wage 1.86 1.75 .67 .32 6.66 

ing from a CEMFI! Ph.D. scholarslaip and from the Spanrsh 
BGES, Grant P395-0292. 

APPENDIX: DATA DESCRIPTION 

The Spanish dataset is a balanced panel of 738 nlanufac- 
turing companies recorded in the database of the Bank of 
Spain's Central Balance Sheet Office from 1983 1.0 1990. 
This survey coentairrs information on firms' balance sheets 
and other complementary information, including data on 
employment and total wage bill. This survey started in 
9982 with the collec'rion of data f~-o~a? Barge conapanies 
with a tendency i3 subsequent years toward the addition 
of smaller companjes. The database includes both quoted 
and nunquoted firms. The manufacturing firms included in 
this daease: represect more than 40% of the Spanish value 
added in manufacluring In 1985. 

VJe selected firms reporting information during the whole 
period 2 983-1 990 that fulfilled several ccherenc:r condi- 
tions. All cog~panies with negative vallves for nei worth, 
capital stock, accumulated depreciation, ac~ountin~g depre- 
ciation, Babwr costs, employment, sales, or output. or those 
whose book value of capital stock jumped by a factor 
greater than 3 from one year to the next were dropped from 
the sample. Finally. we concentrated on nonenergy manu- 
facturing compz.nies with a pnblic share lower than 50%. 

Errzplopmza~t. Number of employees is disaggregated 
into permanent employees (those with long-term contracts) 
and temporary employees (those with short-term contracts). 
Total employment is calculated as the number cf permanent 
employees. plus the average annual number of temporary 
employees (number of temporary employees during the year 
times the average number of weeks worked by tempora-y 
employees divided by 52). 

Real Wage. The measure of the firm's annual average 
labor costs per employee is computed as the ratio of total 
wages and salaries (in million Spanish pesetas) to total nnurn- 
ber of employees, This measure was deflated using retail 
price indexes for each of the industries of the man~mfactm- 
ing sectos (Source: Spain's T~islitute of National Statistics). 
- 7 -  i a o k  A.1 shows same desciptive statistics for the employ- 
ment and real-wage variables. 
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