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Manuel Arellano

• We discuss various aspects of inference with autoregressive models in the context of
an empirical illustration.

• We consider autoregressive employment and wage equations estimated from the panel
of firms used by Alonso-Borrego and Arellano (1999).

• This is a balanced panel of 738 Spanish manufacturing companies, for which there are
available annual observations for the period 1983-1990.

• We consider various specializations of a bivariate VAR(2) model for the logs of em-
ployment and wages, denoted nit and wit respectively.

• Individual and time effects are included in both equations.
• The form of the model is

nit = δ1t + α1ni(t−1) + α2ni(t−2) + β1wi(t−1) + β2wi(t−2) + η1i + v1it (1)
wit = δ2t + γ1wi(t−1) + γ2wi(t−2) + λ1ni(t−1) + λ2ni(t−2) + η2i + v2it. (2)
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Univariate AR Estimates for Employment

• We begin by obtaining alternative estimates of a univariate AR(1) model for employ-
ment (setting α2 = β1 = β2 = 0).

• Table 6.3 compares OLS estimates in levels, first-differences, and within-groups with
those obtained by GMM using as instruments for the equation in first differences all
lags of employment up to t − 2. The results are broadly consistent with what would
be expected for an AR data generation process with unobserved heterogeneity.

• Taking GMM estimates as a benchmark, OLS in levels is biased upwards, and WG
and OLS in differences are biased downwards, with a much larger bias in the latter.

• The one- and two-step GMM estimates in the 4-th and 5-th columns, respectively, are
based on the sample moments bN(β) = (b03N, ..., b08N)

0, where β is the 7× 1 parameter
vector β = (α,∆δ3, ...,∆δ8)

0 and

btN =
1

738

738X
i=1

µ
1
nt−2i

¶¡
∆nit −∆δt − α∆ni(t−1)

¢
(t = 3, ..., 8). (3)

bN(β) contains 27 orthogonality conditions in total, so that there are 20 overidentifying
restrictions.

• These are tested with the Sargan statistic. There is a contrast between the value of the
one-step Sargan statistic (35.1), which is too high for a chi-square with 20 degrees of
freedom, and the robust two-step statistic which is much smaller (15.5).
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• This should not be taken as evidence against the overidentifying restrictions, but as an
indication of the presence of conditional heteroskedasticity.

• Column 6 in Table 6.3 reports two-step GMM estimates of an AR(2) model. Since one
cross-section is spent in constructing the second lag, the two orthogonality conditions
in b3N are lost, so we are left with 25 moments. There is a second autoregressive
coefficient but ∆δ3 is lost, so the total number of parameters is unchanged.

• Finally, the last column in Table 6.3 presents continuously updated GMM estimates of
the AR(2) model. They use the same moments as GMM2, but the weight matrix is
continuously updated.
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Table 6.3
Univariate AR Estimates for Employment

OLS- OLS- WG GMM1 GMM2 GMM2 C.U.
levels dif. GMM2

ni(t−1) 0.992 0.054 0.69 0.86 0.89 0.75 0.83
(0.001) (0.026) (0.025) (0.07) (0.06) (0.09) (0.09)

ni(t−2) 0.04 0.03
(0.02) (0.02)

Sargan − − − 35.1 15.5 14.4 13.0
(d.f.) (20) (20) (18) (18)
m1 2.3 −0.6 −9.0 −8.0 −7.6 −6.0
m2 2.2 2.3 0.6 0.5 0.5 0.3
N = 738,T = 8,1983− 1990. Heteroskedasticity robust standard errors in
parentheses. Time dummies included in all equations.
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• From the orthogonality conditions above only first-differences of time effects are di-
rectly estimated. The initial time effect can be estimated as

bδ3 = 1

738

738X
i=1

(yi3 − bα1yi2 − bα2yi1) (4)

and, given estimates of their changes, the rest can be estimated recursively from bδt =c∆δt + bδt−1 (t = 4, ..., 8).
• Given the large cross-sectional sample size, the realizations of the time effects in the
data can be accurately estimated, but with only 6 time series observations we do not
have enough information to consider a stochastic model for δt.

• On the other hand, individual effects can be estimated as
bηi = 1

T − 2
TX
s=3

buis (5)

where buis = yis − bδs − bα1yi(s−1) − bα2yi(s−2).
• Here the situation is the reverse. Since the bηi are averages of just T − 2 = 6 obser-
vations, they will typically be very noisy estimates of realizations of the effects for
particular firms.

• However, the variance of ηi can still be consistently estimated for large N .

5



• Optimal estimation of σ2η and the σ2t requires consideration of the data covariance
structure, but noting that the errors in levels uit ≡ ηi+ vit satisfy V ar(uit) = σ2η +σ2t
and Cov(uit, uis) = σ2η, simple consistent estimates can be obtained as:

bσ2η = 2

T (T − 1)
TX
t=2

t−1X
s=1

dCov (buit, buis) (6)

bσ2t = dV ar(buit)− bσ2η. (7)

• For the AR(2) employment equation Alonso-Borrego andArellano reported bσ2η = .038
and T−1

PT
t=1 bσ2t = .01. Thus, variation in firm specific intercepts was approximately

4 times larger than the average random error variance.

• In this example time dummies are important for the model to be accepted by the data.
Without them, GMM2 estimates of the AR(2) employment equation in first differences
yielded a Sargan statistic of 59.0 (d.f.18) without constant, and of 62.7 (d.f.18) with
constant. Thus, implying a sound rejection of the overidentifying restrictions.

• For the firms in our data set, average growth of employment during the 7 year period
1984-90 is 1 percent, but this is the result of almost no growth in the first two years, 1
percent growth in 1986, 2 percent in 1987-89 and zero or negative growth in 1990.

• Given such pattern, it is not surprising that we reject the restrictions imposed by the
cross-sectional orthogonality conditions with a common intercept or a linear trend.
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Bivariate VAR Estimates for Employment and Wages

• For the rest of the tutorial we focus on the bivariate model (1)-(2) since it allows us to
illustrate a richer class of problems.

• Table 6.4 presents OLS in levels and GMM2 in differences for employment (columns
1 and 2), and wages (columns 4 and 5).

• The table also contains GMM estimates that combine levels and differences, but these
will be discussed below in conjunction with testing for mean stationarity.

• In line with the univariate results, the OLS estimates in levels for both equations are
markedly different to GMM2 in differences, and imply a substantially higher degree
of persistence, which is consistent with the presence of heterogeneous intercepts.

• The GMM estimates use as instruments for the equations in first differences all the
available lags of employment and wages up to t−2. With T = 8, a second-order VAR
and time dummies, there are 36 overidentifying restrictions for each equation. Neither
of the Sargan test statistics provide evidence against these restrictions.

• It may be possible to improve the efficiency by jointly estimating the two equations.
Optimal joint GMM estimates would use a weight matrix that takes into account the
correlation between the moment conditions of the employment and wage equations.
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Table 6.4
VAR Estimates

Employment Wages
OLS- GMM2 GMM2 OLS- GMM2 GMM2
levels dif. lev.&dif. levels dif. lev.&dif.

ni(t−1) 1.11 0.84 1.17 0.08 −0.04 0.08
(0.03) (0.09) (0.03) (0.03) (0.10) (0.03)

ni(t−2) −0.12 −0.003 −0.13 −0.07 0.05 −0.06
(0.03) (0.03) (0.02) (0.03) (0.03) (0.02)

wi(t−1) 0.14 0.08 0.13 0.78 0.26 0.78
(0.03) (0.08) (0.02) (0.03) (0.11) (0.02)

wi(t−2) −0.11 −0.05 −0.11 0.18 0.02 0.08
(0.03) (0.02) (0.02) (0.03) (0.02) (0.02)

χ2ce(2) 41.7 7.2 43.7 26.1 3.3 10.4
p-value 0.00 0.03 0.00 0.00 0.19 0.006

Sargan − 36.9 61.2 − 21.4 64.2
(d.f.) (36) (48) (36) (48)
p-value 0.43 0.096 0.97 0.06

m1 −0.6 −6.8 −8.0 0.05 −5.7 −9.5
m2 1.6 0.2 1.3 −2.7 0.5 −0.6

N = 738,T = 8,1983− 1990. Heteroskedasticity robust standard errors
in parentheses. Time dummies included in all equations.

χ2ce(2) is a Wald test statistic of the joint significance of cross effects.



Testing for Residual Serial Correlation

• If the errors in levels are serially independent, those in first differences will exhibit
first- but not second-order serial correlation.

• Moreover, the first-order serial correlation coefficient should be equal to −0.5.
• In this regard, an informal but often useful diagnostic is provided by the inspection of
the autocorrelation matrix for the errors in first differences.

• Serial correlation matrices for employment and wages based on GMM residuals in
first-differences are shown in Table 6.5, broadly conforming to the expected pattern.
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Table 6.5
(a) GMM1 (dif.) Residual Serial Correlation Matrix for Employment⎛⎜⎜⎜⎜⎝

1.
−.53 1.
.10 −.49 1.
−.04 −.015 −.46 1.
−.015 .04 −.08 −.44 1.

⎞⎟⎟⎟⎟⎠
(b) GMM1 (dif.) Residual Serial Correlation Matrix for Wages⎛⎜⎜⎜⎜⎝

1.
−.51 1.
.03 −.33 1.
.004 −.035 −.42 1.
.009 .00 −.03 −.39 1.

⎞⎟⎟⎟⎟⎠
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• Formal tests of serial correlation are provided by them1 andm2 statistics reported in
Table 6.4 for the VAR model (and also in Table 6.3 for the univariate results).

• They are asymptotically distributed as N (0, 1) under the null of no autocorrelation,
and have been calculated from residuals in first differences (except for OLS in levels).

• So if the errors in levels were uncorrelated, we would expectm1 to be significant, but
notm2, as is the case for the GMM2-dif estimates for employment and wages.

• The mj statistics (Arellano and Bond, 1991) are moment tests of significance of the
average j-th order autocovariance rj:

rj =
1

T − 3− j
TX

t=4+j

rtj (8)

where rtj = E
¡
∆vit∆vi(t−j)

¢
. Their null is H0 : rj = 0 and they are given by

mj =
brj

SE(brj) (9)

where brj is the sample counterpart of rj based on first-difference residuals c∆vit andbrtj = N−1PN
i=1
c∆vitc∆vi(t−j).

• The estimates in Table 6.4 are based on the assumption that given individual and time
effects nit andwit only depend on the past two observations. Provided T is sufficiently
large, themj statistics can be used to test assumptions on lag length.
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Testing for Stationarity in Mean of Initial Observations

• We turn to consider GMM estimates that combine levels and differences, as shown in
columns 3 (employment) and 6 (wages) of Table 6.4.

• For the employment equation, estimates are based on the following 40 moments for
errors in differences:

bdtN =
738X
i=1

µ
nt−2i

wt−2i

¶¡
∆nit −∆δ1t − α1∆ni(t−1) − α2∆ni(t−2) − β1∆wi(t−1) − β2∆wi(t−2)

¢
(10)

(t = 4, ..., 8),
together with 6 moments for the period-specific constants:

bctN =
738X
i=1

¡
nit − δ1t − α1ni(t−1) − α2ni(t−2) − β1wi(t−1) − β2wi(t−2)

¢
(t = 3, ..., 8),

(11)
and 12 additional moments for errors in levels:

b`tN =
738X
i=1

µ
∆ni(t−1)
∆wi(t−1)

¶¡
nit − δ1t − α1ni(t−1) − α2ni(t−2) − β1wi(t−1) − β2wi(t−2)

¢
(12)

(t = 3, ..., 8).
Themoments are functions of the 10×1 parameter vectorβ = ( δ3, ..., δ8,α1,α2,β1,β2),
so that there are 48 overidentifying restrictions.
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• The estimates for the wage equation were obtained in exactly the same manner.
• Employment andwage changes lagged two periods or more are not used as instruments
for the equations in levels because they are redundant given those already included.

• We report two-step robust estimates whose weight matrix is based on the kind of one-
step residuals described above.

• Note that, contrary to what we would expect under mean stationarity, the combined
levels & differences GMM estimates in both equations are closer to the OLS-levels
estimates than to GMM in differences.

• A test of the moment restrictions (12) is a test of whether, given an aggregate time
effect, the mean of the distribution of initial observations and the mean of the steady
state distribution coincide.

• This can be done by computing incremental Sargan test statistics. Specifically, under
the null of mean stationarity, the difference between the lev.&dif. and the dif. Sargan
statistics would be asymptotically distributed as a χ2 with 12 degrees of freedom.

• Since we obtain∆Sn = 24.3 (p-val. 0.0185) for employment, and∆Sw = 42.8 (p-val.
0.00) for wages, the null is rejected for the two equations, although somewhat more
marginally so in the case of employment.
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Testing for the Presence of Unobserved Heterogeneity

• In the absence of unobserved heterogeneity OLS in levels are consistent estimates, but
more generally estimation (eg. of the employment equation) could be based on the
following 60 sample moments

b∗tN =
738X
i=1

⎛⎝ 1
nt−1i

wt−1i

⎞⎠ ¡nit − δ1t − α1ni(t−1) − α2ni(t−2) − β1wi(t−1) − β2wi(t−2)
¢
(13)

(t = 3, ..., 8).

• Given the 46 moments in (10) and (11), (13) adds the following 14 moments:

bh3N =
738X
i=1

⎛⎜⎜⎝
ni1
ni2
wi1
wi2

⎞⎟⎟⎠ (ni3 − δ13 − α1n2 − α2ni1 − β1wi2 − β2wi1) (14)

bhtN =
738X
i=1

µ
ni(t−1)
wi(t−1)

¶¡
nit − δ1t − α1ni(t−1) − α2ni(t−2) − β1wi(t−1) − β2wi(t−2)

¢
(15)

(t = 4, ..., 8).

• Thus a test for the validity of the moments (14) and (15) can be regarded as testing for
the presence of unobserved heterogeneity.
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• This can be done by calculating combined GMM estimates based on (10), (11), (14)
and (15) -or equivalently levels-GMM estimates based on (13)- and obtaining the cor-
responding incremental Sargan tests relative to GMM in differences.

• The resulting estimates for employment and wages are very close to OLS, and both
incremental tests reject the absence of unobserved heterogeneity. The incremental Sar-
gan statistics (d.f. = 14) take the values ∆Shn = 36.0 (p-val. 0.001) for employment,
and ∆Shw = 47.2 (p-val. 0.00) for wages.
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Testing for Granger Non-Causality with and without Heterogeneity

• The hypothesis that employment does not Granger-cause wages conditional on indi-
vidual and time effects imposes the restrictions λ1 = λ2 = 0. Conversely, to test
whether wages Granger-cause employment we examine the validity of β1 = β2 = 0.

• The testing of these restrictions is of some interest in our example because a version of
model (1)-(2) in which the wage equation only includes its own lags can be regarded as
the reduced form of an intertemporal labour demandmodel under rational expectations
(as in Sargent, 1978).

• Wald test statistics of the joint significance of cross-effects are reported in Table 6.4
for the two equations. For the GMM2 estimates in first-differences we find that wages
Granger-cause employment, but employment does not Granger-cause wages.

• An interesting point is that conditioning on individual effects is crucial for this result.
As shown in Table 6.4, if the tests were based upon the OLS estimates in levels, the
hypothesis that employment does not Granger-cause wages would be clearly rejected.
This illustrates how lack of control of individual heterogeneity could result in a spuri-
ous rejection of non causality.

• Moreover, Granger non-causality would also be rejected using the estimates that im-
pose mean stationarity of the initial observations. Thus, in short panels assumptions
about initial conditions also matter for the assessment of non causality.
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