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Abstract

We develop a new quantile-based panel data framework to study the nature of income
persistence and the transmission of income shocks to consumption. Log-earnings are
the sum of a general Markovian persistent component and a transitory innovation.
The persistence of past shocks to earnings is allowed to vary according to the size and
sign of the current shock. Consumption is modeled as an age-dependent nonlinear
function of assets, unobservable tastes and the two earnings components. We establish
the nonparametric identification of the nonlinear earnings process and of the consump-
tion policy rule. Exploiting the enhanced consumption and asset data in recent waves
of the Panel Study of Income Dynamics, we find that the earnings process features
nonlinear persistence and conditional skewness. We confirm these results using pop-
ulation register data from Norway. We then show that the impact of earnings shocks
varies substantially across earnings histories, and that this nonlinearity drives hetero-
geneous consumption responses. The framework provides new empirical measures of
partial insurance in which the transmission of income shocks to consumption varies
systematically with assets, the level of the shock and the history of past shocks.
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1 Introduction

Consumption decisions and earnings dynamics are intricately linked. Together with the net

value of assets, the size and durability of any income shock dictates how much consumption

will need to adjust to ensure a reasonable standard of living in future periods of the life-

cycle.1 Understanding the persistence of earnings is therefore of key interest not only because

it affects the permanent or transitory nature of inequality, but also because it drives much

of the variation in consumption.2 The precise nature of labor income dynamics and the

distribution of idiosyncratic shocks also plays a central role in the design of optimal social

insurance and taxation.3 This paper proposes a new nonlinear framework to study the

persistence of earnings and the impact of earnings shocks on consumption.

With some notable exceptions (see the discussion and references in Meghir and Pistaferri,

2011), the literature on earnings dynamics has focused on linear models. The random walk

permanent/transitory model is a popular example (Abowd and Card, 1989). Linear models

have the property that all shocks are associated with the same persistence, irrespective of

the household’s earnings history. Linearity is a convenient assumption, as it allows one

to study identification and estimation using standard covariance techniques. However, by

definition linear models rule out nonlinear transmission of shocks, while nonlinearities in

income dynamics are likely to have a first-order impact on consumption and saving choices.

The existing literature on earnings shocks and consumption follows two main approaches.

One approach is to take a stand on the precise mechanisms that households use to smooth

consumption, for example saving and borrowing or labor supply, and to take a fully-specified

life-cycle model to the data, see Gourinchas and Parker (2002), Guvenen and Smith (2014),

or Kaplan and Violante (2014), for example. Except in very special cases (as in Hall and

Mishkin, 1982) the consumption function is generally a complex nonlinear function of earn-

ings components.4 Another approach is to estimate the degree of “partial insurance” from

the data without precisely specifying the insurance mechanisms, see Blundell, Pistaferri and

1See, for example, Jappelli and Pistaferri (2010) and references therein.
2See Deaton and Paxson (1994) for key initial insights on consumption inequality, and the subsequent

literature reviewed in Blundell (2014).
3Golosov and Tsyvinski (2016) provide a recent review. In a dynamic Mirrlees tax design setting, optimal

labor distortions for unexpectedly high shocks are determined mainly by the need to provide intertemporal
insurance. Golosov et al. (2014) show that deviations from log normality can have serious repercussions for
optimal capital and labor taxation.

4Interesting recent exceptions are Heathcote, Storesletten and Violante (2014) and the semi-structural
approach in Alan, Browning and Ejrnaes (2014).
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Preston (2008) for example. Linear approximations to optimality conditions from the op-

timization problem deliver tractable estimating equations. However, linear approximations

may not always be accurate (Kaplan and Violante, 2010). Moreover, some aspects of con-

sumption smoothing such as precautionary savings or asset accumulation in the presence

of borrowing constraints and nonlinear persistence are complex in nature, making a linear

framework less attractive. In this paper we develop a comprehensive new approach to study

the nonlinear relationship between shocks to household earnings and consumption over the

life cycle.

Our first contribution is to specify and estimate a nonlinear earnings process. In this

framework, log-earnings are the sum of a general Markovian persistent component and a

transitory innovation. Our interest mainly centers on the conditional distribution of the

persistent component given its past. This is a comprehensive measure of the earnings risk

faced by households. Conditional (or predictive) earnings distributions are a main feature

of many models of consumption responses to income shocks, as in Kaplan and Violante

(2014) for example, and also play a central role in the optimal design of social insurance,

as in Golosov, Troshkin, and Tsyvinski (2014). Using quantile methods on both US and

Norwegian data, we show that the conditional distribution of the persistent component of

earnings exhibits important asymmetries. Our setup provides a tractable framework for

incorporating such properties into structural decision models.

Our modeling approach to earnings dynamics captures the intuition that, unlike in linear

models, different shocks may be associated with different persistence. The notion of persis-

tence we propose is one of persistence of histories. In a Markovian setup, this is conveniently

summarized using a derivative effect which measures by how much earnings at period t vary

with the earnings component at t − 1, when hit by a particular shock at time t. This ap-

proach provides a new dimension of persistence where the impact of past shocks on current

earnings may be altered by the size and sign of new shocks. For example, our framework

allows for “unusual” shocks to wipe out the memory of past shocks.

Allowing for nonlinear persistence, and more generally for flexible models of conditional

earnings distributions given past earnings, has both theoretical and empirical appeal. The

main features of our nonlinear framework for earnings dynamics relate directly to existing

structural labor market models. Consider a worker that accumulates occupational or indus-

try specific skills, and these skills are permanently learned, perhaps with a small decay rate,
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if used in the same occupation. A change of occupation or industry where such skills are

unused makes them less valuable and, possibly, makes them depreciate much faster. In job

ladder models earnings risk is asymmetric, job-loss risk affecting workers at the top of the

ladder while workers at the bottom face opportunities to move up (Lise, 2013). In a recent

model of earnings losses upon displacement, Huckfeldt (2016) includes an unskilled sector

that tends to absorb laid-off workers. With low probability, workers have the opportunity to

escape this sector and move to the skilled sector that features a job ladder. The escape from

the unskilled sector is the event that wipes out the memory of the past bad shocks. From

an empirical perspective, “unusual” shocks could correspond to job losses, changes of career,

or health shocks. If such life-changing events are occasionally experienced by households,

one would expect their predictive probability distributions over future income to feature

nonlinear dynamic asymmetries.

Consider large, negative “unusual” income shocks, which not only have a direct effect

but also cancel out the persistence of a good income history. For example, a worker hit

by an adverse occupation-specific shock might find her skills less valuable. In that case

her previous earnings history may matter much less after the shock. Using a parallel with

the macroeconomic literature on disaster risk, these shocks could be called “microeconomic

disasters”. While macroeconomic disasters could have potentially large effects on saving

behavior (Rietz, 1988, Barro, 2006), they are so unlikely that they are statistically elusive

events. In contrast, disasters at the micro level happen all the time to some individuals and

therefore their dynamic consequences may have clear-cut empirical content.5

Such features are prominent in the empirical results that we report in this paper, and

they are all at odds with linear models commonly used in the earnings dynamics literature.

Moreover, despite recent advances on models of distributional earnings dynamics (for exam-

ple Meghir and Pistaferri, 2004, or Botosaru and Sasaki, 2015), existing models do not seem

well-suited to capture the nonlinear transmission of income shocks that we uncover.

Our second contribution is to develop an estimation framework to assess how consumption

responds to earnings shocks in the data. In the baseline analysis we model the consump-

tion policy rule as an age-dependent nonlinear function of assets, unobserved tastes and the

5The notion of “micro disasters” is also related to Castañeda, Dı́az-Giménez and Ŕıos-Rull (2003), who
argue that allowing for a substantial probability of downward risk for high-income households may help
explain wealth inequality. See also Constandinides and Gosh (2016) and Schmidt (2015), who emphasize the
asset pricing implications of income risk asymmetries.
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persistent and transitory earnings components. We motivate our specification using a stan-

dard life-cycle model of consumption and saving with incomplete markets (as in Huggett,

1993, for example). In this model, as we illustrate through a small simulation exercise, a

nonlinear earnings process with dynamic skewness of the type we uncover in our conditional

quantile analysis will have qualitatively different implications for the level and distribution

of consumption and assets over the life cycle in comparison to a linear earnings model.

The empirical consumption rule we develop is nonlinear, thus allowing for age-specific

interactions between asset holdings and the earnings components. However, unlike fully

specified structural approaches we model the consumption rule nonparametrically, leaving

functional forms unrestricted. This modeling approach allows capturing an array of response

coefficients that provides a rich picture of the extent of consumption insurance in the data.

Moreover, there is no need for approximation arguments as we directly estimate the nonlinear

consumption rule. Our consumption rule allows for unobserved household heterogeneity. We

also show how to extend the framework to allow for advance information on earnings shocks

and habits in consumption.

A virtue of our consumption framework is its ability to produce new empirical quanti-

ties, such as nonparametric marginal propensities to consume, that narrow the gap between

policy-relevant evidence and structural modeling. At the same time, in the absence of further

assumptions the model can be thought of as semi-structural and cannot generally be used

to perform policy counterfactuals. As an example, in order to assess the impact of a change

in the earnings process on consumption dynamics, one would need to take a precise stand

on preferences and expectations, among other factors. Although given our goal to document

nonlinear effects we do not impose such assumptions in this paper, economic structure could

be added to our framework in order to conduct policy evaluation exercises.

Beyond the traditional covariance methods that have dominated the literature, new

econometric techniques are needed to study our nonlinear model of earnings and consump-

tion. Nonparametric identification can be established in our setup by building on a recent

literature on nonlinear models with latent variables. Identification of the earnings process

follows Hu and Schennach (2008) and Wilhelm (2015).6 Identification of the consumption

rule relies on novel arguments, which extend standard instrumental-variables methods (as in

Blundell et al., 2008, for example) to our nonparametric setup.

6Lochner and Shin (2014) rely on related techniques to establish identification of a different nonlinear
model of earnings.
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To devise a tractable estimation strategy, we rely on the approach introduced by Arellano

and Bonhomme (2016), adapted to a setup with time-varying latent variables. Wei and

Carroll (2009) introduced a related estimation strategy in a cross-sectional context. The

approach combines quantile regression methods, which are well-suited to capture nonlinear

effects of earnings shocks, with regression methods on bases of functions, which are well-

suited to flexibly model conditional distributions.7 To deal with the presence of the latent

earnings components, we use a sequential estimation algorithm that consists in iterating

between quantile regression estimation, and draws from the posterior distribution of the

latent persistent components of earnings.

We take the earnings and consumption model to data from the Panel Study of Income

Dynamics (PSID) for 1999-2009 and focus on working age families. Unlike earlier waves of

the PSID, these data contain enhanced information on asset holdings and consumption ex-

penditures in addition to labor earnings, see Blundell, Pistaferri and Saporta-Eksten (2016),

for example. This is the first household panel to include detailed information on consump-

tion and assets across the life-cycle for a representative sample of households. Although

we abstract from labor supply, our modeling and estimation approach makes full use of the

availability of panel information on earnings, consumption and assets. In addition, the quan-

tile regression specifications that we use allow us to obtain rather precise estimates, despite

the flexibility of the model and the moderate sample size.

Our empirical results show that the impact of earnings shocks varies substantially across

households’ earnings histories, and that this nonlinearity is a driver of heterogeneous con-

sumption responses. Earnings data show the presence of nonlinear persistence, where “un-

usual” positive shocks for low earnings households, and negative shocks for high earnings

households, are associated with lower persistence than other shocks. That is, such shocks

have a higher propensity to wipe out the impact of the previous earnings history. Related to

this, we find that conditional log-earnings distributions are asymmetric, skewed to the right

(respectively, left) for households at the bottom (resp., top) of the income distribution. Al-

though most of our results are based on PSID data, we show that similar empirical patterns

hold in Norwegian administrative earnings data.

Regarding consumption, we find a significant degree of insurability of shocks to the

persistent earnings components. We also uncover asymmetries in consumption responses to

7Misra and Surico (2014) use quantile methods to document the consumption responses associated with
tax rebates.
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earnings shocks that hit households at different points of the income distribution. Lastly,

we find that assets play a role in the insurability of earnings shocks.

The literature on earnings dynamics is vast. Recent work has focused on non-Gaussianity

(Geweke and Keane, 2000, Bonhomme and Robin, 2010) and heterogeneity (Alvarez, Brown-

ing and Ejrnaes, 2010). The nonlinear earnings persistence that we uncover is consistent with

findings on US administrative tax records, such as Guvenen, Ozcan and Song (2014) and

especially recent independent work by Guvenen et al. (2015). Relative to this growing body

of research, the fact that our quantile-based methods are able to uncover previously unknown

results in PSID survey data, and that these results also hold in administrative “big data”

sets, is important because PSID uniquely provides joint longitudinal data on wealth, income

and expenditures at household level. This allows us to conduct a joint empirical analysis of

earnings and consumption patterns.8

The outline of the paper is as follows: In the next section we describe the earnings process

and develop our measure of nonlinear persistence. Section 3 lays out the consumption model

and defines a general representation of partial insurance to earnings shocks. In Section 4

we establish identification of the model. Section 5 describes our estimation strategy and the

panel dataset. In Section 6 we present our empirical results. Section 7 concludes with a

summary and some directions for future research. The Supplementary Appendix contains

additional results.

2 Model (I): Earnings process

We start by describing our nonlinear model of earnings dynamics. In the next section we

will present the consumption model.

2.1 The model

We consider a cohort of households, i = 1, ..., N , and denote as t the age of the household

head (relative to t = 1). Let Yit be the pre-tax labor earnings of household i at age t, and

8Our nonlinear earnings model featuring asymmetric persistence is also related to time-series regime-
switching models that are popular to analyze business cycle dynamics, see for example Evans and Watchel
(1993)’s model of inflation uncertainty and Teräsvirta (1994) on smooth transition autoregressive models.
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let yit denote log-Yit, net of a full set of age dummies. We decompose yit as follows:9

yit = ηit + εit, i = 1, ..., N, t = 1, ..., T, (1)

where the probability distributions of η’s and ε’s are absolutely continuous.

The first, persistent component ηit is assumed to follow a general first-order Markov

process. We denote the τth conditional quantile of ηit given ηi,t−1 as Qt(ηi,t−1, τ), for each

τ ∈ (0, 1). The following representation is then without loss of generality:

ηit = Qt(ηi,t−1, uit), (uit|ηi,t−1, ηi,t−2, ...) ∼ Uniform (0, 1), t = 2, ..., T. (2)

The dependence structure of the η process is not restricted beyond the first-order Markov

assumption. The identification assumptions will only require η’s to be dependent over time,

without specifying a particular (parametric) form of dependence.

The second, transitory component εit is assumed to have zero mean, to be independent

over time and independent of ηis for all s. Even though more general moving average

representations are commonly used in the literature, the biennial nature of the PSID data

makes this assumption more plausible. Model (1)-(2) is intended as a representation of the

uncertainty about persistent and transitory labor income in future periods that households

face when deciding how much to spend and save. Our approach can be extended to allow for

a moving average ε component, provided additional time periods are available, and for an

unobserved time-invariant household-specific effect in addition to the two latent time-varying

components η and ε (as done in the Supplementary Appendix).

Survey data like the PSID are often contaminated with errors (Bound et al., 2001). In the

absence of additional information, it is not possible to disentangle the transitory innovation

from classical measurement error. Thus, an interpretation of our estimated distribution of

εit is that it represents a mixture of transitory shocks and measurement error.10

Both earnings components are assumed mean independent of age t. However, the condi-

tional quantile functions Qt, and the marginal distributions of εit, may all depend on t. For a

given cohort of households, age and calendar time are perfectly collinear, so this dependence

9Model (1) is additive in η and ε. Given our nonlinear approach, it is in principle possible to allow for
interactions between the two earnings components, for example in yit = Ht(ηit, εit), where identification
could be established along the lines of Hu and Shum (2012).

10If additional information were available and the marginal distribution of a classical measurement error
were known, one could recover the distribution of εit using a deconvolution argument. The estimation
algorithm can be modified to deal with this case.
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may capture age effects as well as aggregate shocks. The distribution of the initial condition

ηi1 is left unrestricted.

An important special case of model (1)-(2) is obtained when

yit = ηit + εit, ηit = ηi,t−1 + vit, (3)

that is, when ηit follows a random walk. When vit is independent of ηi,t−1 and has cumulative

distribution function Ft, (2) becomes: ηit = ηi,t−1 + F−1t (uit). We will refer to the random

walk plus independent shock as the canonical model of earnings dynamics.

2.2 Nonlinear dynamics

Model (1)-(2) allows for nonlinear dynamics of earnings. Here we focus on the ability of this

specification to capture nonlinear persistence, and general forms of conditional heteroskedas-

ticity.

Nonlinear persistence. We introduce the following quantities

ρt(ηi,t−1, τ) =
∂Qt(ηi,t−1, τ)

∂η
, ρt(τ) = E

[
∂Qt(ηi,t−1, τ)

∂η

]
, (4)

where ∂Qt/∂η denotes the partial derivative of Qt with respect to its first component and

the expectation is taken with respect to the distribution of ηi,t−1.

The ρ’s in (4) are measures of nonlinear persistence of the η component.11 ρt(ηi,t−1, τ)

measures the persistence of ηi,t−1 when it is hit by a current shock uit that has rank τ .

This quantity depends on the lagged component ηi,t−1, and on the percentile of the shock

τ . Average persistence across η values is ρt(τ). Note that, while the shocks uit are i.i.d. by

construction, they may greatly differ in the earnings persistence associated with them. The

ρ’s are thus measures of persistence of earnings histories.

In the canonical model of earnings dynamics (3) where ηit is a random walk, ρt(ηi,t−1, τ) =

1 irrespective of ηi,t−1 and τ . In contrast, in model (2) the persistence of ηi,t−1 may depend

on the magnitude and direction of the shock uit. As a result, the persistence of a shock to

ηi,t−1 depends on the size and sign of current and future shocks uit, ui,t+1... In particular, our

11Note that ρt(ηi,t−1, τ) may be positive or negative, and may exceed 1 in absolute value. As a simple
illustration, if ln(ηit) is a random walk with standard Gaussian innovations, ηit itself is a multiplicative
random walk, for which derivative measures of persistence in (4) do not vary with lagged η but vary with
the value of the shock. For example, at the median shock the derivative is 1, but at the bottom quartile
shock the derivative is around 0.5, and at the top quartile it is around 2.
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model allows particular shocks to wipe out the memory of past shocks. As reviewed in the

introduction, labor market models of the job ladder and occupational mobility can involve

workers facing an increasing risk of a large fall in earnings, while those recently laid-off have

a small probability of a positive shock that takes them into a skilled job where they can

advance along the ladder. The interaction between the shock uit and the lagged persistent

component ηi,t−1 is a central feature of our nonlinear approach and, as we show below, it

has substantive implications for consumption decisions.

It is useful to consider the following specification of the quantile function

Qt(ηi,t−1, τ) = αt(τ) + βt(τ)′h(ηi,t−1), (5)

where h is a multi-valued function. Our empirical specification will be based on (5), taking

the components of h in a polynomial basis of functions. Persistence and average persistence

in (5) are, respectively,

ρt(ηi,t−1, τ) = βt(τ)′
∂h(ηi,t−1)

∂η
, ρt(τ) = βt(τ)′E

[
∂h(ηi,t−1)

∂η

]
,

thus allowing shocks to affect the persistence of ηi,t−1 in a flexible way. This measure is

related to quantile autoregression parameters, as in Koenker and Xiao (2006).

Conditional heteroskedasticity. As model (2) does not restrict the form of the con-

ditional distribution of ηit given ηi,t−1, it allows for general forms of heteroskedasticity.

In particular, a measure of period-t uncertainty generated by the presence of shocks to

the persistent earnings component is, for some τ ∈ (1/2, 1), σt(ηi,t−1, τ) = Qt(ηi,t−1, τ) −

Qt(ηi,t−1, 1 − τ). For example, in the canonical model (3) with vit ∼ N (0, σ2
vt), we have

σt(ηi,t−1, τ) = 2σvtΦ
−1(τ).12

In addition, the model allows for conditional skewness and kurtosis in ηit. Along the

lines of the skewness measure proposed by Kim and White (2004), one can consider, for

some τ ∈ (1/2, 1),13

skt(ηi,t−1, τ) =
Qt(ηi,t−1, τ) +Qt(ηi,t−1, 1− τ)− 2Qt(ηi,t−1,

1
2
)

Qt(ηi,t−1, τ)−Qt(ηi,t−1, 1− τ)
. (6)

12The shock uit is a rank. A persistent shock of a magnitude comparable to ηit can be constructed, among
other ways, as ζit = Qt(mt, uit) where mt is the median of ηit.

13Similarly, a measure of conditional kurtosis is, for some α < 1− τ ,

kurt(ηi,t−1, τ , α) =
Qt(ηi,t−1, 1− α)−Qt(ηi,t−1, α)

Qt(ηi,t−1, τ)−Qt(ηi,t−1, 1− τ)
.
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Figure 1: Quantile autoregressions of log-earnings

(a) PSID data (b) Norwegian administrative data
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Note: Residuals yit of log pre-tax household labor earnings, Age 25-60 1999-2009 (US), Age 25-

60 2005-2006 (Norway). See Section 6 and Appendix C for the list of controls. Estimates of

the average derivative of the conditional quantile function of yit given yi,t−1 with respect to yi,t−1.

Quantile functions are specified as third-order Hermite polynomials.

Source: The Norwegian results are part of the project on ‘Labour Income Dynamics and the Insur-

ance from Taxes, Transfers and the Family’. See Appendix C.

The empirical estimates below suggest that conditional skewness is a feature of the earnings

process.

Preliminary evidence on nonlinear persistence. Suggestive evidence of nonlinearity

in the persistence of earnings can be seen from Figure 1. This figure plots estimates of

the average derivative, with respect to last period income yi,t−1, of the conditional quantile

function of current income yit given yi,t−1. This average derivative effect is a measure of per-

sistence analogous to ρt in (4), except that here we use residuals yit of log pre-tax household

labor earnings on a set of demographics (including education and a polynomial in the age of

the household head) as outcome variables. Given the nature of the PSID sample, panel (a)

features biennial persistence estimates. On the two horizontal axes we report the percentile

of yi,t−1 (“τ init”), and the percentile of the innovation of the quantile process (“τ shock”). For

estimation we use a series quantile specification, as in (5), based on a third-order Hermite

polynomial.

This simple descriptive analysis not only shows the similarity in the patterns of the
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nonlinearity of household earnings in both the PSID household panel survey data and in the

annual population register data from Norway. It also suggests differences in the impact of

an innovation to the quantile process (τ shock) according to both the direction and magnitude

of τ shock and the percentile of the past level of income τ init. Persistence of earnings history

is highest when high earnings households (that is, high τ init) are hit by a good shock (high

τ shock), and when low earnings households (that is, low τ init) are hit by a bad shock (low

τ shock). In both cases, estimated persistence is close to .9 – 1. In contrast, bad shocks

hitting high-earnings households, and good shocks hitting low-earnings ones, are associated

with much lower persistence of earnings history, as low as .3 – .4. In Section 6 we will see

that our nonlinear model that separates transitory shocks from the persistent component,

reproduces the nonlinear persistence patterns of Figure 1 for the PSID panel survey data

and the Norwegian population register data.

3 Model (II): Consumption rule

In order to motivate our empirical specification of the consumption function, we start by

describing a standard stochastic life-cycle consumption model. We then use this setup to

derive the form of the policy rule for household consumption, and describe the empirical

consumption model that we will take to the data.

3.1 The consumption rule in a simple life-cycle model

We consider a theoretical framework where households act as single agents. Throughout

their lifetime households have access to a single risk-free, one-period bond whose constant

return is 1 + r, and, at age t, face a period-to-period budget constraint

Ait = (1 + r)Ai,t−1 + Yi,t−1 − Ci,t−1, (7)

where Ait, Yit and Cit denote assets, income and consumption, respectively. Family log-

earnings are given by lnYit = κt+ηit+εit, where κt is a deterministic age profile, and ηit and

εit are persistent and transitory earnings components, respectively. At age t agents know

ηit, εit and their past values, but not ηi,t+1 or εi,t+1, so there is no advance information. All

distributions are known to households, and there is no aggregate uncertainty. In each period

t in the life-cycle, the optimization problem is represented by the Bellman equation

Vt(Ait, ηit, εit) = max
Cit

u(Cit) + β Et
[
Vt+1

(
Ai,t+1, ηi,t+1, εi,t+1

)]
, (8)
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where u(·) is agents’ utility, and β is the discount factor. An important element in (8)

is the conditional distribution of the Markov component ηi,t+1 given ηit, which enters the

expectation.

In a nonlinear earnings model such as (1)-(2), the presence of “unusual” shocks to earnings

may lead to precautionary motives that induce high-income households to save more than

they would do under a linear earnings model. Even with certainty equivalent preferences,

under model (1)-(2) the discounting applied to persistent shocks will be state-dependent.

In Section S1 of the Supplementary Appendix we illustrate these theoretical mechanisms

in a two-period version of the model. In Section S2 we report the results of a simulation

exercise based on the life-cycle model. We compare the canonical linear earnings model with

an earnings model that features the presence of positive and negative “unusual” shocks. In

the simulated economy, we find that an implication of the nonlinear earnings process is to

reduce consumption among households on higher incomes. In particular, a negative shock

for those on higher incomes reduces the persistence of the past and consequently is more

damaging in terms of expected future incomes, thus inducing higher saving, higher wealth

accumulation and lower consumption.14

In such a life-cycle model with uncertainty, the consumption rule will have the form

Cit = Gt (Ait, ηit, εit) , (9)

for some age-dependent function Gt. We will base our empirical specification on (9). The

consumption rule at age t will be of this nonparametric form provided the state variables at

t are period-t assets and the latent earnings components.15

In documenting dynamic patterns of consumption and earnings, one strategy is to take

a stand on the functional form of the utility function and the distributions of the shocks,

and to calibrate or estimate the model’s parameters by comparing the model’s predictions

with the data. Another strategy is to linearize the Euler equation, with the help of the

budget constraint; with a linear approximated problem at hand, standard covariance-based

methods may be used for estimation. Our approach differs from those strategies as we

14In addition, in Section S2 of the Supplementary Appendix we report simulation results based on the
same life-cycle model, using as input the earnings process we estimate on the PSID.

15Our approach may be extended to allow for habits or advance information, through simple modifications
of the vector of state variables. There could also be additional borrowing constraints in each period. In that
case, the nonparametric consumption rule in (9) would no longer be differentiable. The derivative effects
defined below require differentiability of gt.
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directly estimate the nonlinear consumption rule (9). Doing so, we avoid linearized first-

order conditions, and we estimate a flexible rule that is consistent with the above life-cycle

consumption model. This approach allows documenting a rich set of derivative effects, thus

shedding light on the patterns of consumption responses in the data.

3.2 Empirical consumption rule

Consider a cohort of households. Let cit denote log-consumption net of age dummies. Sim-

ilarly, let ait denote log-assets net of age dummies. Our empirical specifications are based

on

cit = gt (ait, ηit, εit, νit) , t = 1, ..., T. (10)

The νit are unobserved arguments of the consumption function, in addition to assets and the

latent earnings components. In the specification without unobserved individual heterogene-

ity, νit are independent across periods and independent of (ait, ηit, εit), and gt is monotone

in ν. An economic interpretation for ν is as a taste shifter that increases marginal utility.

In the single-asset life-cycle model of Subsection 3.1 monotonicity is implied by the Bellman

equation, provided ∂u(C,ν′)
∂C

> ∂u(C,ν)
∂C

for all C if ν ′ > ν, where the household’s utility function

is u(C, ν). Without loss of generality we normalize the marginal distribution of νit to be

standard uniform in each period. From an empirical perspective the presence of the taste

shifters νit in the consumption rule (10) may also partly capture measurement error in con-

sumption expenditures. In the specification with unobserved individual heterogeneity, νit

comprises two components: a time-invariant latent household factor, and an i.i.d. uniform

component independent of the latter. Consumption is monotone in the second component,

while being fully nonlinear in the first.

Clearly, the net assets variable ait is not exogenous. In order to ensure identification, it

suffices to specify ait as sequentially exogenous (or “predetermined”). We will specify assets

as a function of lagged assets, consumption, earnings, the persistent earnings component η,

and age, as follows:

ait = ht(ai,t−1, ci,t−1, yi,t−1, ηi,t−1, υit), (11)

where ht is an age-specific function which is increasing in its last argument, and υit are i.i.d.

uniform independent of the other arguments. Note that the standard linear asset rule (7) is

a special case of (11), so imposing (7) is not needed for identification or estimation. Taking
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a stand on the budget constraint will however be required in order to simulate the impact

of earnings shocks over the life cycle.

Derivative effects. Average consumption, for given values of asset holdings and earnings

components, is

E [cit|ait = a, ηit = η, εit = ε] = E [gt (a, η, ε, νit)] .

Our framework allows us to document how average consumption varies as a function of

assets and the two earnings components, and over the life cycle. In particular, the average

derivative of consumption with respect to η is

φt(a, η, ε) = E
[
∂gt (a, η, ε, νit)

∂η

]
. (12)

The parameter φt(a, η, ε) reflects the degree of insurability of shocks to the persistent earnings

component.16 We will document how this new measure of partial insurance varies over the life

cycle, and how it depends on households’ asset holdings, by reporting estimates of the average

derivative effect φt(a) = E [φt(a, ηit, εit)]. The quantity 1 − φt(a) is then a general measure

of the degree of consumption insurability of shocks to the persistent earnings component, as

a function of age and assets.

Dynamic effects of earnings shocks on consumption. Other measures of interest are

the effects of an earnings shock uit to the η component on consumption profile ci,t+s, s ≥ 0.

For example, the contemporaneous effect can be computed, using the chain rule and equation

(12), as

E
[
∂

∂u

∣∣∣
u=τ

gt (a,Qt(η, u), ε, νit)

]
= φt (a,Qt(η, τ), ε)

∂Qt(η, τ)

∂u
.

This derivative effect depends on η through the insurance coefficient φt, but also through the

quantity ∂Qt(η,τ)
∂u

as the earnings model allows for general forms of conditional heteroskedas-

ticity and skewness. The quantity ∂Qt(η,τ)
∂u

measures the responsiveness of earnings to a shock

uit on impact. Note that its derivative with respect to η is equal to ∂ρt(η,τ)
∂τ

, where ρt(η, τ)

is our persistence measure. In the empirical analysis we will report finite-difference coun-

terparts to these derivative effects (“impulse responses”), and find an asymmetric impact of

earnings shocks at different points of the income distribution.

16Likewise, the average derivative with respect to ε is ψt(a, η, ε) = E
[
∂gt(a,η,ε,νit)

∂ε

]
.
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Multiple assets. Our approach can be generalized to represent the consumption policy

function of a model with multiple assets differing in the stochastic properties of their returns.

An example is a model that distinguishes between a risky asset and a risk-free asset, as often

used in studies of household portfolios (e.g., Alan, 2012). A version of the consumption rule

(10) with two assets would be consistent with this type of model as long as excess returns of

the risky asset are not heterogeneous across households. In the presence of kinks induced by

participation or transaction costs, our empirical consumption rule would capture a smoothed

approximation.

The consumption rule (10) can also be extended to the Kaplan and Violante (2014)

model of wealthy “hand-to-mouth” consumers. In that framework, the consumption policy

rule is a nonlinear function of assets disaggregated into liquid and illiquid parts. Access

to the illiquid, higher return asset involves a transaction cost. The separate assets interact

in nonlinear ways with earnings. In this dynamic choice environment, the nonlinearity in

the consumption model (10) incorporating the two separate assets can provide a smoothed

approximation to the complex paths involved in the Kaplan and Violante (2014) composite

consumption function.17

4 Identification

The earnings and consumption models take the form of nonlinear state-space models. A

series of recent papers (notably Hu and Schennach, 2008, and Hu and Shum, 2012) has

established conditions under which nonlinear models with latent variables are nonparamet-

rically identified under conditional independence restrictions. Techniques developed in this

literature can be used in order to establish identification of the models we consider.

4.1 Earnings process

Consider model (1)-(2), where ηit is a Markovian persistent component and εit are indepen-

dent over time and independent of the η’s. We assume that the data contain T consecutive

periods, t = 1, ..., T . So, for a given cohort of households, t = 1 corresponds to the age at

which the household head enters the sample, and t = T corresponds to the last period of

17A separate question of interest, but one that is beyond the scope of this paper, concerns the identification
of the latent consumption policy functions associated with the agent’s accessing or not accessing the illiquid
asset. Such a question could be posed if we observed a time-varying indicator of whether or not consumers
access their illiquid assets.
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observation.18 For that cohort, our aim is to identify the joint distributions of (ηi1, ..., ηiT )

and (εi1, ..., εiT ) given i.i.d. data from (yi1, ..., yiT ). Four periods are needed in order to

identify at least one Markov transition Qt.

Conditions for the nonparametric identification of the earnings process are direct conse-

quences of the analysis in Hu and Schennach (2008) and Wilhelm (2015). We provide such

conditions in Appendix A. Identification is derived under several high-level assumptions. In

particular, the distributions of (yit|yi,t−1) and (ηit|yi,t−1) both need to satisfy completeness

conditions. For example, the first condition requires that the only function h (in a suitable

functional space) satisfying E[h(yit) | yi,t−1] = 0 be h = 0. This requires that ηi,t−1 and ηit be

statistically dependent, albeit without specifying the form of that dependence. An intuition

for this is that if η’s were independent over time there would be no way to distinguish them

from the transitory ε’s. Completeness is commonly assumed in nonparametric instrumental

variables problems (Newey and Powell, 2003).

4.2 Consumption rule

Let us now turn to the identification of the consumption rule (10), starting with the case

without unobserved heterogeneity. We make the following assumptions, where we denote

zti = (zi1, ..., zit).

Assumption 1 For all t ≥ 1,

i) ui,t+s and εi,t+s, for all s ≥ 0, are independent of ati, η
t−1
i , and yt−1i . εi1 is independent

of ai1 and ηi1.

ii) ai,t+1 is independent of (at−1i , ct−1i , yt−1i , ηt−1i ) conditional on (ait, cit, yit, ηit).

iii) the taste shifter νit in (10) is independent of ηi1, (uis, εis) for all s, νis for all s 6= t,

and ati.

Part i) in Assumption 1 requires current and future earnings shocks, which are indepen-

dent of past components of earnings, to be independent of current and past asset holdings

as well. At the same time, we let ηi1 and ai1 be arbitrarily dependent. This is important,

because asset accumulation upon entry in the sample may be correlated with past earnings

shocks. Part ii) is a first-order Markov condition on asset accumulation. It is satisfied in a

standard life-cycle model with one single risk-less asset, see equation (7). The assumption

18We consider a balanced panel for simplicity but our arguments can be extended to unbalanced panels.
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also holds in such a model when the interest rate rt is time-varying and known to households.

More generally, the assumption allows the latent components of earnings ηit and εit to affect

asset holdings separately, as in (11). Lastly, part iii) requires taste shifters to be independent

over time, independent of earnings components, and independent of current and past assets.

In particular, this rules out the presence of unobserved heterogeneity in consumption. We

will relax this condition in the next subsection.

The identification argument proceeds in a sequential way. Starting with the first period,

letting yi = (yi1, ..., yiT ), and using f as a generic notation for a density function, we have

f(a1|y) =

∫
f(a1|η1)f(η1|y)dη1, (13)

where we have used that, by Assumption 1i), f(a1|η1, y) and f(a1|η1) coincide. We can

rewrite (13) as

f(a1|y) = E [f(a1|ηi1) | yi = y] , (14)

where the expectation is taken with respect to the density of ηi1 given yi, for a fixed value

a1. Hence, provided the distribution of (ηi1|yi) (which is identified from the earnings process,

see above) is complete, the density f(a1|η1) is identified from (14).19 Note that the density

f(a1, η1|y) = f(a1|η1)f(η1|y) is also identified.

We then have, using the consumption rule and Assumption 1iii),

f(c1|a1, y) =

∫
f(c1|a1, η1, y1)f(η1|a1, y)dη1, (15)

or equivalently

f(c1|a1, y) = E [f(c1|ai1, ηi1, yi1) | ai1 = a1, yi = y] , (16)

where the conditional expectation is taken at fixed c1. Under completeness in (yi2, ..., yiT ) of

the distribution of (ηi1|ai1, yi) (which is identified from the previous paragraph),20 the den-

sities f(c1|a1, η1, y1) and f(c1, η1|a1, y) are thus identified. Identification of the consumption

function (10) for t = 1 follows since g1 is the conditional quantile function of c1 given a1, η1,

and ε1 = y1 − η1.
19In fact, given that we are working with bounded density functions, it is sufficient that the distribution

of (ηi1|yi) be boundedly complete; see Blundell, Chen and Kristensen (2007) for analysis and discussion.
20Here by completeness in yi2 of the distribution of (yi1|yi2, xi) we mean that the only solution to

E [h(yi1, xi)|yi2, xi] = 0 is h = 0. This is the same as (yi1, xi)|(yi2, xi) being complete. Note that, simi-
larly as before, the weaker condition of bounded completeness suffices.
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Second period’s assets. Turning to period 2 we have, using Assumption 1i) and iii),

f(a2|c1, a1, y) =

∫
f(a2|c1, a1, η1, y1)f(η1|c1, a1, y)dη1, (17)

from which it follows that the density f(a2|c1, a1, η1, y1) is identified, provided the distribu-

tion of (ηi1|ci1, ai1, yi) (which is identified from above) is complete in (yi2, ..., yiT ).

In addition, using Bayes’ rule and Assumption 1i) and iii),

f(η2|a2, c1, a1, y) =

∫
f(y|η1, η2, y1)f(η1, η2|a2, c1, a1, y1)

f(y|a2, c1, a1, y1)
dη1.

So, as the density f(η1|a2, c1, a1, y1) is identified from above, and by Assumption 1

f(η1, η2|a2, c1, a1, y1) = f(η1|a2, c1, a1, y1)f(η2|η1),

it follows that f(η2|a2, c1, a1, y) is identified.

Subsequent periods. To see how the argument extends to subsequent periods, consider

second period’s consumption. We have, using Assumption 1iii),

f(c2|a2, c1, a1, y) =

∫
f(c2|a2, η2, y2)f(η2|a2, c1, a1, y)dη2. (18)

Provided the distribution of (ηi2|ai2, ci1, ai1, yi) (which is identified from the previous para-

graph) is complete in (ci1, ai1, yi1, yi3, ..., yiT ), the density f(c2|a2, η2, y2) is identified.

By induction, using in addition Assumption 1ii) from the third period onward, the joint

density of η’s, consumption, assets, and earnings is identified provided, for all t ≥ 1, the dis-

tributions of (ηit|cti, ati, yi) and (ηit|ct−1i , ati, yi) are complete in (ct−1i , at−1i , yt−1i , yi,t+1, ..., yiT ).

Discussion. The identification arguments depend on completeness conditions, which relate

to the relevance, in a nonparametric sense, of the instruments. To illustrate this, consider

the completeness of the distribution of (ηi1|yi) in (yi2, ..., yiT ), which we use to show the

identification of the consumption rule in the first period, see (16). Here we abstract from

assets for simplicity. The completeness condition then depends on the properties of the

earnings process. As an example, consider the case where T = 2, and (ηi1, yi1, yi2) follows a

multivariate normal distribution with zero mean. Then ηi1 = αyi1 + βyi2 + ζ i, where ζ i is

normal (0, σ2), independent of (yi1, yi2). It can be easily shown that β 6= 0 if Cov(ηi1, ηi2) 6= 0,

in which case the distribution of (ηi1|yi1, yi2) is complete in yi2. As in the identification of the

earnings process, identification of the consumption rule thus relies on η’s being dependent
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over time. Beyond the settings studied so far in the literature (such as in D’Haultfoeuille,

2011, Andrews, 2011, or Hu and Shiu, 2012), it would be of great interest to provide primitive

conditions for completeness in the nonlinear models we focus on here.

An intuitive explanation for the identification argument comes from the link to nonpara-

metric instrumental variables (NPIV). In period 1, for a fixed a1, (14) is analogous to an

NPIV problem where ηi1 is the endogenous regressor and yi = (yi1, ..., yiT ) is the vector of

instruments. Likewise, conditional on (ai1, yi1), (yi2, ..., yiT ) are the “excluded instruments”

for ηi1 in (16). In subsequent periods, lagged consumption and assets are used as instru-

ments, together with lags and leads of earnings. Using leads of log-earnings for identifying

consumption responses is a common strategy in linear models, see for example Hall and

Mishkin (1982) and Blundell et al. (2008).

4.3 Household unobserved heterogeneity

Accounting for unobserved heterogeneity in preferences or discounting, for example, may

be empirically important. Heterogeneity in discount factors is also a popular mechanism

in quantitative macroeconomic models to generate realistic wealth inequality, see for exam-

ple Krusell and Smith (1998) and Krueger, Mitman and Perri (2015). With unobserved

heterogeneity the consumption rule takes the form

cit = gt (ait, ηit, εit, ξi, ν̃it) , t = 1, ..., T, (19)

where ξi is a household-specific effect and ν̃it are i.i.d. standard uniform. The distribution

of (ξi, ηi1, ai1) is left unrestricted. Therefore, ξi is treated as a “fixed effect”. Even if a

fully unstructured distinction between unobserved heterogeneity and individual dynamics

in a finite horizon panel is not possible, finite-dimensional fixed effects can be included

nonparametrically in the consumption (and earnings) equations as long as T is sufficiently

large. In Appendix A we provide conditions for identification of this model, by relying on

results from Hu and Schennach (2008). For simplicity we consider scalar heterogeneity ξi.

Depending on the number of available time periods, a vector of unobserved heterogeneity

could be allowed for.

Lastly, in Section S3 of the Supplementary Appendix we consider several extensions of the

model. We show how to allow for unobserved heterogeneity in earnings, as in the following
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specification that we will take to the data:

yit = ηit + ζ i + εit, (20)

where ηit = Qt(ηi,t−1, uit) is first-order Markov. We also describe how to allow for dependence

in transitory shocks, advance earnings information, and consumption habits.

5 Estimation strategy

5.1 Empirical specification

Earnings components. The earnings model depends on the Markovian transitions of the

persistent component Qt(·, ·), the marginal distributions of εit, and the marginal distribution

of the initial persistent component ηi1. We now explain how we empirically specify these

three components.

Let ϕk, for k = 0, 1, ..., denote a dictionary of bivariate functions, with ϕ0 = 1. Letting

ageit denote the age of the head of household i in period t, we specify

Qt(ηi,t−1, τ) = Q(ηi,t−1, ageit, τ)

=
K∑
k=0

aQk (τ)ϕk(ηi,t−1, ageit). (21)

In practice we use low-order products of Hermite polynomials for ϕk. We specify the quantile

function of εit (for t = 1, ..., T ) given ageit, and that of ηi1 given age at the start of the period

agei1, in a similar way. Specifically, we set

Qε(ageit, τ) =
K∑
k=0

aεk(τ)ϕk(ageit),

Qη1(agei1, τ) =
K∑
k=0

a
η1
k (τ)ϕk(agei1),

with outcome-specific choices for K and ϕk.

The quantile model (21) provides a flexible specification of the conditional distribution

of ηit given ηi,t−1 and age. Similarly, our quantile specifications flexibly model how εit and

ηi1 depend on age, at every quantile. We include the age of the household head as a control,

while ruling out dependence on calendar time. This choice is motivated by our desire to

model life-cycle evolution, as well as by the relative stationarity of the earnings distributions

(conditional on age) during the 1999-2009 period and the relatively small sample size. On
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larger samples, an interesting avenue will be to allow for variation in both age and calendar

time within our framework.21

Consumption rule. We specify the conditional distribution of consumption given current

assets and earnings components as follows:

gt(ait, ηit, εit, τ) = g(ait, ηit, εit, ageit, τ)

=
K∑
k=1

bgkϕ̃k(ait, ηit, εit, ageit) + bg0(τ), (22)

where ϕ̃k is a dictionary of functions (in practice, another product of Hermite polynomials).

Equation (22) is a nonlinear regression model. In contrast with (21), the consumption

model is additive in τ . It would be conceptually straightforward to let all coefficients bgk

depend on τ , although this would lead to a less parsimonious specification. Below we augment

the consumption function to also depend nonlinearly on a household-specific effect.

Assets evolution. We specify the distribution of initial assets ai1 conditional on the initial

persistent component ηi1 and the age at the start of the period agei1 as

Qa(ηi1, agei1, τ) =
K∑
k=0

bak(τ)ϕ̃k(ηi1, agei1), (23)

for different choices for K and ϕ̃k. We then specify how assets evolve as a function of lagged

assets, consumption, earnings, the persistent earnings component η, and age, using (11),

where

ht(ai,t−1, ci,t−1, yi,t−1, ηi,t−1, τ) = h(ai,t−1, ci,t−1, yi,t−1, ηi,t−1, ageit, τ)

=
K∑
k=1

bhkϕ̃k(ai,t−1, ci,t−1, yi,t−1, ηi,t−1, ageit) + bh0(τ),

(24)

for some K and ϕ̃k.
22

21The functional form in (21) does not enforce monotonicity in τ but our estimation method will produce
an automatic rearrangement of quantiles if needed.

22In a previous version of the paper we estimated the model imposing that ηi,t−1 does not enter (24),
which is still consistent with the budget constraint (7) and avoids the need to model predetermined assets.
We obtained qualitatively similar empirical results.
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Implementation. The functions aQk , aεk and a
η1
k are indexed by a finite-dimensional pa-

rameter vector θ. Likewise, the functions bg0, b
h
0 , and bak are indexed by a parameter vector

µ that also contains bg1,...,b
g
K ,bh1 ,...,bhK . We base our implementation on Wei and Carroll

(2009) and Arellano and Bonhomme (2016). As in these papers we model the functions

aQk as piecewise-polynomial interpolating splines on a grid [τ 1, τ 2], [τ 2, τ 3], ... , [τL−1, τL],

contained in the unit interval. We extend the specification of the intercept coefficient aQ0 on

(0, τ 1] and [τL, 1) using a parametric model indexed by λQ. All aQk for k ≥ 1 are constant

on [0, τ 1] and [τL, 1], respectively. Hence, denoting aQk` = aQk (τ `), the functions aQk depend

on {aQ11, ..., a
Q
KL, λ

Q}.

Unlike in an ordinary quantile regression, the dependence of the parameters on the per-

centiles τ needs to be specified because some of our regressors are latent variables. In

practice, we take L = 11 and τ ` = `/(L+ 1). The functions aQk are taken as piecewise-linear

on [τ 1, τL]. An advantage of this specification is that the likelihood function is available in

closed form. In addition, we specify aQ0 as the quantile of an exponential distribution on

(0, τ 1] (with parameter λQ−) and [τL, 1) (with parameter λQ+).23

We proceed similarly to model aεk, a
η1
k , and bak. Moreover, as our data show little ev-

idence against consumption being log-normal, we set bg0(τ) to α + σΦ−1(τ), where (α, σ)

are parameters to be estimated. We proceed similarly for bh0(τ). We also estimated two

different versions of the model with more flexible specifications for bg0(τ) and bh0(τ): based on

quantiles on a grid with L = 11 knots, and allowing for an age effect in the variance of the

consumption innovation. In both cases we found very similar results to the ones we report

below. We use tensor products of Hermite polynomials for ϕk and ϕ̃k, each component of

the product taking as argument a standardized variable.24

23As a result, we have

aQ0 (τ) =
1

λQ−
log

(
τ

τ1

)
1{0 < τ < τ1}+

L−1∑
`=1

(
aQk` +

aQk,`+1 − a
Q
k`

τ `+1 − τ `
(τ − τ `)

)
1{τ ` ≤ τ < τ `+1}

− 1

λQ+
log

(
1− τ

1− τL

)
1{τL ≤ τ < 1}.

24For example, at/std(a), ηt/std(y), εt/std(y), and (aget −mean(age))/std(age) are used as arguments
of the consumption rule.
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Household unobserved heterogeneity. When allowing for household unobserved het-

erogeneity in consumption/assets, we model log-consumption as

cit = g(ait, ηit, εit, ageit, ξi, ν̃it), (25)

which we specify similarly as in (22), with parameters b̃gk. To fix the scale of the function we

impose that
K∑
k=1

b̃gkϕ̃k(0, 0, 0, age, ξ) = ξ, for all ξ, (26)

where age denotes the mean value of age in the sample. Likewise, we model assets as

ait = h(ai,t−1, ci,t−1, yi,t−1, ηi,t−1, ageit, ξi, υ̃it), (27)

with a similar specification as in (24). Lastly, we specify ξi = q(ai1, ηi1, agei1, ωi), with ωi

uniform on (0, 1), using a quantile modeling as in (23).25

5.2 Overview of the estimation algorithm

The algorithm is an adaptation of techniques developed in Arellano and Bonhomme (2016)

to a setting with time-varying latent variables. The first estimation step recovers estimates

of the earnings parameters θ. The second step recovers estimates of the consumption and

assets parameters µ, given a previous estimate of θ. Our choice of a sequential estimation

strategy, rather than joint estimation of (θ, µ), is motivated by the fact that θ is identified

from the earnings process alone. In contrast, in a joint estimation approach, estimates of

the earnings process would be partly driven by the consumption model. Here we describe

the estimation of the earnings parameters θ. Estimation of the consumption parameters µ

is similar. The model’s restrictions are described in detail in Appendix B.

A compact notation for the restrictions implied by the earnings model is

θ = argmin
θ

E
[∫

R(yi, η; θ)fi(η; θ)dη

]
,

where R is a known function, θ denotes the true value of θ, and fi(·; θ) = f(·|yTi , ageTi ; θ) de-

notes the posterior density of (ηi1, ..., ηiT ) given the earnings data. The estimation algorithm

is closely related to the “stochastic EM” algorithm (Celeux and Diebolt, 1993). Stochastic

25We proceed analogously when allowing for an additive household-specific effect ζi in log-earnings yit =
ηit + ζi + εit, where ηit is given by (2). There we allow for flexible dependence between ηi1, ζi and agei1
through another series quantile model.
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EM is a simulated version of the classical EM algorithm of Dempster et al. (1977), where new

draws from η are computed in every iteration of the algorithm. One difference is that, unlike

in EM, our problem is not likelihood-based. Instead, we exploit the computational conve-

nience of quantile regression and replace likelihood maximization by a sequence of quantile

regressions in each M-step of the algorithm.

Starting with a parameter vector θ̂
(0)

, we iterate the following two steps on s = 0, 1, 2, ...

until convergence of the θ̂
(s)

process.

1. Stochastic E-step: Draw η
(m)
i = (η

(m)
i1 , ..., η

(m)
iT ) for m = 1, ...,M from fi(·; θ̂

(s)
).

2. M-step: Compute

θ̂
(s+1)

= argmin
θ

N∑
i=1

M∑
m=1

R(yi, η
(m)
i ; θ).

Note that, as the likelihood function is available in closed form, the E-step is straight-

forward. In practice we use a random-walk Metropolis-Hastings sampler for this purpose,

targeting an acceptance rate of approximately 30%. The M-step consists of a number of

quantile regressions. For example, the parameters aQk` are updated as

min
(aQ0`,...,a

Q
K`)

N∑
i=1

T∑
t=2

M∑
m=1

ρτ`

(
η
(m)
it −

K∑
k=0

aQk`ϕk(η
(m)
i,t−1, ageit)

)
, ` = 1, ..., L,

where ρτ (u) = u(τ − 1{u ≤ 0}) is the “check” function. This is a set of standard quantile

regressions, associated with convex objective functions. We proceed in a similar way to

update all other parameters, see Appendix B for details.

In practice we first estimate the effect of age on mean log-earnings by regressing them

on a quartic in age. We then impose in each iteration of the algorithm that εit and age are

uncorrelated (although we allow for age effects on the variance and quantiles of εit). We take

M = 1, stop the chain after a large number of iterations, and report an average across the last

S̃ values θ̂ = 1

S̃

∑S
s=S−S̃+1 θ̂

(s)
, and similarly for consumption-related parameters µ̂.26 The

results for the earnings parameters are based on S = 500 iterations, with 200 Metropolis-

Hastings draws in each iteration. Consumption-related parameters are estimated using 200

iterations with 200 draws per iteration. In both cases we take S̃ = S/2. In our experiments

we observed that the algorithm may get “stuck” on what appears to be a local regime of the

26As an alternative to taking a large M , taking M = 1 and averaging the parameter draws is computa-
tionally convenient in our setting.

24



Markov chain. We started the algorithm from a large number of initial parameter values,

and selected the estimates yielding the highest average log-likelihood over iterations. The

non-selected values tended to give very similar pictures to the ones we report below.

Properties. Nielsen (2000) studies the statistical properties of the stochastic EM algo-

rithm in a likelihood case. He provides conditions under which the Markov Chain θ̂
(s)

is

ergodic, for a fixed sample size. He also characterizes the asymptotic distribution of θ̂ as the

sample size N tends to infinity. Arellano and Bonhomme (2016) characterize the asymptotic

distribution of θ̂ in a case where the optimization step is not likelihood-based but relies on

quantile-based estimating equations. The estimator θ̂ is root-N consistent and asymptoti-

cally normal under correct specification of the parametric model, for K and L fixed. Note

that an alternative, nonparametric approach, would be to let K and L increase with N at

an appropriate rate so as to let the approximation bias tend to zero.27 Studying inference

in our problem as (N,K,L) jointly tend to infinity is an interesting avenue for future work.

6 Empirical results on earnings and consumption

In this section we present our empirical results. We start by describing our main data source,

the Panel Study of Income Dynamics (PSID). We then show how earnings and consumption

respond to income shocks. We also corroborate our findings for the nonlinear earnings

process using administrative data on household earnings from the Norwegian population

register. Finally, we report simulation exercises based on the estimated model.

6.1 Panel Data

Panel data on household consumption, income and assets are rare. The PSID began the col-

lection of detailed data on consumption expenditures and asset holdings in 1999, in addition

to household earnings and demographics. An annual wave is available every other year. We

use data for the 1999-2009 period (six waves).

Earnings Yit are total pre-tax household labor earnings. We construct yit as residuals from

regressing log household earnings on a set of demographics, which include cohort interacted

with education categories for both household members, race, state and large-city dummies, a

27See Belloni et al. (2016) for an analysis of inference for series quantile regression, and Arellano and
Bonhomme (2016) for a consistency analysis in a panel data model closely related to the one we consider
here.
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family size indicator, number of kids, a dummy for income recipient other than husband and

wife, and a dummy for kids out of the household. Controls for family size and composition are

included so as to equivalize household earnings (likewise for consumption and assets below).

Education, race and geographic dummies are included in an attempt to capture individual

heterogeneity beyond cohort effects and the initial persistent component of earnings ηi1.

Removing demographic-specific means in a preliminary step has been the standard practice

in the empirical analysis of earnings dynamics. A more satisfactory approach would integrate

both steps, especially given our emphasis on nonlinearities. However, except for age, we did

not attempt a richer conditioning in light of sample size.

We use data on consumption Cit of nondurables and services. The panel data contain

information on health expenditures, utilities, car-related expenditures and transportation,

education, child care, and food expenditures. Recreation, alcohol, tobacco and clothing

(the latter available from 2005) are the main missing items. Rent information is available

for renters, but not for home owners. We follow Blundell, Pistaferri and Saporta-Eksten

(2016) and impute rent expenditures for home owners.28 In total, approximately 67% of

consumption expenditures on nondurables and services are covered. We construct cit as

residuals of log total consumption on the same set of demographics as for earnings.

Asset holdings Ait are constructed as the sum of financial assets (including cash, stocks

and bonds), real estate value, pension funds, and car value, net of mortgages and other

debt. We construct residuals ait by regressing log-assets on the same set of demographics

as for earnings and consumption. These log-assets residuals will enter as arguments of the

nonlinear consumption rule (10).

To select the sample we follow Blundell et al. (2016) and focus on a sample of participat-

ing and married male heads aged between 25 and 60. We drop all observations for which data

on earnings, consumption, or assets, either in levels or log-residuals, are missing. See Ap-

pendix C for further details. In the analysis we focus on a balanced subsample of N = 792

households. Table C1 in Appendix C shows mean total earnings, consumption and asset

holdings, by year. Compared to Blundell et al. (2016), households in our balanced sample

have higher assets, and to a less extent higher earnings and consumption. The table also

shows a large and increasing dispersion of assets across households. The evolution of assets

may partly reflect the housing boom and bust, including the effect of the Great recession at

28Note that, as a result, consumption responds automatically to variations in house prices. An alternative
would be to exclude rents and imputed rents from consumption expenditures.
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the end of the sample. Although our framework could be used to document distributional

dynamics along the business cycle, we abstract from business cycle effects in this paper.

Lastly, the sample that we use is relatively homogeneous. Including households with

less stable employment histories would be interesting, but it would require extending our

framework. We return to this point in the conclusion.

6.2 Earnings

We next comment on the empirical estimates of the earnings process. Figure 2 (a) reproduces

Figure 1 (a). It shows estimates of the average derivative of the conditional quantile function

of log-earnings residuals yit given yi,t−1 with respect to yi,t−1 in the PSID sample. The figure

suggests the presence of nonlinear persistence, which depends on both the percentile of past

income (τ init) and the percentile of the quantile innovation (τ shock). This empirical pattern

is also present for male wages, see Figure S1 of the Supplementary Appendix. We then

estimate the earnings model,29 and given the estimated parameters we simulate the model.30

Figure 2 (b), which is based on simulated data, shows that our nonlinear model reproduces

the patterns of nonlinear persistence well. In contrast, standard models have difficulty fitting

this empirical pattern. For example, we estimated a simple version of the canonical earnings

dynamics model (3) with a random walk component and independent transitory shocks.31

Figure 2 (c) shows that the average derivative of the quantile function is nearly constant

(up to simulation error) with respect to τ shock and τ init. This linear specification without

interaction effects between earnings shocks and past earnings components stands in contrast

with the data.32

Figure 2 (d) then shows the estimated persistence of the earnings component ηit. Specifi-

cally, the graph shows ρt(ηi,t−1, τ) from equation (4), evaluated at percentiles τ init and τ shock

and at the mean age in the sample (47.5 years).33 Persistence in η’s is higher than persis-

29We use tensor products of Hermite polynomials of degrees (3, 2) for the conditional quantile function of
ηit given ηi,t−1 and age, and second-order polynomials for εit and ηi1 as a function of age.

30We draw 20 earnings values per household. In the simulation we impose that the support of simulated η
draws be less than 3 times the empirical support of log-earnings residuals. This affects very few observations.

31Estimation is based on equally-weighted minimum distance using the covariance structure predicted by
the canonical model.

32In order to assess the sensitivity to the polynomial functional form that we use, in Figure S2 of the
Supplementary Appendix we report persistence estimates based on piecewise-linear specifications based on
9 or 25 pieces. The characteristic shape of Figure 2 (a) remains present.

33The estimated persistence is similar when averaging over age, see Figure S3 of the Supplementary
Appendix.
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Figure 2: Nonlinear persistence

(a) Earnings, PSID data (b) Earnings, nonlinear model
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(c) Earnings, canonical model (d) Persistent component ηit, nonlinear model
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Note: Graphs (a), (b), and (c) show estimates of the average derivative of the conditional quantile

function of yit given yi,t−1 with respect to yi,t−1, evaluated at percentile τ shock and at a value of

yi,t−1 that corresponds to the τ init percentile of the distribution of yi,t−1. Graph (a) is based on the

PSID data, graph (b) is based on data simulated according to our nonlinear earnings model with

parameters set to their estimated values, and graph (c) is based on data simulated according to the

canonical random walk earnings model (3). Graph (d) shows estimates of the average derivative of

the conditional quantile function of ηit on ηi,t−1 with respect to ηi,t−1, based on estimates from the

nonlinear earnings model.

28



Figure 3: Densities of persistent and transitory earnings components

(a) Persistent component ηit (b) Transitory component εit
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Note: Nonparametric estimates of densities based on simulated data according to the nonlinear

model, using a Gaussian kernel.

tence in log-earnings residuals, consistently with the fact that Figure 2 (d) is net of transitory

shocks. Persistence is close to 1 for high earnings households hit by good shocks, and for

low earnings households hit by bad shocks. At the same time, persistence is lower, down to

.6 – .8, when bad shocks hit high-earnings households or good shocks hit low-earnings ones.

Densities and moments. Figure 3 shows estimates of the marginal distributions of the

persistent and transitory earnings components at mean age. While the persistent component

ηit shows small departures from Gaussianity, the density of εit is clearly non-normal and

presents high kurtosis and fat tails. These results are qualitatively consistent with empirical

estimates of non-Gaussian linear models in Horowitz and Markatou (1996) and Bonhomme

and Robin (2010).

In Figure 4 we report the measure of conditional skewness in (6), for τ = 11/12, for both

log-earnings residuals (left graph) and the η component (right). Panel (b) shows that ηit is

positively skewed for low values of ηi,t−1, and negatively skewed for high values of ηi,t−1. This

is in line with the nonlinear persistence reported in Figure 2 (d): when low-η households

are hit by an unusually positive shock, dependence of ηit on ηi,t−1 is low with the result

that they have a relatively large probability of outcomes far to the right from the central

part of the distribution. Likewise, high-η households have a relatively large probability of

getting outcomes far to the left of their distribution associated with low persistence episodes.
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Figure 4: Conditional skewness of log-earnings residuals and η component

(a) Log-earnings residuals yit (b) Persistent component ηit
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Note: Conditional skewness sk(y, τ) and sk(η, τ), see equation (6), for τ = 11/12. Log-earnings

residuals (data, left) and η component (right). The x-axis shows the conditioning variable, the

y-axis shows the corresponding value of the conditional skewness measure.

Panel (a) similarly suggests the presence of conditional asymmetry in log-earnings residuals,

although the evidence seems less strong than for η.

In addition, in Figures S4 to S8 of the Supplementary Appendix we report several mea-

sures of fit of the model. We show quantile-based estimates of conditional dispersion and

conditional skewness. We also report estimates of the skewness, kurtosis and densities of

log-earnings residuals growth at various horizons, from 2 to 10 years. The data suggests

the presence of ARCH effects (as in Meghir and Pistaferri, 2004). It also shows that log-

earnings growth is non-Gaussian, displaying negative skewness and high kurtosis. Guvenen

et al. (2015) document similar features on US administrative data. This shows both the

qualitative similarity between the PSID and the administrative US data in terms of higher

moments of log-earnings growth, and the ability of our nonlinear model to fit these features.

Note that, in our model, skewness and excess kurtosis of log-earnings growth at long horizons

are mostly due to the non-Gaussianity of the transitory component ε.

Confidence bands. We compare two different methods to compute confidence intervals

for these estimates. The first method is the nonparametric bootstrap, clustered at the house-

hold level. The second method is the parametric bootstrap. While the latter requires correct

specification of the parametric model, the former may still be consistent under misspecifi-

cation and allows for unrestricted serial correlation (however we are not aware of a formal

justification for it in this setting). In Figures S9 to S14 of the Supplementary Appendix we
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report pointwise 95% confidence bands based on both methods, and we also show uniform

confidence bands based on the nonparametric bootstrap. In all cases, the main findings on

nonlinear persistence and conditional skewness seem rather precisely estimated. At the same

time the uniform confidence bands are wider, especially for the η component.

Household unobserved heterogeneity. In Figure S15 of the Supplementary Appendix

we report the nonlinear persistence and conditional skewness of the η component in model

(20), which allows in addition for an additive household-specific effect. Compared to Figure

2, allowing for a household effect reduces persistence. Moreover, the nonlinear pattern is

more pronounced than in the homogeneous case. Persistence is close to 1 for values of τ init

and τ shock that are close to each other, but it is substantially lower when a large positive

(respectively negative) shock hits a low-earnings (resp. high-earnings) household.

Norwegian population register data. The above results suggest that nonlinear per-

sistence and conditional skewness are features of earnings processes in the PSID. In order

to corroborate these findings using a different, larger data set, we estimated the earnings

process using a balanced subsample of 2,873 households from the 2000-2005 Norwegian ad-

ministrative data. The estimates are shown in Figures S16 to S19 of the Supplementary

Appendix. Like the PSID, the Norwegian population register data presents a similar pattern

of conditional skewness. Moreover, the Norwegian data shows similar nonlinear persistence

in the persistent component η as the PSID. At the same time, the dispersion of the transitory

component ε is much smaller in the Norwegian data, suggesting either the presence of large

measurement error in the PSID or smaller true transitory innovations in Norway. In order to

shed more light on the differences, it would be very interesting to also estimate our nonlinear

model on a large administrative data set for the US.

6.3 Consumption

We next turn to consumption. We estimated two main specifications: with and without

household unobserved heterogeneity. Since due to the small sample size allowing for unob-

served heterogeneity is somewhat challenging on these data, here we focus on the results

without unobserved heterogeneity. The results with unobserved heterogeneity are reported

in the Supplementary Appendix.
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Figure 5: Consumption responses to earnings shocks, by assets and age, model without
household-specific unobserved heterogeneity

(a) Response to earnings (b) Response to earnings (c) Response to ηit
PSID data Nonlinear model Nonlinear model
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Note: Graphs (a) and (b) show estimates of the average derivative of the conditional mean of cit,

with respect to yit, given yit, ait and ageit, evaluated at values of ait and ageit that corresponds

to their τassets and τage percentiles, and averaged over the values of yit. Graph (a) is based on

the PSID data, and graph (b) is based on data simulated according to our nonlinear model with

parameters set to their estimated values. Graph (c) shows estimates of the average consumption

responses φt(a) to variations in ηit, evaluated at τassets and τage.

Figure 5 (a) shows estimates of the average derivative, with respect to yit, of the condi-

tional mean of cit given yit, ait and ageit. The function is evaluated at percentiles of log-assets

and age (τassets and τage, respectively), and averaged over yit.
34 The derivative effects lie

between .2 and .3. Moreover, the results indicate that consumption of older households, and

of households with higher assets, is less correlated to variations in earnings. Figure 5 (b)

shows the same response surface based on simulated data from our full nonlinear model of

earnings and consumption. The fit of the model, though not perfect, seems reasonable. In

particular, the model reproduces the main pattern of correlation with age and assets.35,36

Figure 5 (c) shows estimates of the average consumption response φt(a) to variations in

the persistent component of earnings. As described in Section 3, 1− φt(a) can be regarded

34We use tensor products of Hermite polynomials with degrees (2, 2, 1) in the estimation of the consumption
rule.

35In Figure S20 of the Supplementary Appendix we show that the model fit to the density of log-
consumption is also good.

36While the covariances between log-earnings and log-consumption residuals are well reproduced, the base-
line model does not perform as well in fitting the dynamics of consumption, as it systematically underesti-
mates the autocorrelations between log-consumption residuals. The specification with household unobserved
heterogeneity improves the fit to consumption dynamics.
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Figure 6: Consumption responses to assets

(a) Given yit (b) Given yit (c) Given ηit
PSID data Nonlinear model Nonlinear model
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Note: Estimates of the average derivative of the conditional mean of cit, with respect to ait, given

yit (respectively, given ηit and εit in graph (c)), ait, and ageit, evaluated at values of ait and ageit
that corresponds to their τassets and τage percentiles, and averaged over the values of yit (resp., over

the values of ηit and εit in graph (c)). Model without unobserved heterogeneity.

as a measure of the degree of consumption insurability of shocks to the persistent earnings

component, as a function of age and assets. On average the estimated φt(a) parameter lies

between .3 and .4, suggesting that more than half of pre-tax household earnings fluctuations

is effectively insured. Moreover, variation in assets and age suggests the presence of an

interaction effect. In particular, older households with high assets seem better insured against

earnings fluctuations.37

In Figures S22 and S23 of the Supplementary Appendix we report 95% confidence bands

for φt(a) based on both parametric bootstrap and nonparametric bootstrap. The findings on

insurability of shocks to the persistent earnings component seem quite precisely estimated. In

Figure S24 of the Supplementary Appendix we report estimates of the model with household

unobserved heterogeneity in consumption, see (19). Estimated consumption responses are

quite similar to the ones without unobserved heterogeneity, although the nonlinearity with

respect to assets and age seems more pronounced.

Consumption responses to assets. In addition to consumption responses to earnings

shocks, our nonlinear framework can be used to document derivative effects with respect to

37Consumption responses to transitory shocks are shown in Figure S21 of the Supplementary Appendix.

33



assets. Such quantities are often of great interest, for example when studying the implications

of tax reforms. Graph (c) in Figure 6 shows estimated average derivatives, in a model without

unobserved heterogeneity in consumption.38 The quantile polynomial specifications are the

same as in Figure 5. We see that the responses range between .05 and .2, and that the

derivative effects seem to increase with age and assets.

6.4 Simulating the impact of persistent earnings shocks

In this last subsection, we simulate life-cycle earnings and consumption according to our

nonlinear model, and show the evolution of earnings and consumption following a persistent

earnings shock. In Figure 7 we report the difference between the age-specific medians of

log-earnings of two types of households: households that are hit, at the same age 37, by

either a large negative shock to the persistent earnings component (τ shock = .10), or by a

large positive shock (τ shock = .90), and households that are hit by a median shock τ = .50

to the persistent component.39 We report age-specific medians across 100,000 simulations

of the model. At the start of the simulation (that is, age 35) all households have the same

persistent component indicated by the percentile τ init. With some abuse of terminology we

refer to the resulting earnings and consumption paths as “impulse responses”.40

Earnings responses reported in Figure 7 are consistent with the presence of interaction

effects between the rank in the distribution of earnings component (τ init) and the sign and size

of the shock to the persistent component (τ shock). While a large negative shock (τ shock = .10)

is associated with a 7% drop in earnings for low earnings households (τ init = .10), a similar

shock is associated with a 19% drop for high-earnings households (τ init = .90). We also find

interaction effects in the response to large positive shocks (τ shock = .90). This suggests the

presence of asymmetries in the persistence of earnings histories, depending on the previous

earnings history of the household and the size and magnitude of the shock. Moreover, the

long-run impact of these shocks over the life cycle also depends on the initial condition.

For example, Figure 7 (e) shows a very slow recovery from a negative earnings shock when

starting from a high-earnings position, while graph (a) shows a quicker recovery.

38Graphs (a) and (b) in Figure 6 show that the model replicates well the empirical relationship between
consumption and assets conditional on earnings and age. See Figure S25 of the Supplementary Appendix
for the results in a model with unobserved heterogeneity.

39Note that such positive or negative shocks being “large” are relative statements, given that they corre-
spond to ranks of different conditional distributions.

40See for example Gallant et al. (1993) and Koop et al. (1996) for work on impulse response functions in
nonlinear models.

34



Figure 7: Impulse responses, earnings

Nonlinear model
τ init = .1

(a) τ shock = .1 (b) τ shock = .9
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(e) τ shock = .1 (f) τ shock = .9
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Note: Persistent component at percentile τ init at age 35. The graphs show the difference between

a household hit by a shock τ shock at age 37, and a household hit by a .5 shock at the same age.

Age-specific medians across 100,000 simulations. Graphs (a) to (f) correspond to the nonlinear

model. Graphs (g) and (h) correspond to the canonical model (3) of earnings dynamics.
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Figure 8: Impulse responses, consumption
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Canonical model
(g) τ shock = .1 (h) τ shock = .9
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Note: See notes to Figure 7. Graphs (a) to (f) correspond to the nonlinear model. Graphs (g)

and (h) correspond to the canonical model of earnings dynamics (3) and a linear consumption

rule. Linear assets accumulation rule (7), r = 3%. ait ≥ 0. Model without household unobserved

heterogeneity in consumption.
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Figure 9: Impulse responses by age and initial assets
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Note: See notes to Figure 8. Initial assets at age 35 (for “young” households) or 51 (for “old”

households) are at percentile .10 (dashed curves) and .90 (solid curves). Linear assets accumulation

rule (7), r = 3%. ait ≥ 0. Model without household unobserved heterogeneity in consumption.

These earnings impulse responses on impact are in line with the shape of the persistence

function shown in Figure 2 (d). In Figure 7, moving from panel (a) to panel (c) shows little

difference in the impact of a shock, while moving to panel (e) shows a larger impact. This

is consistent with the persistence function ρt(ηi,t−1, τ) being steeper in τ for high income

households who receive a large negative shock, compared to other households hit by such

shock. Conversely, the earnings response is quite similar when moving between panels (f) and

(d), while it is higher in panel (b), again in line with the shape of the persistence function.

In graphs (g) and (h) of Figure 7 we report results based on the “canonical model” of

earnings dynamics where η is a random walk, see equation (3). In this model, there are by

assumption no interaction effects between income shocks and the ranks of households in the

income distribution. The implications of the nonlinear earnings model thus differ markedly

from those of standard linear models.

37



In Figure 8 we report the results of a similar exercise to Figure 7, but we now focus

on consumption responses in a model without unobserved heterogeneity in consumption.

In order to simulate consumption paths, one needs to take a stand on the rule of assets

accumulation. We use the linear assets accumulation rule (7), with a constant (biennial)

interest rate r = 3%. In the simulation we impose that ait ≥ 0. We observed little sensitivity

to varying the floor on assets.

We see that the nonlinearities observed in the earnings response matter for consumption

too. For example, while a large negative shock (τ shock = .10) is associated with a 2% drop

in consumption for low earnings households, it is associated with an 8% drop for high-

earnings households. Conversely, a large positive shock is associated with a 5% increase

in consumption for high-earnings households, and with an 11% increase for low-earnings

households. In Figures S26 to S29 of the Supplementary Appendix we report bootstrap

confidence bands for earnings and consumption responses, which suggest that the results

are relatively precisely estimated. In addition, graphs (g) and (h) of Figure 8 report results

based on the canonical earnings model with a linear log-consumption rule.41 The fact that

the canonical model assumes away the presence of interaction effects between income shocks

and households’ positions in the income distribution appears at odds with the data.

The results with unobserved heterogeneity in consumption are reported in Figure S30

of the Supplementary Appendix. They show smaller consumption responses to variations

in earnings compared to the case without unobserved heterogeneity. For example, a large

positive shock (τ shock = .90) is now associated with a 7% increase in consumption for low

earnings households. In addition, effects on consumption seem to revert more quickly towards

the median in the model with heterogeneity.42

In Figure 9 we perform similar exercises, while varying the timing of shocks and the

asset holdings that households possess. Graphs (a) to (d) suggest that a negative shock

(τ shock = .10) for high-earnings households has a higher impact on earnings at later ages:

the earnings drop is 40% when the shock hits at age 53, compared to 20% when a similar

shock hits at age 37. The impact of a positive shock on low-earnings individuals seems to

vary less with age. Graphs (e) to (h) in Figure 9 show the consumption responses in the

41Specifically, cit is modeled as a linear function of ηit, εit, and an independent additive error term i.i.d.
over time. The model is estimated by equally-weighted minimum distance based on covariance restrictions.

42In Figures S31 and S32 of the Supplementary Appendix we show the results from the nonlinear assets
rule we have estimated, see (11). The results do not differ markedly compared to the baseline specification.
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model without heterogeneity. The results suggest that, while the presence of asset holdings

does not seem to affect the insurability of positive earnings shocks, it does seem to attenuate

the consumption response to negative shocks, particularly for households who are hit later

in the life cycle. Figure S33 of the Supplementary Appendix shows similar patterns when

allowing for unobserved heterogeneity.43

7 Conclusion

In this paper we have developed a nonlinear framework for modeling persistence that sheds

new light on the nonlinear transmission of income shocks and the nature of consumption

insurance. In this framework, household income is the sum of a first-order Markov persistent

component and a transitory component. The consumption policy rule is an age-dependent,

nonlinear function of assets, unobserved heterogeneity, persistent income and transitory in-

come. The model reveals asymmetric persistence patterns, where “unusual” earnings shocks

are associated with a drop in persistence. It also leads to new empirical measures of partial

insurance.

We provide conditions under which the model is nonparametrically identified, and we

develop a tractable simulation-based sequential quantile regression method for estimation.

These methods open the way to identify and estimate nonlinear models of earnings and

consumption dynamics. They also provide new tools to assess the suitability of existing

life-cycle models of consumption and savings, and potentially help guide the development of

new structural models.

Our results suggest that nonlinear persistence and conditional skewness are important

features of earnings processes. These features, which are present in both the PSID and in

Norwegian population register data, are not easy to capture using existing models of earn-

ings dynamics, motivating the use of new econometric methods to document distributional

dynamics. Estimating models that allow for persistent and transitory components of income

on a relatively homogeneous sample of households from the PSID, we find the presence of

nonlinear persistence and conditional asymmetries in earnings.

The nonlinearities observed in the earnings responses are shown to impact consumption

choices. For example, we found that while a large negative shock is associated with a

43The results for the estimated nonlinear assets rule reported in Figure S34 of the Supplementary Appendix
show some differences compared to Figure 9, particularly for the responses to positive earnings shocks.
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relatively small drop in consumption for low earnings households, it is associated with a

sizable drop for high-earnings households. We also identified differences in persistence across

different demographic groups. The results suggest that, while the presence of asset holdings

seems not to affect the insurability of positive earnings shocks, it appears to attenuate

consumption responses to negative shocks, particularly for households who are hit later in

the life cycle. Standard linear models, which assume away the presence of interaction effects

between income shocks and the position in the income distribution, deliver qualitatively

different predictions that appear at odds with the data.

A natural next step is to combine the framework introduced in this paper with more

structural approaches. It is in fact easy to take our estimated Markovian earnings compo-

nents to simulate or estimate fully-specified life-cycle models of consumption and savings. We

provide an illustration of a simple life-cycle simulation model using the nonlinear dynamic

quantile specification for earnings in Section S2 of the Supplementary Appendix. Moreover,

the nonlinear model can be generalized to allow for other states and choices. For example,

we could extend the analysis to incorporate intensive and extensive margins of labor supply,

as in Low, Meghir and Pistaferri (2010), and family labor supply, as in Blundell et al. (2016).

Lastly, in this paper we have abstracted from the role of business cycle fluctuations. In

a recent paper on US Social Security Data for 1978-2010, Guvenen, Ozcan and Song (2014)

find that the left-skewness of earnings shocks is counter-cyclical. In future work it will be

interesting to apply our framework to document distributional dynamics over the business

cycle.
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APPENDIX

A Identification

A.1 Earnings process

In the following, all conditional and marginal densities are assumed to be bounded away from zero
and infinity on their supports. With some abuse of notation, in the absence of ambiguity we use
f(a|b) as a generic notation for the conditional density fA|B(a|b), and for simplicity we omit the i
index in density arguments.

Operator injectivity. The identification arguments below rely on the concept of operator
injectivity, which we now formally define. A linear operator L is a linear mapping from a functional
space H1 to another functional space H2. L is injective if the only solution h ∈ H1 to the equation
Lh = 0 is h = 0.

One special case of operator injectivity (“deconvolution”) obtains when Yi2 = Yi1 + εi1, with Yi1
independent of εi1, and [Lh](y2) =

∫
h(y1)fε1(y2 − y1)dy1. L is then injective if the characteristic

function of εi1 has no zeros on the real line. The normal and many other standard distributions
satisfy this property.44 If the marginal distributions fY2 and fε1 are known, injectivity implies that
h = fY1 is the only solution to the functional equation

∫
h(y1)fε1(y2 − y1)dy1 = fY2(y2). In other

words, fY1 is identified from the knowledge of fY2 and fε1 .
Another, important special case of operator injectivity (“completeness”) is obtained when L

is the conditional expectation operator associated with the distribution of (Yi1|Yi2), in which case
[Lh](y2) = E [h(Yi1) |Yi2 = y2]. L being injective is then equivalent to the distribution of (Yi1|Yi2)
being complete.

Building block for identification. To establish nonparametric identification of the earnings
process, we rely on results from Hu and Schennach (2008) and Wilhelm (2015). In the context
of a panel data model with measurement error, Wilhelm (2015) provides conditions under which
the marginal distribution of εi2 is identified, given three periods of observations (yi1, yi2, yi3). We
provide a brief summary of the identification argument used by Wilhelm in Section S4 of the
Supplementary Appendix.

The key condition that underlies identification in this context is the fact that, in the earnings
model with T = 3, log-earnings (yi1, yi2, yi3) are conditionally independent given ηi2.

45 This “Hid-
den Markov” structure fits into the general setup considered in Hu and Schennach (2008). Hu
(2015) provides a recent survey of applications of this line of work.

Identification of the earnings process. Returning to the earnings dynamics model (1)-(2),
let now T ≥ 3. Suppose that the conditions in Wilhelm (2015) are satisfied on each of the three-year
subpanels t ∈ {1, 2, 3} to t ∈ {T − 2, T − 1, T}. It follows from Wilhelm’s result that the marginal
distributions of εit are identified for all t ∈ {2, 3, ..., T − 1}. By serial independence of the ε’s, the
joint distribution of (εi2, εi3, ..., εi,T−1) is thus also identified.

Hence, if the characteristic functions of εit do not vanish on the real line, then by a deconvo-
lution argument the joint distribution of (ηi2, ηi3, ..., ηi,T−1) is identified. As a result, all Markov
transitions fηt|ηt−1

are identified for t = 3, ..., T −1, and the marginal distribution of ηi2 is identified

44Injectivity also holds if the zeros of the characteristic function of εi1 are isolated. See Evdokimov and
White (2012).

45Indeed, f(y1, y2, y3|η2) = f(y1|η2)f(y2|η2, y1)f(y3|η2, y2, y1) = f(y1|η2)f(y2|η2)f(y3|η2).
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as well (so we need T ≥ 4 to identify at least one Markov transition). Moreover, it is easy to show
that the conditional distributions of ηi2|yi1 and yiT |ηi,T−1 are identified.46

Note that, in the case where εi1, ..., εiT have the same marginal distribution, then the distri-
butions of the initial and terminal components εi1, ηi1, and εiT , ηiT are also identified. However,
the first and last-period distributions are generally not identified in a fully non-stationary setting.
In the empirical analysis we impose time-stationarity restrictions, and pool different cohorts of
households together in order to identify the distributions of η’s and ε’s at all age.47

A.2 Consumption rule with unobserved heterogeneity

We make the following assumption.

Assumption A1
i) ui,t+s and εi,t+s, for all s ≥ 0, are independent of ati, η

t−1
i , yt−1i , and ξi. εi1 is independent

of ai1, ηi1 and ξi.
ii) ai,t+1 is independent of (at−1i , ct−1i , yt−1i , ηt−1i ) conditional on (ait, cit, yit, ηit, ξi).
iii) the taste shifter νit in (19) is independent of ηi1, (uis, εis) for all s, νis for all s 6= t, ati,

and ξi.

The identification strategy proceeds in two steps. First we have, by Assumption A1i) and iii),
for all t ≥ 1,

f(ct, at|y) =

∫
f(ct, at|ηt, yt)f(ηt|y)dηt,

or, equivalently,
f(ct, at|y) = E

[
f(ct, at|ηti, yti) | yi = y

]
,

where the expectation is taken for fixed (ct, at). Let t = 3. f(c3, a3|η3, y3) is thus identified, provided
the distribution of (η3i |yi) is boundedly complete in (yi4, ..., yiT ). In particular, this argument
requires that T ≥ 6.

For the second step, we note that, by Assumption A1,

f(c3, a3|η3, y3) =

∫
f(a1, c1, a2|η1, y1, ξ)f(c2, a3|a2, η2, y2, ξ)f(c3|a3, η3, y3, ξ)f(ξ|η3, y3)dξ.

(A1)

For fixed (a3, η3, y3), equation (A1) is formally analogous to the nonlinear instrumental variables
set-up of Hu and Schennach (2008). Hence the consumption rules, the asset evolution distribu-
tions, and the distribution of the latent heterogeneous component ξi, will all be nonparametrically
identified under the conditions of Hu and Schennach’s main theorem. These conditions include
injectivity/completeness conditions analogous to the ones we have used in the baseline model, as
well as a “scaling” condition. For example, in a consumption model that is additive in νit (as in
our empirical application), a possible scaling condition (and the one we use) is that the mean of

46Indeed we have fy2|y1(y2|y1) =
∫
fε2(y2 − η2)fη2|y1(η2|y1)dη2. Hence, since the characteristic function

of εi2 is non-vanishing, fη2|y1(·|y1) is identified for given y1. A similar argument shows that fyT |ηT−1
(yT |·)

is identified for given yT .
47Specifically, the above arguments allow to nonparametrically recover, for each cohort entering the sam-

ple at age j, the distributions of ε at ages j + 2, j + 4, j + 6, and j + 8 (based on biennial data). In
our dataset, j belongs to {25, ..., 50}. Pooling across cohorts, we obtain that the distributions of ε are
nonparametrically identified at all ages between 27 and 58 years. In turn, the joint distribution of η’s is
nonparametrically identified in this age range. Identification at ages 25, 26 and 59, 60 intuitively comes from
parametric extrapolation using the quantile models.
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ci3, conditional on ξi and some values of (ai3, ηi3, yi3), is increasing in ξi. In that case identification
is to be understood up to an increasing transformation of ξi.

48 Consumption rules and asset dis-
tributions for t ≥ 4 can then be identified by relying on additional periods or, alternatively, under
time-stationarity assumptions by pooling information from different cohorts.

B Estimation

B.1 Model’s restrictions

Let ρτ (u) = u(τ − 1{u ≤ 0}) denote the “check” function of quantile regression (Koenker and
Bassett, 1978). Let also θ denote the true value of θ, and let

fi(η
T
i ; θ) = f(ηTi |yTi , ageTi ; θ)

denote the posterior density of ηTi = (ηi1, ..., ηiT ) given the earnings data. As the earnings model
is fully specified, fi is a known function of θ.

We start by noting that, for all ` ∈ {1, ..., L},

(
aQ0`, ..., a

Q
K`

)
= argmin

(aQ0`,...,a
Q
K`)

T∑
t=2

E

[∫
ρτ`

(
ηit −

K∑
k=0

aQk`ϕk(ηi,t−1, ageit)

)
fi(η

T
i ; θ)dηTi

]
, (B2)

where aQk` denotes the true value of aQk` = aQk (τ `), and the expectation is taken with respect to
the distribution of (yTi , age

T
i ). To see that (B2) holds, note that the objective function is smooth

(due to the presence of the integrals) and convex (because of the “check” function). The first-
order conditions of (B2) are satisfied at true parameter values as, by (21), for all k ∈ {0, ...,K},
` ∈ {1, ..., L}, and t ≥ 2,

E

[
1

{
ηit ≤

K∑
k=0

aQk`ϕk(ηi,t−1, ageit)

} ∣∣∣∣∣ ηt−1i , ageTi

]
= τ `.

Likewise, we have, for all `,

(aε0`, ..., a
ε
K`) = argmin

(aε0`,...,a
ε
K`)

T∑
t=1

E

[∫
ρτ`

(
yit − ηit −

K∑
k=0

aεk`ϕk(ageit)

)
fi(η

T
i ; θ)dηTi

]
, (B3)

and, for all `,

(
a
η1
0` , ..., a

η1
K`

)
= argmin

(aη10` ,...,a
η1
K`)

E

[∫
ρτ`

(
ηi1 −

K∑
k=0

a
η1
k`ϕk(agei1)

)
fi(η

T
i ; θ)dηTi

]
. (B4)

In addition to (B2)-(B3)-(B4), the model implies other restrictions on the tail parameters λ,
which are given in the next subsection. All the restrictions depend on the posterior density fi. Given
the use of piecewise-linear interpolating splines, the joint likelihood function of (ηTi , y

T
i |ageTi ; θ) is

available in closed form, and we provide an explicit expression in the next subsection. In practice,
this means that it is easy to simulate from fi. We take advantage of this feature in our estimation
algorithm.

48Arellano and Bonhomme (2016) apply Hu and Schennach (2008)’s results to a class of nonlinear panel
data models.
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Turning to consumption we have

(
α, b

g
1, ..., b

g
K

)
= argmin

(α,bg1,...,b
g
K)

T∑
t=1

E
[ ∫ (

cit − α−
K∑
k=1

bgkϕ̃k(ait, ηit, yit − ηit, ageit)

)2

...× gi(ηTi ; θ, µ)dηTi

]
,

where
gi(η

T
i ; θ, µ) = f(ηTi |cTi , aTi , yTi , ageTi ; θ, µ)

denotes the posterior density of (ηi1, ..., ηiT ) given the earnings, consumption, and asset data.
Moreover, the variance of taste shifters satisfies

σ2 =
1

T

T∑
t=1

E

∫ (cit − α− K∑
k=1

b
g
kϕ̃k(ait, ηit, yit − ηit, ageit)

)2

gi(η
T
i ; θ, µ)dηTi

 . (B5)

Likewise, for assets we have

(
αh, b

h
1 , ..., b

h
K

)
= argmin

(αh,bh1 ,...,bhK)

T∑
t=2

E
[ ∫ (

ait − αh −
K∑
k=1

bhkϕ̃k(ai,t−1, ci,t−1, yi,t−1, ηi,t−1, ageit)

)2

...× gi(ηTi ; θ, µ)dηTi

]
,

with a similar expression for the variance of bh0(υit) as in (B5).
Lastly we have, for all `,

(
b
a
0`, ..., b

a
K`

)
= argmin

(ba0`,...,b
a
K`)

E

[∫
ρτ`

(
ai1 −

K∑
k=0

bak`ϕ̃k(ηi1, agei1)

)
gi(η

T
i ; θ, µ)dηTi

]
,

with additional restrictions characterizing tail parameters given in the next subsection.

B.2 Estimation algorithm

Additional model restrictions. The tail parameters λ satisfy simple moment restrictions. For
example, we have

λ
Q
− = −

∑T
t=2 E

[∫
1
{
ηit ≤

∑K
k=0 a

Q
k1ϕk(ηi,t−1, ageit)

}
fi(η

T
i ; θ)dηTi

]
∑T

t=2 E
[∫ (

ηit −
∑K

k=0 a
Q
k1ϕk(ηi,t−1, ageit)

)
1
{
ηit ≤

∑K
k=0 a

Q
k1ϕk(ηi,t−1, ageit)

}
fi(ηTi ; θ)dηTi

] ,
(B6)

and

λ
Q
+ =

∑T
t=2 E

[∫
1
{
ηit ≥

∑K
k=0 a

Q
kLϕk(ηi,t−1, ageit)

}
fi(η

T
i ; θ)dηTi

]
∑T

t=2 E
[∫ (

ηit −
∑K

k=0 a
Q
kLϕk(ηi,t−1, ageit)

)
1
{
ηit ≥

∑K
k=0 a

Q
kLϕk(ηi,t−1, ageit)

}
fi(ηTi ; θ)dηTi

] ,
(B7)

with similar equations for the other tail parameters.

48



Likelihood function. The likelihood function is (omitting the conditioning on age for concise-
ness)

f(yTi , c
T
i , a

T
i , η

T
i ; θ, µ) =

T∏
t=1

f(yit|ηit; θ)
T∏
t=1

f(cit|ait, ηit, yit;µ)
T∏
t=2

f(ait|ai,t−1, yi,t−1, ci,t−1, ηi,t−1;µ)

×
T∏
t=2

f(ηit|ηi,t−1; θ)f(ai1|ηi1;µ)f(ηi1; θ). (B8)

The likelihood function is fully specified and available in closed form. For example, we have

f(yit|ηit; θ) = 1 {yit − ηit < Aεit(1)} τ1λε− exp
[
λε− (yit − ηit −Aεit(1))

]
+
L−1∑
`=1

1 {Aεit(`) ≤ yit − ηit < Aεit(`+ 1)} τ `+1 − τ `
Aεit(`+ 1)−Aεit(`)

+1 {Aεit(L) ≤ yit − ηit} (1− τL)λε+ exp
[
−λε+ (yit − ηit −Aεit(L))

]
,

where Aεit(`) ≡
∑K

k=0 a
ε
k`ϕk(ageit) for all (i, t, `). Note that the likelihood function is non-negative

by construction. In particular, drawing from the posterior density of η automatically produces
rearrangement of the various quantile curves (Chernozhukov, Galichon and Fernandez-Val, 2010).

Estimation algorithm: earnings. Start with θ̂
(0)

. Iterate on s = 0, 1, 2, ... the two following
steps.

Stochastic E-step: Draw M values η
(m)
i = (η

(m)
i1 , ..., η

(m)
iT ) from

f(ηTi |yTi ; θ̂
(s)

) ∝
T∏
t=1

f(yit|ηit; θ̂
(s)

)f(ηi1; θ̂
(s)

)
T∏
t=2

f(ηit|ηi,t−1; θ̂
(s)

),

where a ∝ b means that a and b are equal up to a proportionality factor independent of η.
M-step: Compute,49 for ` = 1, ..., L,

(
â
Q,(s+1)
0` , ..., â

Q,(s+1)
K`

)
= argmin

(aQ0`,...,a
Q
K`)

N∑
i=1

T∑
t=2

M∑
m=1

ρτ`

(
η
(m)
it −

K∑
k=0

aQk`ϕk(η
(m)
i,t−1, ageit)

)
,

(
â
ε,(s+1)
0` , ..., â

ε,(s+1)
K`

)
= argmin

(aε0`,...,a
ε
K`)

N∑
i=1

T∑
t=1

M∑
m=1

ρτ`

(
yit − η(m)

it −
K∑
k=0

aεk`ϕk(ageit)

)
,

(
â
η1,(s+1)
0` , ..., â

η1,(s+1)
K`

)
= argmin

(aη10` ,...,a
η1
K`)

N∑
i=1

M∑
m=1

ρτ`

(
η
(m)
i1 −

K∑
k=0

a
η1
k`ϕk(agei1)

)
,

and compute

λ̂
Q,(s+1)

− = −

∑N
i=1

∑T
t=2

∑M
m=1 1

{
η
(m)
it ≤ Â

Q,(s+1)
itm

}
∑N

i=1

∑T
t=2

∑M
m=1

(
η
(m)
it − Â

Q,(s+1)
itm

)
1
{
η
(m)
it ≤ Â

Q,(s+1)
itm

} ,
49In practice, we used gradient descent algorithms in all M-step computations. This provided the fastest

alternative in our repeated estimation, without any noticeable loss in accuracy.
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where

Â
Q,(s+1)
itm ≡

K∑
k=0

â
Q,(s+1)
k1 ϕk(η

(m)
i,t−1, ageit),

with similar updating rules for λ̂
Q,(s+1)

+ , λ̂
ε,(s+1)

− , λ̂
ε,(s+1)

+ , λ̂
η1,(s+1)

− , and λ̂
η1,(s+1)

+ .

In practice, we start the algorithm with different choices for θ̂
(0)

. For example, for the initial
values of the quantile parameters in ηit we run quantile regressions of log-earnings on lagged log-
earnings and age. We proceed similarly to set other starting parameter values. We experimented
with a number of other choices, and selected the parameter values corresponding to the highest
average log-likelihood over iterations. We observed some effect of starting values on estimates of
tail parameters although most results were stable.

Estimation algorithm: consumption. Similar to the earnings case. One difference is that in

the stochastic E-step we draw η
(m)
i from

f(ηTi |yTi , cTi , aTi ; θ̂, µ̂(s)) ∝
T∏
t=1

f(yit|ηit; θ̂)f(ηi1; θ̂)
T∏
t=2

f(ηit|ηi,t−1; θ̂)

×f(ai1|ηi1; µ̂(s))
T∏
t=2

f(ait|ai,t−1, ci,t−1, yi,t−1, ηi,t−1; µ̂(s))

×
T∏
t=1

f(cit|ait, ηit, yit; µ̂(s)).

C Data appendix

C.1 PSID data

We use the 1999-2009 Panel Study of Income Dynamics (PSID) to estimate the model. The
PSID started in 1968 collecting information on a sample of roughly 5,000 households. Of these,
about 3,000 were representative of the US population as a whole (the core sample), and about
2,000 were low-income families (the Census Bureau’s SEO sample). Thereafter, both the original
families and their split-offs (children of the original family forming a family of their own) have
been followed. The PSID data were collected annually until 1996 and biennially starting in 1997.
A great advantage of PSID after 1999 is that, in addition to income data and demographics, it
collects data about detailed asset holdings and consumption expenditures in each wave. To the
best of our knowledge this makes the PSID the only representative large scale US panel to include
income, hours, consumption, and assets data. Since we need both consumption and assets data,
we focus on the 1999-2009 sample period.

We focus on non-SEO households with participating and married male household heads aged
between 25 and 60, and with non missing information on key demographics (age, education, and
state of residence). To reduce the influence of measurement error, we also drop observations with
extremely high asset values (20 millions or more), as well as observations with total transfers more
than twice the size of total household earnings. When calculating the relevant consumption, hourly
wage and earnings moments, we do not use data displaying extreme ”jumps” from one year to the
next (most likely due to measurement error). Furthermore, we do not use earnings and wage data
when the implied hourly wage is below one-half the state minimum wage. See Blundell, Pistaferri
and Saporta-Eksten (2016) for further details of the sample selection.
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C.2 Norwegian population register data

Sample selection. The Norwegian results are provided as part of the Blundell, Graber and
Mogstad project on ‘Labour Income Dynamics and the Insurance from Taxes, Transfers and the
Family’, see Blundell, Graber and Mogstad (2015) for details. For Figure 1 we use Norwegian
register data provided under that project for the years 2005 and 2006 only.

We select a balanced panel of households were the male head is Norwegian, resident in Norway.
We restrict the sample to include male, non-immigrant residents between the age 30 and 60 and
their spouse (if they have one), with non-missing information on all key demographic variables.
We choose a balanced panel of continuously married males, where household disposable income
(that is, pooled labor income after tax and transfers of the spouses) is above the threshold of
substantial gainful activity (one basic amount, 14,000 USD in 2014) and where the total income
from self-employment is below one basic amount.

The residual income measure is obtained by regressing the log of household disposable income
on a set of demographics including cohort interacted with education category of both spouses,
dummies for children and region. Our measure of household disposable income pools the individual
disposable income of the spouses (if the male has a spouse). In each year, we regress the log of
household disposable income on dummies for region, marital status, number of children, education,
and a fourth-order polynomial in age and the interaction of the latter two to obtain the residual
income. To produce Figure 1 we use an equidistant grid of 11 quantiles and a third-order Hermite
polynomial.
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Table C1: Descriptive statistics

1999 2001 2003 2005 2007 2009

Earnings
Mean 87,120 93,777 96,289 98,475 103,442 102,893
10% 34,863 37,532 36,278 35,005 35,533 31,992
25% 50,709 53,000 52,975 54,696 53,813 52,451
50% 73,423 77,000 76,576 78,944 80,292 79,181
75% 102,211 106,000 105,292 109,391 113,604 112,607
90% 145,789 152,000 150,280 154,971 171,688 163,879

Consumption
Mean 30,761 34,784 37,553 43,199 44,511 40,598
10% 15,804 17,477 18,026 20,365 21,634 20,008
25% 20,263 21,786 22,834 26,322 28,341 26,167
50% 26,864 29,366 31,924 37,381 38,704 34,570
75% 36,887 41,030 45,071 51,529 53,239 47,300
90% 48,977 53,870 62,864 73,338 73,715 67,012

Net worth
Mean 224,127 283,539 311,664 387,830 447,323 406,290
10% 19,016 26,100 28,494 38,287 41,854 33,592
25% 48,095 59,600 69,397 83,137 101,005 85,179
50% 114,096 137,500 159,230 191,663 217,599 188,354
75% 248,000 301,750 345,549 413,955 489,224 384,625
90% 535,827 586,000 654,437 830,462 939,583 867,786

Notes: Balanced subsample from PSID, 1999-2009. N = 792, T = 6. In 2001 dollars.
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S1 Consumption responses in a two-period model

Consider a standard two-period setup, with a single risk-free asset. Let At denote beginning-of-

period-t assets, and assume that A3 = 0. Agents have CRRA utility. The Euler equation (assuming

β(1 + r) = 1 for simplicity) is

C−γ1 = E1

[
((1 + r)A2 + Y2)

−γ] ,
where γ denotes risk aversion and the expectation is conditional on period-1 information. Here we

have used the budget constraint A3 = (1 + r)A2 + Y2 − C2 = 0. Equivalently,

C−γ1 = E1

[(
(1 + r)2A1 + (1 + r)Y1 − (1 + r)C1 + Y2

)−γ]
. (S1)

Let X1 = (1+r)A1+Y1 denote “cash on hand” (as in Deaton, 1991). Let also Y2 = E1(Y2)+σW .

We will expand the Euler equation as σ → 0. We denote the certainty equivalent consumption level

as

C1 =
(1 + r)X1 + E1(Y2)

2 + r
.

Expanding in orders of magnitude of σ we have

C1 ≈ C1 + aσ + bσ2 + cσ3. (S2)

It is easy to see that a = 0, since E1(W ) = 0. Hence,

C−γ1 ≈ C−γ1

(
1− γ

C1

bσ2 − γ

C1

cσ3
)
. (S3)

Moreover, by (S1) and (S2),

C−γ1 ≈ E1

[(
C1 − (1 + r)bσ2 − (1 + r)cσ3 + σW

)−γ]
,
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from which it follows that

C−γ1 ≈ C
−γ
1 E1

[
1 +

γ

C1

(1 + r)bσ2 +
γ

C1

(1 + r)cσ3 − γ

C1

σW

+
γ(γ + 1)

2

(
1

C1

)2

σ2W 2 − γ(γ + 1)

(
1

C1

)2

(1 + r)bσ3W

−γ(γ + 1)(γ + 2)

6

(
1

C1

)3

σ3W 3

]
. (S4)

Finally, equating the coefficients of σ2 and σ3 in (S3) and (S4), using that E1(W ) = 0, and

denoting as R = (1 + r)X1 + E1(Y2) the expected period-2 resources, we obtain

b = −γ + 1

2R
E1(W

2), c =
(2 + r)(γ + 1)(γ + 2)

6R2
E1(W

3).

This yields the following expression for period-1 consumption

C1 ≈
(1 + r)X1 + E1(Y2)

2 + r︸ ︷︷ ︸
certainty equivalent

−γ + 1

2R
E1((Y2 − E1(Y2))

2)︸ ︷︷ ︸
precautionary (variance)

+
(2 + r)(γ + 1)(γ + 2)

6R2
E1((Y2 − E1(Y2))

3)︸ ︷︷ ︸
precautionary (skewness)

.

(S5)

Note that E1((Y2−E1(Y2))
2) is the conditional variance of Y2, and E1((Y2−E1(Y2))

3) is its condi-

tional third-order moment.

Example: a simple nonlinear earnings process. To illustrate the effect of earnings shocks

on consumption in this model, we consider the following simple earnings process (in levels):

Y2 = Y D
2 + ρ(Y P

1 , V2)Y
P
1 + V2 + Y T

2 ,

where Y D
2 is the deterministic component, Y P

2 = ρ(Y P
1 , V2)Y

P
1 +V2 is the persistent component, and

Y T
2 is the transitory component. We set ρ(Y P

1 , V2) = 1− δ if (Y P
1 < −c, V2 > b) or (Y P

1 > c, V2 <

−b), and ρ(Y P
1 , V2) = 1 otherwise. Moreover, Pr(V2 > b) = Pr(V2 < −b) = τ , with τ < 1/2, and

we assume that V2 and Y T
2 are symmetrically distributed with zero mean. This earnings process

has the following properties:

• If |Y P
1 | ≤ c, then the process coincides with the “canonical” earnings model (in levels). So

E1(Y2) = Y D
2 + Y P

1 , E1((Y2 − E1(Y2))
2) = Var(V2) + Var(Y T

2 ), and E1((Y2 − E1(Y2))
3) = 0.

• If |Y P
1 | > c, E1(Y2) = Y D

2 + (1− δτ)Y P
1 (“state-dependent persistence”).

• If |Y P
1 | > c, E1((Y2−E1(Y2))

2) = τ(1−τ)δ2(Y P
1 )2+2τδE(V2|V2 > b)|Y P

1 |+Var(V2)+Var(Y T
2 )

(“state-dependent risk”).

• Lastly, if Y P
1 < −c, E1((Y2 − E1(Y2))

3) > 0, and if Y P
1 > c, E1((Y2 − E1(Y2))

3) < 0 (“state-

dependent skewness”). For example, if Y P
1 < −c we have

E1((Y2 − E1(Y2))
3) = −τ(1− 2τ)δY P

1

[
(1− τ)δ2(Y P

1 )2 − 3δY P
1 E(V2|V2 > b)

+3(E(V 2
2 |V2 > b)− E(V 2

2 ||V2| ≤ b))
]

> 0.
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Discussion. State-dependent persistence implies that low and high earnings households respond

less to variations in Y P
1 than middle-earnings households. Low-earnings households save less than

in the canonical linear model, while high-earnings households save more.

State-dependent risk implies that both low and high earnings households save more than in the

canonical model because of higher variability of earnings. As shown by (S5), the effect is increasing

in risk aversion and higher for low assets households. Note that the effect is scaled by expected

resources R. Compared to the canonical linear earnings model, this effect will tend to increase

savings for high earnings households and decrease savings for low earnings households.

Lastly, state-dependent skewness implies that, compared to the canonical model, high earnings

households save more, and low earnings households save less.

Overall, the comparative statics for high earnings households are unambiguous, while the com-

bined effect for low-earnings households is ambiguous.1

S2 Simulations of a life-cycle model

Here we present an illustrative simulation to show some possible implications on consumption and

assets of nonlinearity in income in the standard model outlined in Section 3. We start by comparing

the linear canonical earnings model with a simple nonlinear earnings model which features the

presence of “unusual” earnings shocks. We then report simulations based on the nonlinear earnings

process we estimated on the PSID.

S2.1 Simulation exercise

To simulate the model we follow Kaplan and Violante (2010). Each household enters the labor

market at age 25, works until 60, and dies with certainty at age 95. After retirement, families receive

social security transfers Y ss
i from the government, which are functions of the entire realizations of

labor income. Income is assumed not to be subject to risk during retirement. Agents’ utility is

CRRA with risk aversion γ = 2. The interest rate is r = 3% and the discount factor is β =

1/(1 + r) ≈ .97. We consider the following process for ηit:

ηit = ρt(ηi,t−1, vit)ηi,t−1 + vit, (S6)

and we compare two specifications. In the first specification, ρt = 1 (and vit is normally distributed),

which corresponds to the “canonical” earnings model used by Kaplan and Violante.2 In the second

specification, nonlinear persistence in income is approximated through a simple switching process:

ρt
(
ηi,t−1, vit

)
= 1− δ

(
1
{
ηi,t−1 < −dt−1

}
1 {vit > bt}+ 1

{
ηi,t−1 > dt−1

}
1 {vit < −bt}

)
, (S7)

where, at each age t, dt is set so that |ηit| > dt with probability π, and bt is set so that |vit| > bt
with probability π. In model (S6)-(S7), the persistence of the η process is equal to one unless an

“unusual” positive shock v hits a low income household or an “unusual” negative shock v hits a high

income household, leading persistence to drop to 1 − δ = .8. The latter happens with probability

π = .15 in every period. Details on the simulation are provided below.

1Note that here A1 is taken as exogenous. In a complete model of the life cycle, household assets will be
different when facing a nonlinear or a linear (“canonical”) earnings process.

2Kaplan and Violante (2010) also consider a more general AR(1) log-earnings process.
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The simple parametric process (S7) is designed to roughly approximate the earnings process

that we estimate on PSID data, see Section 6. It is worth noting that, since our flexible, quantile-

based process is first-order Markov, it is easy to take the estimated η process to simulate, and

possibly estimate, life-cycle models of consumption and saving such as the one we focus on here.

In Subsection S2.3 of this Supplementary Appendix we show the results of using the nonlinear

dynamic quantile earnings model we estimated on PSID data as an input in this simple life-cycle

simulation model.

The simulation results are presented in Figure S35. In the simulation we use a natural borrowing

limit.3 Graphs (a)-(b) show that a qualitative implication of the nonlinear earnings process is to

reduce consumption among those on higher incomes. A negative shock for those on higher incomes

reduces the persistence of the past and consequently is more damaging in terms of expected future

incomes. This induces higher saving and lower consumption at younger ages. Conversely, we see

that consumption is (slightly) higher for the nonlinear process for those on lower income. Graphs

(c)-(d) show that the nonlinear model also results in a higher consumption variance among older

households, and steeper accumulation and subsequent decumulation of assets over the life cycle. In

addition, in graph (e) we report estimates of the average derivative of the conditional mean of log-

consumption with respect to log-earnings, holding assets and age fixed at percentiles indicated on

the two horizontal axes. We see that in the simulated economy consumption responses to changes in

earnings tend to decrease with age and, to a lesser extent, the presence of assets. These simulation

results provide further motivation for the use of a nonlinear earnings model to study consumption

dynamics.

S2.2 Details on the simulations

Agents live for T periods, and work until age Tret, where both T and Tret are exogenous and fixed.

ξt is the unconditional probability of surviving to age t, where ξt = 1 before retirement, and ξt < 1

after retirement. Households have expected life-time utility

E0

T∑
t=1

βt−1ξtu (Cit) .

During working years 1 ≤ t < Tret, agents receive after-tax labor income Yit, which is de-

composed into a deterministic experience profile κt, a permanent component ηit, and a transitory

component εit:

lnYit = κt + yit,

yit = ηit + εit.

We consider the following process for ηit

ηit = ρt
(
ηi,t−1, vit

)
ηi,t−1 + vit,

where ηi0 is drawn from an initial normal distribution with mean zero and variance σ2η0 . The shocks

εit and vit have mean zero, are normally distributed with variances σ2ε and σ2vt . The persistence

of the η process is approximated as (S7) where, at each age t, dt is set so that |ηit| > dt with

probability π, and bt is set so that |vit| > bt with probability π. We set π = .15 and 1− δ = .8.

3Results for a zero borrowing limit are given in Figure S36.
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Define gross labor income as Ỹit, with Ỹit = G (Yit), where G function is the inverse of a tax

function estimated by Gouveia and Strauss (1994).4 After retirement, agents receive after-tax

social security transfers Y ss, which are a function of lifetime average individual gross earnings

P
(

1
Tret−1

∑Tret−1
t=1 Ỹit

)
.

Lastly, throughout their lifetime households have access to a single risk-free, one-period bond

whose constant return is 1 + r, and face a period-to-period budget constraint

Ai,t+1 = (1 + r)Ait + Yit − Cit, if t < Tret,(
ξt
ξt+1

)
Ai,t+1 = (1 + r)Ait + Y ss − Cit, if t ≥ Tret.

For the calibration we use Kaplan and Violante’s (2010, KV hereafter) preferred parameters.

Specifically we use the following:

Demographics. The model period is one year. Agents enter the labor market at age 25, retire

at age 60, and die with certainty at age 95. So we set Tret = 35 and T = 70. The survival rates ξt
are obtained from the National Center for Health Statistics (1992).

Preferences. We assume the utility function is of the CRRA form u (C) = C1−γ/ (1− γ), where

the risk aversion parameter is set to γ = 2.

Discount factor and interest rate. The interest rate r is assumed to equal 3%. We set the

discount factor β to match an aggregate wealth-income ratio of 2.5, which is the average wealth to

average income ratio computed from the 1989 and 1992 Survey of Consumer Finances.

Income process. We use KV’s choice of deterministic age profile κt, which is estimated from

the PSID. The estimated profile peaks after 21 years of labor market experience at roughly twice

the initial value, and then it slowly declines to about 80% of the peak value. For the stochastic

components of the income process, we set the initial variance of the permanent shocks σ2η0 = .15

to match the dispersion of household earnings at age 25. We set the variance of transitory shocks

σ2ε = .05, which is the value estimated by Blundell, Pistaferri and Preston (2008). The permanent

component follows the nonlinear switching process (S7). In order to make its variance comparable

with the random walk process in KV, we calibrate σ2vt to match the dispersion of age-specific

variance of ηit in KV.

Initial wealth and borrowing limit. Households’ initial assets are set to 0. We impose two

alternative borrowing limits: either a natural borrowing limit, in which the agent cannot die with

debt, or a zero borrowing limit, in which the agent’s net worth can not fall below zero.

4The tax function is

τ
(
Ỹit

)
= 0.258×

[
Ỹit −

(
Ỹ −0.768it + τs

)− 1
0.768

]
,

where τs is chosen so that the ratio of total personal current tax receipts on labor income (not including
social security contributions) to total labor income is the same as for the US economy in 1990, i.e. roughly
25%.
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Social security benefits. This setup follows KV exactly. Social security benefits are a function

of lifetime average individual gross earnings Y ss = P
(

1
Tret−1

∑Tret−1
t=1 Ỹit

)
. The P function is

designed to mimic the actual US system. This is achieved by specifying that benefits are equal to

90% of average past earnings up to a given bend point, 32% from this first bend point to a second

bend point, and 15% beyond that. The two bend points are set at, respectively, 0.18 and 1.10 times

cross-sectional average gross earnings, based on the US legislation and individual earnings data for

1990. Benefits are then scaled proportionately so that a worker earning average labor income each

year is entitled to a replacement rate of 45%.

Discretization of the earnings process. In order to use the switching process (S7) in

the life-cycle model, we compute age-specific Markov transition probabilities using a simulation

approach, as follows.

1. Based on the process (S7), we simulate one million households throughout their working

years.

2. At each age, we rank households by their earnings and put them into 40 different bins. We

then count the transitions between any two bins from two neighboring ages, and estimate

transition probabilities.

S2.3 Simulations based on the estimated nonlinear earnings model

In this subsection we report the results of a simulation exercise closely related to the one shown

in the first part of this section, except that it is based on the nonlinear quantile-based earnings

process that we estimated on the PSID. Calibration and simulation details are similar to the ones

above, with a few differences. In order to ensure comparability with the data, we let each household

enter the model at age 25, work until 61, and die at age 93. As the PSID is biennial, we set each

period in the model to be equal to two years. There is one risk-free asset with a constant interest

rate r = 1.032 − 1 ≈ 6%, and the discount factor is set to β = (1 + r)−1. We impose a natural

borrowing limit in the simulation.

We simulate life-cycle profiles for one million households. When discretizing persistent and

transitory earnings components, we use 100 bins for the former and 80 bins for the latter. We

checked that the discretized process fits the nonlinear persistence in Figure 1 well. We remove

age-specific means in the persistent component (which may be different from zero for the particular

cohort for which we are performing the simulation). In order to ensure comparability with a

canonical linear earnings process, in the nonlinear process we compute age-specific variances of

transitory shocks and target the age profile of the variance of the persistent component, and we set

the parameters of the linear process (that is, a random walk plus an independent shock) using the

resulting values.

The results of the simulation are presented in Figure S37. As in Figure S35, we see that

households on higher incomes tend to consume less when exposed to the nonlinear process than to

the linear one. Conversely, consumption is slightly higher for the nonlinear process for those on

lower income. Consumption and asset variance are lower for the nonlinear process, similarly as in

Figure S35, although the differences between the two processes are stronger in Figure S37, which

is based on the process estimated on PSID.5 Lastly, the marginal propensity to consume out of

5Differences in scale with Figure S35 are due to the different period considered in this paper relative to
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earnings in panel (e) tends to decrease with age and the presence of assets, similarly to what we

found in the PSID.

S3 Extensions

Here we consider four extensions of the model: to allow for unobserved heterogeneity in earnings,

dependent ε, advance earnings information, and consumption habits, respectively. The estimation

strategy can be modified to handle each of these extensions.

S3.1 Unobserved heterogeneity in earnings

It is possible to allow for unobserved heterogeneity in earnings, in addition to heterogeneity in the

initial condition ηi1. Specifically, let ηit be a first-order Markov process conditional on another

latent component ζi:

ηit = Qt(ηi,t−1, ζi, uit), (S8)

where uit is i.i.d. standard uniform, independent of ηt−1i and ζi. εit is independent over time,

independent of ηis for all s, and independent of ζi.

With a vector-valued ζi, (S8) would nest linear earnings models with slope heterogeneity as in

Guvenen (2007) and Guvenen and Smith (2014), for example. A simpler case is our baseline model

(1)-(2) augmented with a household-specific fixed-effect, that is equation (20) in the paper.

Consider the scalar-ζi case for concreteness, and take T = 5. In this model, (yi1, yi2), yi3, and

(yi4, yi5) are conditionally independent given (ηi3, ζi).
6 By Hu and Schennach (2008)’s theorem,

for bivariate latent (ηi3, ζi), and under suitable injectivity conditions, the marginal distribution of

εi3 is thus identified given five periods of earnings data. As a result, the joint density of η’s is

identified by a similar argument as in Section 4. Identification of the densities of ζi and of ηit given

(ηi,t−1, ζi) can then be shown along the lines of Hu and Shum (2012), under a suitable “scaling”

condition. A scaling condition is implicit in equation (20), which is the model we implement.

S3.2 Dependence in the transitory earnings component

In the baseline model εit are independent over time. It is possible to allow for serial dependence

while maintaining identification. To see this, consider the setup where εit is an m-dependent process

with m = 1 (for example, an MA(1) process), and consider a panel with T ≥ 5 periods. Then it is

easy to see that yi1, yi3 and yi5 are conditionally independent given ηi3. As a result, identification

arguments based on “Hidden Markov” structures (Hu and Schennach, 2008, Wilhelm, 2015) can

be applied.

Kaplan and Violante (2010) and different parameter choices. Also, note that consumption data in the PSID
waves which we use only capture a share of consumption expenditures, and similarly for assets. This can
explain the differences between the levels in Figure S37 and the descriptive statistics reported in Table C1.

6Indeed,

f(y1, y2, y3, y4, y5|η3, ζ) = f(y1, y2|η3, ζ)f(y3|η3, ζ, y1, y2)f(y4, y5|η3, ζ, y3, y2, y1)

= f(y1, y2|η3, ζ)f(y3|η3, ζ)f(y4, y5|η3, ζ).
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S3.3 Advance information

If households have advance information about future earnings shocks, the consumption rule (10)

takes future earnings components as additional arguments, see Blundell et al. (2008). For exam-

ple, consider a model where households know the realization of the one-period-ahead persistent

component, in which case

cit = gt
(
ait, ηit, ηi,t+1, εit, νit

)
, t = 1, ..., T − 1. (S9)

Identification can be established using similar arguments as in the baseline model. To see this,

consider first period’s consumption. We have

f(c1|a1, y) =

∫ ∫
f(c1|a1, η1, η2, y1)f(η1, η2|a1, y)dη1dη2.

It can be shown that f(η1, η2|a1, y) is identified under completeness in (yi2, ..., yiT ) of the distri-

bution of (ηi1, ηi2|yi), using the earnings process and first period’s assets. If the distribution of

(ηi1, ηi2|ai1, yi) is complete in (yi2, ..., yiT ) it thus follows that f(c1|a1, η1, η2, y1) is identified. In

this case we need at least two “excluded instruments” in yi for (ηi1, ηi2). The other steps in the

identification arguments of Section 4 can be similarly adapted.

Lastly, similar arguments can be used to show identification in models where households have

advance information about future transitory shocks εi,t+s, as well as in models where the con-

sumption rule depends on lags of η’s or ε’s, for example in models where ηit follows a higher-order

Markov process.

S3.4 Consumption habits

In the presence of habits, the consumption rule takes the form

cit = gt (ci,t−1, ait, ηit, εit, νit) , t = 2, ..., T. (S10)

Identification can be shown under similar conditions as in Section 4. For example, in the second

period equation (18) becomes

f(c2|c1, a2, a1, y) =

∫
f(c2|c1, a2, η2, y2)f(η2|c1, a2, a1, y)dη2.

Provided the distribution of (ηi2|ci1, ai2, ai1, yi) is identified, and complete in (ai1, yi1, yi3, ..., yiT ),

it thus follows that the density f(c2|c1, a2, η2, y2) is identified. Intuitively, in the presence of habits

the first lag of consumption cannot be used as an “excluded instrument” since it affects second

period’s consumption directly.

S4 Summary of the argument in Wilhelm (2015)

We consider model (1)-(2) with T = 3. We omit i subscripts for conciseness. Let L2(f) denote the

set of squared-integrable functions with respect to a weight function f . We define Ly2|y1 as the linear

operator such that Ly2|y1h(a) = E [h(y2)|y1 = a] ∈ L2(fy1) for every function h ∈ L2(fy2). Similarly,

let Lη2|y1 be such that Lη2|y1h(a) = E [h(η2)|y1 = a] ∈ L2(fy1) for every function h ∈ L2(fη2). We

denote as R
(
Ly2|y1

)
the range of Ly2|y1 , that is

R
(
Ly2|y1

)
= {k ∈ L2(fy1), s.t. k = Ly2|y1h for some h ∈ L2(fy2)}.
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We assume the following, in addition to the Markovian and independence assumptions on η’s

and ε’s.

Assumption S1

(i) Ly2|y1 and Lη2|y1 are injective.

(ii) There exists a function h ∈ L2(fy3) such that

E [h(y3)|y1 = ·] ∈ R
(
Ly2|y1

)
, and (S11)

E [y2h(y3)|y1 = ·] ∈ R
(
Ly2|y1

)
. (S12)

Thus, there exist s1 and s2 in L2(fy2) such that

E [h(y3)|y1 = ·] = Ly2|y1s1, and E [y2h(y3)|y1 = ·] = Ly2|y1s2.

(iii) Let s̃1(y) = ys1(y). The Fourier transforms F(s1), F(s̃1), and F(s2) (where F(h)(u) =∫
h(x)eiuxdx) are ordinary functions. Moreover, F(s1)(u) 6= 0 for all u ∈ R.

Part (i) is an injectivity/completeness condition. Part (ii) is not standard. It is related to the

existence problem in nonparametric instrumental variables. Horowitz (2009) proposes a test for

(S11) in the case where Ly2|y1 is a compact operator. Part (iii) is a high-level assumption. See

Wilhelm (2015) for more primitive conditions.

By Assumption S1-(ii) we have, almost surely in y1,

E [h(y3)|y1] = E [s1(y2)|y1] ,
E [y2h(y3)|y1] = E [s2(y2)|y1] .

Moreover, s1 and s2 are the unique solutions to these equations by Assumption S1-(i).

Hence, given the model’s assumptions

E [E (h(y3)|η2) |y1] = E [E (s1(y2)|η2) |y1] a.s.

It thus follows from the injectivity of Lη2|y1 in Assumption S1-(i) that, almost surely in η2,

E [h(y3)|η2] = E [s1(y2)|η2] . (S13)

Likewise, E [y2h(y3)|η2] = E [s2(y2)|η2]. Hence

η2E [h(y3)|η2] = E [s2(y2)|η2] a.s. (S14)

Combining (S13) and (S14), we obtain

η2E [s1(y2)|η2] = E [s2(y2)|η2] a.s.

That is, almost surely in η2,

η2

∫
s1(y)fε2(y − η2)dy =

∫
s2(y)fε2(y − η2)dy. (S15)
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The functional equation (S15) depends on s1 and s2, which are both uniquely determined given

the data generating process, and on the unknown fε2 . By Assumption S1-(iii) we can take Fourier

transforms and obtain

iF(s1)(u)
dψε2(−u)

du
+ F(s̃1)(u)ψε2(−u) = F(s2)(u)ψε2(−u), (S16)

where ψε2(u) = F(fε2)(u) is the characteristic function of ε2.

Noting that ψε2(0) = 1, (S16) can be solved in closed form for ψε2(·), because F(s1)(u) 6= 0

for all u by Assumption S1-(iii). This shows that the characteristic function of ε2, and hence its

distribution function, are identified.
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S5 Additional figures

Figure S1: Nonlinear earnings persistence in log-wages (PSID, males) and individual income
(Norwegian population register data)

(a) PSID (b) Norwegian administrative data

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

1.2

percentile τ
shock

percentile τ
init

p
e
rs

is
te

n
ce

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

1.2

percentile τ
shock

percentile τ
init

p
e
rs

is
te

n
ce

Note: Estimates of the average derivative of the conditional quantile function of yit given yi,t−1 with

respect to yi,t−1, evaluated at percentile τ shock and at a value of yi,t−1 that corresponds to the τ init
percentile of the distribution of yi,t−1. Age 25-60. Left: PSID, male log hourly wage residuals, 1999-

2009; right: Results from the Norwegian population register data, individual log-earnings residuals,

years 2005-2006, see Appendix C; are provided as part of the project on ‘Labour Income Dynamics

and the Insurance from Taxes, Transfers and the Family’.
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Figure S2: Nonlinear persistence, piecewise-linear specification quantile regression

(a) Three sub-intervals (b) Five sub-intervals
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Note: See the notes to Figure 2. Piecewise-linear quantile regression with 3 and 5 equally-spaced

sub-intervals.

Figure S3: Nonlinear persistence of ηit, averaged over ages

(a) Persistent component ηit, nonlinear model
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Note: Estimates of the average derivative of the conditional quantile function of ηit on ηi,t−1 with

respect to ηi,t−1, based on estimates from the nonlinear earnings model, averaged over all ages of

household heads.
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Figure S4: Conditional dispersion of log-earnings residuals (fit) and η component

(a) Log-earnings residuals yit (b) Persistent component ηit
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Note: Conditional dispersion σ(y, τ) = Q(τ |yi,t−1 = y) − Q(1 − τ |yi,t−1 = y) and σ(η, τ), for

τ = 11/12. Log-earnings residuals (left) and η component (right). On the left graph, dark is data

and light is model fit. The x-axis shows the conditioning variable, the y-axis shows the corresponding

value of the conditional dispersion measure.

Figure S5: Conditional skewness of log-earnings residuals, fit

(a) Log-earnings residuals yit
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Note: Conditional skewness sk(y, τ), see equation (6), for τ = 11/12. Log-earnings residuals. The

x-axis shows the conditioning variable, the y-axis shows the corresponding value of the conditional

skewness measure. Dark is PSID data, light is nonlinear model.
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Figure S6: Skewness of log-earnings residuals growth at various horizons, fit

(a) Skewness
Nonlinear model
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Note: Robust skewness estimate of yit − yi,t−s, at various horizons s (reported on the x-axis),

computed according to the formula sk(τ , α) = Q(τ)+Q(1−τ)−2Q(1/2)
Q(τ)−Q(1−τ) , where Q denote unconditional

quantiles, and τ = 11/12. Dark is PSID data, light is nonlinear model.

Figure S7: Kurtosis of log-earnings residuals growth at various horizons, fit

(a) Kurtosis
Nonlinear model
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Note: Robust kurtosis estimate of yit − yi,t−s, at various horizons s (reported on the x-axis), com-

puted according to the formula kur(τ , α) = Q(1−α)−Q(α)
Q(τ)−Q(1−τ) , where Q denote unconditional quantiles,

τ = 10/12, and α = 1/12. Dark is PSID data, light is nonlinear model, and the horizontal line

denotes the values of kur(τ , α) for a normal distribution.
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Figure S8: Densities of log-earnings growth at various horizons

(a) 2-year (b) 4-year (c) 6-year
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Note: Estimated density of yit− yi,t−s, at various horizons s. Dark is PSID data, light is nonlinear

model. Added to each graph is the Gaussian density with zero mean and the same variance as in

the data.
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Figure S9: Nonlinear persistence in earnings, 95% pointwise confidence bands

(a) PSID data (b) Nonlinear model

Parametric bootstrap
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Note: See notes to Figure 2. Pointwise 95% confidence bands. 500 replications. Parametric

bootstrap is based on the point estimates. Nonparametric bootstrap is clustered at the household

level.
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Figure S10: Nonlinear persistence in earnings, 95% uniform confidence bands

(a) PSID data (b) Nonlinear model
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Note: See notes to Figure 2. Nonparametric bootstrap clustered at the household level. Uniform

95% confidence bands. 500 replications.

Figure S11: Nonlinear persistence in ηit, 95% pointwise confidence bands

Persistent component ηit, nonlinear model

(a) Parametric bootstrap (b) Nonparametric bootstrap
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Note: See notes to Figure 2. Pointwise 95% confidence bands. 500 replications. Parametric

bootstrap is based on the point estimates. Nonparametric bootstrap is clustered at the household

level.
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Figure S12: Nonlinear persistence in ηit, 95% uniform confidence bands

Persistent component ηit, nonlinear model

Nonparametric bootstrap
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Note: See notes to Figure 2. Nonparametric bootstrap clustered at the household level. Uniform

95% confidence bands. 500 replications.
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Figure S13: Conditional skewness of log-earnings residuals and η component, 95% pointwise
confidence bands

(a) Log-earnings residuals yit (b) Persistent component ηit
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Note: See notes to Figure 4. Pointwise 95% confidence bands. 500 replications. Parametric

bootstrap is based on the point estimates. Nonparametric bootstrap is clustered at the household

level.
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Figure S14: Conditional skewness of log-earnings residuals and η component, 95% uniform
confidence bands

(a) Log-earnings residuals yit (b) Persistent component ηit

Nonparametric bootstrap
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Note: See notes to Figure 2. Nonparametric bootstrap clustered at the household level. Uniform

95% confidence bands. 500 replications.
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Figure S15: Household heterogeneity in earnings

(a) Nonlinear persistence of ηit (b) Conditional skewness of ηit
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Note: (a) Estimates of the average derivative of the conditional quantile function of ηit on ηi,t−1 with

respect to ηi,t−1, based on estimates from the nonlinear earnings model with an additive household-

specific effect. (b) Conditional skewness sk(η, τ), see equation (6), for τ = 11/12, based on the

same model.
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Figure S16: Conditional skewness, Norwegian administrative data

(a) Family income (b) Individual income
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Note: Conditional skewness of log-earnings measured as in (6) for τ = 1/10. Age 25-60, years

2005-2006.
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Figure S17: Nonlinear persistence, Norwegian data

(a) Earnings, Norwegian data (b) Earnings, nonlinear model

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

1.2

percentile τ
shock

percentile τ
init

p
e
rs

is
te

n
ce

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

1.2

percentile τ
shock

percentile τ
init

p
e
rs

is
te

n
ce

(c) Persistent component ηit, nonlinear model
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Note: See the notes to Figure 2. Random subsample of 2,873 households, from 2000 − 2005 Nor-

wegian administrative data, non-immigrant residents, age 30 to 60.

23



Figure S18: Conditional skewness of log-earnings residuals and η component, Norwegian
data

(a) Log-earnings residuals yit (b) Persistent component ηit
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Note: See the notes to Figure 4. Random subsample of 2,873 households, from 2000 − 2005 Nor-

wegian administrative data, non-immigrant residents, age 30 to 60.

Figure S19: Densities of persistent and transitory earnings components, Norwegian data

(a) Persistent component ηit (b) Transitory component εit
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Note: See the notes to Figure 3. Random subsample of 2,873 households, from 2000 − 2005 Nor-

wegian administrative data, non-immigrant residents, age 30 to 60.
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Figure S20: Density of log-consumption in the data and model, with and without unobserved
heterogeneity

Density of log-consumption

(a) Data (b) No unobserved heterogeneity (c) Unobserved heterogeneity
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Note: Source PSID and nonlinear consumption model. Kernel density estimates. Dashed is Gaus-

sian fit.

Figure S21: Consumption responses to transitory earnings shocks, by assets and age

Consumption response to εit, nonlinear model

(a) No unobserved heterogeneity (b) Unobserved heterogeneity
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Note: Estimates of the average consumption responses to variations in εit, evaluated at τassets and

τage.
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Figure S22: Consumption responses to earnings shocks, by assets and age, 95% pointwise
confidence bands

(a) Consumption response to ηit (b) Consumption response to εit
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Note: See notes to Figures 5 and S21. Pointwise 95% confidence bands. 200 replications. Paramet-

ric bootstrap is based on the point estimates. Nonparametric bootstrap is clustered at the household

level.
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Figure S23: Consumption responses to earnings shocks, by assets and age, 95% uniform
confidence bands

(a) Consumption response to ηit (b) Consumption response to εit
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Nonparametric bootstrap
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Note: See notes to Figures 5 and S21. Nonparametric bootstrap clustered at the household level.

Uniform 95% confidence bands. 200 replications.

Figure S24: Consumption responses to earnings shocks, by assets and age, model with
household-specific unobserved heterogeneity

(b) Response to earnings (c) Response to ηit
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0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0.1

0.2

0.3

0.4

percentile τ
agepercentile τ

assets

c
o
n
s
u
m

p
ti
o
n
 r

e
s
p
o
n
s
e

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.1

0.2

0.3

0.4

0.5

percentile τ
agepercentile τ

assets

c
o
n
s
u
m

p
ti
o
n
 r

e
s
p
o
n
s
e

Note: See the notes to Figure 5. Consumption and assets model with household-specific unobserved

heterogeneity.
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Figure S25: Consumption responses to assets, model with unobserved heterogeneity

(b) Given yit (c) Given ηit
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Note: See the notes to Figure 6. Model with unobserved heterogeneity.
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Figure S26: Impulse responses, earnings, 95% pointwise confidence bands

Nonlinear model
τ init = .1

(a) τ shock = .1 (b) τ shock = .9
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(c) τ shock = .1 (d) τ shock = .9
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Note: See notes to Figure 7. Point estimates and pointwise 95% confidence bands from re-centered

nonparametric bootstrap, clustered at the household level. 300 replications.
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Figure S27: Impulse responses, earnings, 95% uniform confidence bands

Nonlinear model
τ init = .1

(a) τ shock = .1 (b) τ shock = .9
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(c) τ shock = .1 (d) τ shock = .9
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Note: See notes to Figure 7. Point estimates and uniform 95% confidence bands from re-centered

nonparametric bootstrap, clustered at the household level. 300 replications.
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Figure S28: Impulse responses, consumption, 95% pointwise confidence bands

Nonlinear model
τ init = .1

(a) τ shock = .1 (b) τ shock = .9

35 37 39 41 43 45 47 49 51 53 55 57 59
−0.15

−0.1

−0.05

0

age

log
−c

on
su

mp
tio

n

35 37 39 41 43 45 47 49 51 53 55 57 59
0

0.05

0.1

0.15

age

log
−c

on
su

mp
tio

n

τ init = .5
(c) τ shock = .1 (d) τ shock = .9

35 37 39 41 43 45 47 49 51 53 55 57 59
−0.15

−0.1

−0.05

0

age

log
−c

on
su

mp
tio

n

35 37 39 41 43 45 47 49 51 53 55 57 59
0

0.05

0.1

0.15

age

log
−c

on
su

mp
tio

n

τ init = .9
(e) τ shock = .1 (f) τ shock = .9

35 37 39 41 43 45 47 49 51 53 55 57 59
−0.15

−0.1

−0.05

0

age

log
−c

on
su

mp
tio

n

35 37 39 41 43 45 47 49 51 53 55 57 59
0

0.05

0.1

0.15

age

log
−c

on
su

mp
tio

n

Note: See notes to Figure 8. Linear assets accumulation rule (7), r = 3%. ait ≥ 0. Point

estimates and pointwise 95% confidence bands from re-centered nonparametric bootstrap, clustered

at the household level. 300 replications.
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Figure S29: Impulse responses, consumption, 95% uniform confidence bands

Nonlinear model
τ init = .1

(a) τ shock = .1 (b) τ shock = .9
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Note: See notes to Figure 8. Linear assets accumulation rule (7), r = 3%. ait ≥ 0. Point

estimates and uniform 95% confidence bands from re-centered nonparametric bootstrap, clustered

at the household level. 300 replications.
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Figure S30: Impulse responses, consumption, model with household unobserved heterogene-
ity in consumption

τ init = .1
(a) τ shock = .1 (b) τ shock = .9
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Note: See notes to Figure 8. Nonlinear model with household unobserved heterogeneity in consump-

tion. Linear assets accumulation rule (7), r = 3%. ait ≥ 0.
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Figure S31: Impulse responses, consumption, model without household unobserved hetero-
geneity in consumption, nonlinear assets rule

Nonlinear model
τ init = .1

(a) τ shock = .1 (b) τ shock = .9
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(e) τ shock = .1 (f) τ shock = .9
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Note: See the notes to Figure 8. Estimated nonlinear assets rule.
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Figure S32: Impulse responses, consumption, model with household unobserved heterogene-
ity in consumption, nonlinear assets rule

τ init = .1
(a) τ shock = .1 (b) τ shock = .9
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Note: See notes to Figure S31. Nonlinear model with household unobserved heterogeneity in con-

sumption. Estimated nonlinear assets rule.
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Figure S33: Impulse responses by age and initial assets

Consumption, model with unobserved heterogeneity
τ init = .9, τ shock = .1 τ init = .1, τ shock = .9

(a) Young (b) Old (c) Young (d) Old
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Note: See notes to Figures 8 and S30. Initial assets at age 35 (for “young” households) or 51 (for

“old” households) are at percentile .10 (dashed curves) and .90 (solid curves). Linear assets accu-

mulation rule (7), r = 3%. ait ≥ 0. In the simulation of the model with unobserved heterogeneity

ξi is set to zero.
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Figure S34: Impulse responses by age and initial assets, nonlinear assets rule

Consumption, model without unobserved heterogeneity
τ init = .9, τ shock = .1 τ init = .1, τ shock = .9

(a) Young (b) Old (c) Young (d) Old
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Consumption, model with unobserved heterogeneity
τ init = .9, τ shock = .1 τ init = .1, τ shock = .9

(e) Young (f) Old (g) Young (h) Old
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Note: See notes to Figure S31. Initial assets at age 35 (for “young” households) or 51 (for “old”

households) are at percentile .10 (dashed curves) and .90 (solid curves). Estimated nonlinear assets

rule. In the simulation of the model with unobserved heterogeneity ξi is set to zero.
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Figure S35: Simulation exercise

(a) Consumption, age 37 (b) Average consumption
by decile of ηi,t−1 over the life cycle
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(c) Consumption variance (d) Assets variance
over the life cycle over the life cycle
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(e) Consumption response to earnings
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Notes: In the top four panels, dashed is based on the nonlinear earnings process (S6)-(S7), solid

is based on the canonical earnings process (3). Panel (e): estimate of the average derivative of

the conditional mean of log-consumption with respect to log-earnings, given earnings, assets and

age, evaluated at values of assets and age that corresponds to their τassets and τage percentiles,

and averaged over the earnings values. Quantile regression on polynomials, see Section 6 for a

description.
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Figure S36: Simulation exercise, no borrowing

(a) Consumption, age 37 (b) Average consumption
by decile of ηi,t−1 over the life cycle
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(c) Consumption variance (d) Assets variance
over the life cycle over the life cycle
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(e) Consumption response to earnings
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Notes: In the top four panels, dashed is based on the nonlinear earnings process (S6)-(S7), solid

is based on the canonical earnings process (3). Panel (e): estimate of the average derivative of

the conditional mean of log-consumption with respect to log-earnings, given earnings, assets and

age, evaluated at values of assets and age that corresponds to their τassets and τage percentiles, and

averaged over the earnings values. Assets are constrained to be non-negative.
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Figure S37: Simulations based on the estimated nonlinear earnings model

(a) Consumption, age 37 (b) Average consumption
by decile of ηi,t−1 over the life cycle
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(e) Consumption response to earnings

0
1

0.2

0.8 1

0.4

co
n

su
m

p
tio

n
 r

e
sp

o
n

se

0.6 0.8

0.6

percentile τ
assets

0.6

percentile τ
age

0.4

0.8

0.40.2 0.2
0 0

Notes: In the top four panels, dashed is based on the nonlinear quantile-based earnings process

estimated on the PSID, solid is based on a comparable canonical earnings process. Panel (e):

estimate of the average derivative of the conditional mean of log-consumption with respect to log-

earnings, given earnings, assets and age, evaluated at values of assets and age that corresponds to

their τassets and τage percentiles, and averaged over the earnings values.
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