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S1. CONSUMPTION RESPONSES IN A TWO-PERIOD MODEL

CONSIDER A STANDARD TWO-PERIOD SETUP, with a single risk-free asset. Let At denote
beginning-of-period-t assets, and assume that A3 = 0. Agents have CRRA utility. The
Euler equation (assuming β(1 + r)= 1 for simplicity) is

C−γ
1 = E1

[(
(1 + r)A2 +Y2

)−γ]
�

where γ denotes risk aversion and the expectation is conditional on period-1 information.
Here we have used the budget constraint A3 = (1 + r)A2 +Y2 −C2 = 0. Equivalently,

C−γ
1 = E1

[(
(1 + r)2A1 + (1 + r)Y1 − (1 + r)C1 +Y2

)−γ]
� (S1)

Let X1 = (1 + r)A1 + Y1 denote “cash on hand” (as in Deaton (1991)). Let also Y2 =
E1(Y2) + σW . We will expand the Euler equation as σ → 0. We denote the certainty
equivalent consumption level as

C1 = (1 + r)X1 +E1(Y2)

2 + r �

Expanding in orders of magnitude of σ , we have

C1 ≈ C1 + aσ + bσ2 + cσ3� (S2)

It is easy to see that a= 0, since E1(W )= 0. Hence,

C−γ
1 ≈ C−γ

1

(
1 − γ

C1

bσ2 − γ

C1

cσ3

)
� (S3)

Moreover, by (S1) and (S2),

C−γ
1 ≈ E1

[(
C1 − (1 + r)bσ2 − (1 + r)cσ3 + σW )−γ]

�

from which it follows that

C−γ
1 ≈ C

−γ
1 E1

[
1 + γ

C1

(1 + r)bσ2 + γ

C1

(1 + r)cσ3 − γ

C1

σW

+ γ(γ+ 1)
2

(
1

C1

)2

σ2W 2 − γ(γ+ 1)
(

1

C1

)2

(1 + r)bσ3W (S4)

− γ(γ+ 1)(γ+ 2)
6

(
1

C1

)3

σ3W 3

]
�
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Finally, equating the coefficients of σ2 and σ3 in (S3) and (S4), using that E1(W )= 0,
and denoting as R= (1 + r)X1 +E1(Y2) the expected period-2 resources, we obtain

b= −γ+ 1
2R

E1

(
W 2

)
� c = (2 + r)(γ+ 1)(γ+ 2)

6R2 E1

(
W 3

)
�

This yields the following expression for period-1 consumption:

C1 ≈ (1 + r)X1 +E1(Y2)

2 + r︸ ︷︷ ︸
certainty equivalent

−γ+ 1
2R

E1

((
Y2 −E1(Y2)

)2)
︸ ︷︷ ︸

precautionary (variance)

(S5)

+ (2 + r)(γ+ 1)(γ+ 2)
6R2 E1

((
Y2 −E1(Y2)

)3)
︸ ︷︷ ︸

precautionary (skewness)

�

Note that E1((Y2 −E1(Y2))
2) is the conditional variance of Y2, and E1((Y2 −E1(Y2))

3) is
its conditional third-order moment.

Example: A Simple Nonlinear Earnings Process. To illustrate the effect of earnings shocks
on consumption in this model, we consider the following simple earnings process (in lev-
els):

Y2 = YD
2 + ρ(YP

1 � V2

)
YP

1 + V2 +YT
2 �

where YD
2 is the deterministic component, YP

2 = ρ(YP
1 � V2)Y

P
1 + V2 is the persistent com-

ponent, and YT
2 is the transitory component. We set ρ(YP

1 � V2) = 1 − δ if (YP
1 < −c�

V2 > b) or (YP
1 > c�V2 < −b), and ρ(YP

1 � V2) = 1 otherwise. Moreover, Pr(V2 > b) =
Pr(V2 < −b) = τ, with τ < 1/2, and we assume that V2 and YT

2 are symmetrically dis-
tributed with zero mean. This earnings process has the following properties:

• If |YP
1 | ≤ c, then the process coincides with the “canonical” earnings model

(in levels). So E1(Y2) = YD
2 + YP

1 , E1((Y2 − E1(Y2))
2) = Var(V2) + Var(YT

2 ), and
E1((Y2 −E1(Y2))

3)= 0.
• If |YP

1 |> c, E1(Y2)= YD
2 + (1 − δτ)YP

1 (“state-dependent persistence”).
• If |YP

1 |> c, E1((Y2 −E1(Y2))
2)= τ(1−τ)δ2(YP

1 )
2 +2τδE(V2|V2 > b)|YP

1 |+Var(V2)+
Var(YT

2 ) (“state-dependent risk”).
• Last, if YP

1 < −c, E1((Y2 − E1(Y2))
3) > 0, and if YP

1 > c, E1((Y2 − E1(Y2))
3) < 0

(“state-dependent skewness”). For example, if YP
1 <−c, we have

E1

((
Y2 −E1(Y2)

)3) = −τ(1 − 2τ)δYP
1

[
(1 − τ)δ2

(
YP

1

)2 − 3δYP
1 E(V2|V2 > b)

+ 3
(
E
(
V 2

2 |V2 > b
) −E

(
V 2

2 ||V2| ≤ b
))]
> 0�

Discussion. State-dependent persistence implies that low- and high-earnings households
respond less to variations in YP

1 than middle-earnings households. Low-earnings house-
holds save less than in the canonical linear model, while high-earnings households save
more.

State-dependent risk implies that both low- and high-earnings households save more
than in the canonical model because of higher variability of earnings. As shown by (S5),
the effect is increasing in risk aversion and higher for low-assets households. Note that
the effect is scaled by expected resources R. Compared to the canonical linear earnings
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model, this effect will tend to increase savings for high-earnings households and decrease
savings for low-earnings households.

Last, state-dependent skewness implies that, compared to the canonical model, high-
earnings households save more, and low-earnings households save less.

Overall, the comparative statics for high-earnings households are unambiguous, while
the combined effect for low-earnings households is ambiguous.1

S2. SIMULATIONS OF A LIFE-CYCLE MODEL

Here we present an illustrative simulation to show some possible implications on con-
sumption and assets of nonlinearity in income in the standard model outlined in Section 3.
We start by comparing the linear canonical earnings model with a simple nonlinear earn-
ings model which features the presence of “unusual” earnings shocks. We then report
simulations based on the nonlinear earnings process we estimated on the PSID.

S2.1. Simulation Exercise

To simulate the model, we follow Kaplan and Violante (2010). Each household enters
the labor market at age 25, works until 60, and dies with certainty at age 95. After re-
tirement, families receive Social Security transfers Yss

i from the government, which are
functions of the entire realizations of labor income. Income is assumed not to be subject
to risk during retirement. Agents’ utility is CRRA with risk aversion γ = 2. The interest
rate is r = 3% and the discount factor is β= 1/(1 + r)≈ �97. We consider the following
process for ηit :

ηit = ρt(ηi�t−1� vit)ηi�t−1 + vit� (S6)

and we compare two specifications. In the first specification, ρt = 1 (and vit is normally
distributed), which corresponds to the “canonical” earnings model used by Kaplan and
Violante.2 In the second specification, nonlinear persistence in income is approximated
through a simple switching process:

ρt(ηi�t−1� vit)= 1 − δ(1{ηi�t−1 <−dt−1}1{vit > bt}
(S7)

+ 1{ηi�t−1 > dt−1}1{vit <−bt}
)
�

where, at each age t, dt is set so that |ηit | > dt with probability π, and bt is set so that
|vit |> bt with probability π. In model (S6)–(S7), the persistence of the η process is equal
to 1 unless an “unusual” positive shock v hits a low-income household or an “unusual”
negative shock v hits a high-income household, leading persistence to drop to 1−δ= 0�8.
The latter happens with probability π = 0�15 in every period. Details on the simulation
are provided below.

The simple parametric process (S7) is designed to roughly approximate the earnings
process that we estimate on PSID data; see Section 6. It is worth noting that, since our
flexible, quantile-based process is first-order Markov, it is easy to take the estimated η
process to simulate, and possibly estimate, life-cycle models of consumption and saving
such as the one we focus on here. In Section S2.3 of this Supplemental Material, we show

1Note that here A1 is taken as exogenous. In a complete model of the life-cycle, household assets will be
different when facing a nonlinear or a linear (“canonical”) earnings process.

2Kaplan and Violante (2010) also considered a more general AR(1) log-earnings process.
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the results of using the nonlinear dynamic quantile earnings model we estimated on PSID
data as an input in this simple life-cycle simulation model.

The simulation results are presented in Figure S35. In the simulation, we use a natural
borrowing limit.3 Graphs (a) and (b) show that a qualitative implication of the nonlinear
earnings process is to reduce consumption among those on higher incomes. A negative
shock for those on higher incomes reduces the persistence of the past and consequently is
more damaging in terms of expected future incomes. This induces higher saving and lower
consumption at younger ages. Conversely, we see that consumption is (slightly) higher
for the nonlinear process for those on lower income. Graphs (c) and (d) show that the
nonlinear model also results in a higher consumption variance among older households,
and steeper accumulation and subsequent decumulation of assets over the life-cycle. In
addition, in graph (e), we report estimates of the average derivative of the conditional
mean of log-consumption with respect to log-earnings, holding assets and age fixed at
percentiles indicated on the two horizontal axes. We see that in the simulated economy,
consumption responses to changes in earnings tend to decrease with age and, to a lesser
extent, the presence of assets. These simulation results provide further motivation for the
use of a nonlinear earnings model to study consumption dynamics.

S2.2. Details on the Simulations

Agents live for T periods, and work until age Tret, where both T and Tret are exogenous
and fixed. ξt is the unconditional probability of surviving to age t, where ξt = 1 before
retirement, and ξt < 1 after retirement. Households have expected life-time utility

E0

T∑
t=1

βt−1ξtu(Cit)�

During working years 1 ≤ t < Tret, agents receive after-tax labor income Yit , which is
decomposed into a deterministic experience profile κt , a permanent component ηit , and
a transitory component εit :

lnYit = κt + yit�
yit = ηit + εit �

We consider the following process for ηit :

ηit = ρt(ηi�t−1� vit)ηi�t−1 + vit�
where ηi0 is drawn from an initial normal distribution with mean zero and variance σ2

η0
.

The shocks εit and vit have mean zero, are normally distributed with variances σ2
ε and σ2

vt
.

The persistence of the η process is approximated as (S7) where, at each age t, dt is set so
that |ηit |> dt with probability π, and bt is set so that |vit |> bt with probability π. We set
π = 0�15 and 1 − δ= 0�8.

Define gross labor income as Ỹit , with Ỹit =G(Yit), where G function is the inverse of
a tax function estimated by Gouveia and Strauss (1994).4 After retirement, agents receive

3Results for a zero borrowing limit are given in Figure S36.
4The tax function is

τ(Ỹit )= 0�258 × [
Ỹit −

(
Ỹ−0�768
it + τs)− 1

0�768
]
�
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after-tax Social Security transfers Yss, which are a function of lifetime average individual
gross earnings P( 1

Tret−1

∑Tret−1
t=1 Ỹit).

Last, throughout their lifetime, households have access to a single risk-free, one-period
bond whose constant return is 1 + r, and face a period-to-period budget constraint

Ai�t+1 = (1 + r)Ait +Yit −Cit� if t < Tret�(
ξt

ξt+1

)
Ai�t+1 = (1 + r)Ait +Yss −Cit� if t ≥ Tret�

For the calibration, we use Kaplan and Violante’s (2010, KV hereafter) preferred pa-
rameters. Specifically we use the following:

Demographics. The model period is one year. Agents enter the labor market at age 25,
retire at age 60, and die with certainty at age 95. So we set Tret = 35 and T = 70. The
survival rates ξt are obtained from the National Center for Health Statistics (1992).

Preferences. We assume the utility function is of the CRRA form u(C)= C1−γ/(1 − γ),
where the risk aversion parameter is set to γ = 2.

Discount Factor and Interest Rate. The interest rate r is assumed to equal 3%. We set the
discount factor β to match an aggregate wealth-income ratio of 2.5, which is the average
wealth to average income ratio computed from the 1989 and 1992 Survey of Consumer
Finances.

Income Process. We use KV’s choice of deterministic age profile κt , which is estimated
from the PSID. The estimated profile peaks after 21 years of labor market experience
at roughly twice the initial value, and then it slowly declines to about 80% of the peak
value. For the stochastic components of the income process, we set the initial variance
of the permanent shocks σ2

η0
= 0�15 to match the dispersion of household earnings at

age 25. We set the variance of transitory shocks σ2
ε = 0�05, which is the value estimated by

Blundell, Pistaferri, and Preston (2008). The permanent component follows the nonlinear
switching process (S7). In order to make its variance comparable with the random-walk
process in KV, we calibrate σ2

vt
to match the dispersion of age-specific variance of ηit in

KV.
Initial Wealth and Borrowing Limit. Households’ initial assets are set to 0. We impose

two alternative borrowing limits: either a natural borrowing limit, in which the agent can-
not die with debt, or a zero borrowing limit, in which the agent’s net worth cannot fall
below zero.

Social Security Benefits. This setup follows KV exactly. Social Security benefits are a
function of lifetime average individual gross earnings Yss = P( 1

Tret−1

∑Tret−1
t=1 Ỹit). The P

function is designed to mimic the actual U.S. system. This is achieved by specifying that
benefits are equal to 90% of average past earnings up to a given bend point, 32% from
this first bend point to a second bend point, and 15% beyond that. The two bend points
are set at, respectively, 0.18 and 1.10 times cross-sectional average gross earnings, based
on the U.S. legislation and individual earnings data for 1990. Benefits are then scaled
proportionately so that a worker earning average labor income each year is entitled to a
replacement rate of 45%.

Discretization of the Earnings Process. In order to use the switching process (S7) in the
life-cycle model, we compute age-specific Markov transition probabilities using a simula-
tion approach, as follows:

where τs is chosen so that the ratio of total personal current tax receipts on labor income (not including Social
Security contributions) to total labor income is the same as for the U.S. economy in 1990, that is, roughly 25%.
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1. Based on the process (S7), we simulate one million households throughout their
working years.

2. At each age, we rank households by their earnings and put them into 40 different
bins. We then count the transitions between any two bins from two neighboring ages, and
estimate transition probabilities.

S2.3. Simulations Based on the Estimated Nonlinear Earnings Model

In this subsection, we report the results of a simulation exercise closely related to the
one shown in the first part of this section, except that it is based on the nonlinear quantile-
based earnings process that we estimated on the PSID. Calibration and simulation details
are similar to the ones above, with a few differences. In order to ensure comparability
with the data, we let each household enter the model at age 25, work until 61, and die
at age 93. As the PSID is biennial, we set each period in the model to be equal to two
years. There is one risk-free asset with a constant interest rate r = 1�032 − 1 ≈ 6%, and
the discount factor is set to β = (1 + r)−1. We impose a natural borrowing limit in the
simulation.

We simulate life-cycle profiles for one million households. When discretizing persistent
and transitory earnings components, we use 100 bins for the former and 80 bins for the
latter. We checked that the discretized process fits the nonlinear persistence in Figure 1
well. We remove age-specific means in the persistent component (which may be different
from zero for the particular cohort for which we are performing the simulation). In order
to ensure comparability with a canonical linear earnings process, in the nonlinear process
we compute age-specific variances of transitory shocks and target the age profile of the
variance of the persistent component, and we set the parameters of the linear process
(i.e., a random walk plus an independent shock) using the resulting values.

The results of the simulation are presented in Figure S37. As in Figure S35, we see
that households on higher incomes tend to consume less when exposed to the nonlinear
process than to the linear one. Conversely, consumption is slightly higher for the nonlin-
ear process for those on lower income. Consumption and asset variance are lower for the
nonlinear process, similarly as in Figure S35, although the differences between the two
processes are stronger in Figure S37, which is based on the process estimated on PSID.5
Last, the marginal propensity to consume out of earnings in panel (e) tends to decrease
with age and the presence of assets, similarly to what we found in the PSID.

S3. EXTENSIONS

Here we consider four extensions of the model: to allow for unobserved heterogeneity
in earnings, dependent ε, advance earnings information, and consumption habits, respec-
tively. The estimation strategy can be modified to handle each of these extensions.

S3.1. Unobserved Heterogeneity in Earnings

It is possible to allow for unobserved heterogeneity in earnings, in addition to hetero-
geneity in the initial condition ηi1. Specifically, let ηit be a first-order Markov process

5Differences in scale with Figure S35 are due to the different period considered in this paper relative to
Kaplan and Violante (2010) and different parameter choices. Also, note that consumption data in the PSID
waves which we use only capture a share of consumption expenditures, and similarly for assets. This can explain
the differences between the levels in Figure S37 and the descriptive statistics reported in Table C.I.
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conditional on another latent component ζi:

ηit =Qt(ηi�t−1� ζi�uit)� (S8)

where uit is i.i.d. standard uniform, independent of ηt−1
i and ζi. εit is independent over

time, independent of ηis for all s, and independent of ζi.
With a vector-valued ζi, (S8) would nest linear earnings models with slope heterogene-

ity as in Guvenen (2007) and Guvenen and Smith (2014), for example. A simpler case
is our baseline model (1)–(2) augmented with a household-specific fixed-effect, that is,
equation (20) in the paper.

Consider the scalar-ζi case for concreteness, and take T = 5. In this model, (yi1� yi2),
yi3, and (yi4� yi5) are conditionally independent given (ηi3� ζi).6 By Hu and Schennach’s
(2008) theorem, for bivariate latent (ηi3� ζi), and under suitable injectivity conditions, the
marginal distribution of εi3 is thus identified given five periods of earnings data. As a
result, the joint density of η’s is identified by a similar argument as in Section 4. Iden-
tification of the densities of ζi and of ηit given (ηi�t−1� ζi) can then be shown along the
lines of Hu and Shum (2012), under a suitable “scaling” condition. A scaling condition is
implicit in equation (20), which is the model we implement.

S3.2. Dependence in the Transitory Earnings Component

In the baseline model, εit are independent over time. It is possible to allow for serial
dependence while maintaining identification. To see this, consider the setup where εit is
an m-dependent process with m= 1 (e.g., an MA(1) process), and consider a panel with
T ≥ 5 periods. Then it is easy to see that yi1, yi3, and yi5 are conditionally independent
given ηi3. As a result, identification arguments based on “Hidden Markov” structures
(Hu and Schennach (2008), Wilhelm (2015)) can be applied.

S3.3. Advance Information

If households have advance information about future earnings shocks, the consump-
tion rule (10) takes future earnings components as additional arguments; see Blundell,
Pistaferri, and Preston (2008). For example, consider a model where households know
the realization of the one-period-ahead persistent component, in which case

cit = gt(ait�ηit�ηi�t+1� εit� νit)� t = 1� � � � �T − 1� (S9)

Identification can be established using similar arguments as in the baseline model. To see
this, consider first period’s consumption. We have

f (c1|a1� y)=
∫ ∫

f (c1|a1�η1�η2� y1)f (η1�η2|a1� y)dη1 dη2�

It can be shown that f (η1�η2|a1� y) is identified under completeness in (yi2� � � � � yiT )
of the distribution of (ηi1�ηi2|yi), using the earnings process and first period’s assets.

6Indeed,

f (y1� y2� y3� y4� y5|η3� ζ) = f (y1� y2|η3� ζ)f (y3|η3� ζ� y1� y2)f (y4� y5|η3� ζ� y3� y2� y1)

= f (y1� y2|η3� ζ)f (y3|η3� ζ)f (y4� y5|η3� ζ)�
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If the distribution of (ηi1�ηi2|ai1� yi) is complete in (yi2� � � � � yiT ), it thus follows that
f (c1|a1�η1�η2� y1) is identified. In this case, we need at least two “excluded instruments”
in yi for (ηi1�ηi2). The other steps in the identification arguments of Section 4 can be
similarly adapted.

Last, similar arguments can be used to show identification in models where households
have advance information about future transitory shocks εi�t+s, as well as in models where
the consumption rule depends on lags of η’s or ε’s, for example in models where ηit
follows a higher-order Markov process.

S3.4. Consumption Habits

In the presence of habits, the consumption rule takes the form

cit = gt(ci�t−1� ait�ηit� εit� νit)� t = 2� � � � �T� (S10)

Identification can be shown under similar conditions as in Section 4. For example, in the
second period, equation (18) becomes

f (c2|c1� a2� a1� y)=
∫
f (c2|c1� a2�η2� y2)f (η2|c1� a2� a1� y)dη2�

Provided the distribution of (ηi2|ci1� ai2� ai1� yi) is identified, and complete in (ai1� yi1� yi3�
� � � � yiT ), it thus follows that the density f (c2|c1� a2�η2� y2) is identified. Intuitively, in the
presence of habits, the first lag of consumption cannot be used as an “excluded instru-
ment” since it affects second period’s consumption directly.

S4. SUMMARY OF THE ARGUMENT IN WILHELM (2015)

We consider model (1)–(2) with T = 3. We omit i subscripts for conciseness. Let L2(f )
denote the set of squared-integrable functions with respect to a weight function f . We
define Ly2|y1 as the linear operator such that Ly2|y1h(a) = E[h(y2)|y1 = a] ∈ L2(fy1) for
every function h ∈L2(fy2). Similarly, let Lη2|y1 be such that Lη2|y1h(a)= E[h(η2)|y1 = a] ∈
L2(fy1) for every function h ∈L2(fη2). We denote as R(Ly2|y1) the range of Ly2|y1 , that is,

R(Ly2|y1)= {
k ∈L2(fy1)� s.t. k=Ly2|y1h for some h ∈L2(fy2)

}
�

We assume the following, in addition to the Markovian and independence assumptions
on η’s and ε’s.

ASSUMPTION S1:
(i) Ly2|y1 and Lη2|y1 are injective.

(ii) There exists a function h ∈L2(fy3) such that

E
[
h(y3)|y1 = ·] ∈ R(Ly2|y1)� and (S11)

E
[
y2h(y3)|y1 = ·] ∈ R(Ly2|y1)� (S12)

Thus, there exist s1 and s2 in L2(fy2) such that

E
[
h(y3)|y1 = ·] =Ly2|y1s1� and E

[
y2h(y3)|y1 = ·] =Ly2|y1s2�
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(iii) Let s̃1(y)= ys1(y). The Fourier transforms F(s1), F (̃s1), and F(s2) (where F(h)(u)=∫
h(x)eiux dx) are ordinary functions. Moreover, F(s1)(u) �= 0 for all u ∈ R.

Part (i) is an injectivity/completeness condition. Part (ii) is not standard. It is related
to the existence problem in nonparametric instrumental variables. Horowitz (2012) pro-
posed a test for (S11) in the case where Ly2|y1 is a compact operator. Part (iii) is a high-level
assumption. See Wilhelm (2015) for more primitive conditions.

By Assumption S1(ii) we have, almost surely in y1,

E
[
h(y3)|y1

] = E
[
s1(y2)|y1

]
�

E
[
y2h(y3)|y1

] = E
[
s2(y2)|y1

]
�

Moreover, s1 and s2 are the unique solutions to these equations by Assumption S1(i).
Hence, given the model’s assumptions,

E
[
E
(
h(y3)|η2

)|y1

] = E
[
E
(
s1(y2)|η2

)|y1

]
a.s.

It thus follows from the injectivity of Lη2|y1 in Assumption S1(i) that, almost surely in η2,

E
[
h(y3)|η2

] = E
[
s1(y2)|η2

]
� (S13)

Likewise, E[y2h(y3)|η2] = E[s2(y2)|η2]. Hence

η2E
[
h(y3)|η2

] = E
[
s2(y2)|η2

]
a.s. (S14)

Combining (S13) and (S14), we obtain

η2E
[
s1(y2)|η2

] = E
[
s2(y2)|η2

]
a.s.

That is, almost surely in η2,

η2

∫
s1(y)fε2(y −η2)dy =

∫
s2(y)fε2(y −η2)dy� (S15)

The functional equation (S15) depends on s1 and s2, which are both uniquely deter-
mined given the data generating process, and on the unknown fε2 . By Assumption S1(iii),
we can take Fourier transforms and obtain

iF(s1)(u)
dψε2(−u)

du
+F (̃s1)(u)ψε2(−u)=F(s2)(u)ψε2(−u)� (S16)

where ψε2(u)=F(fε2)(u) is the characteristic function of ε2.
Noting that ψε2(0) = 1, (S16) can be solved in closed form for ψε2(·), because

F(s1)(u) �= 0 for all u by Assumption S1(iii). This shows that the characteristic function
of ε2, and hence its distribution function, are identified.
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S5. ADDITIONAL FIGURES

FIGURE S1.—Nonlinear earnings persistence in log-wages (PSID, males) and individual income (Norwegian
population register data). Note: Estimates of the average derivative of the conditional quantile function of yit
given yi�t−1 with respect to yi�t−1, evaluated at percentile τshock and at a value of yi�t−1 that corresponds to the
τinit percentile of the distribution of yi�t−1. Age 25–60. Left: PSID, male log hourly wage residuals, 1999–2009;
right: results from the Norwegian population register data, individual log-earnings residuals, years 2005–2006,
see Appendix C; are provided as part of the project on ‘Labour Income Dynamics and the Insurance from
Taxes, Transfers and the Family’.

FIGURE S2.—Nonlinear persistence, piecewise-linear specification quantile regression. Note: See the notes
to Figure 2. Piecewise-linear quantile regression with three and five equally-spaced sub-intervals.
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FIGURE S3.—Nonlinear persistence of ηit , averaged over ages. Note: Estimates of the average derivative of
the conditional quantile function of ηit on ηi�t−1 with respect to ηi�t−1, based on estimates from the nonlinear
earnings model, averaged over all ages of household heads.

FIGURE S4.—Conditional dispersion of log-earnings residuals (fit) and η component. Note: Conditional
dispersion σ(y�τ) = Q(τ|yi�t−1 = y)−Q(1 − τ|yi�t−1 = y) and σ(η�τ), for τ = 11/12. Log-earnings residuals
(left) and η component (right). On the left graph, dark is data and light is model fit. The x-axis shows the
conditioning variable, the y-axis shows the corresponding value of the conditional dispersion measure.
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FIGURE S5.—Conditional skewness of log-earnings residuals, fit. Note: Conditional skewness sk(y� τ), see
equation (6), for τ = 11/12. Log-earnings residuals. The x-axis shows the conditioning variable, the y-axis
shows the corresponding value of the conditional skewness measure. Dark is PSID data, light is nonlinear
model.

FIGURE S6.—Skewness of log-earnings residuals growth at various horizons, fit. Note: Robust skewness
estimate of yit − yi�t−s , at various horizons s (reported on the x-axis), computed according to the formula
sk(τ�α)= Q(τ)+Q(1−τ)−2Q(1/2)

Q(τ)−Q(1−τ) , where Q denote unconditional quantiles, and τ = 11/12. Dark is PSID data, light
is nonlinear model.
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FIGURE S7.—Kurtosis of log-earnings residuals growth at various horizons, fit. Note: Robust kurtosis es-
timate of yit − yi�t−s , at various horizons s (reported on the x-axis), computed according to the formula
kur(τ�α)= Q(1−α)−Q(α)

Q(τ)−Q(1−τ) , where Q denote unconditional quantiles, τ = 10/12, and α= 1/12. Dark is PSID data,
light is nonlinear model, and the horizontal line denotes the values of kur(τ�α) for a normal distribution.

FIGURE S8.—Densities of log-earnings growth at various horizons. Note: Estimated density of yit − yi�t−s , at
various horizons s. Dark is PSID data, light is nonlinear model. Added to each graph is the Gaussian density
with zero mean and the same variance as in the data.
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FIGURE S9.—Nonlinear persistence in earnings, 95% pointwise confidence bands. Note: See notes to Fig-
ure 2. Pointwise 95% confidence bands. 500 replications. Parametric bootstrap is based on the point estimates.
Nonparametric bootstrap is clustered at the household level.
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FIGURE S10.—Nonlinear persistence in earnings, 95% uniform confidence bands. Note: See notes to Fig-
ure 2. Nonparametric bootstrap clustered at the household level. Uniform 95% confidence bands. 500 replica-
tions.

FIGURE S11.—Nonlinear persistence in ηit , 95% pointwise confidence bands. Note: See notes to Figure 2.
Pointwise 95% confidence bands. 500 replications. Parametric bootstrap is based on the point estimates. Non-
parametric bootstrap is clustered at the household level.
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FIGURE S12.—Nonlinear persistence in ηit , 95% uniform confidence bands. Note: See notes to Figure 2.
Nonparametric bootstrap clustered at the household level. Uniform 95% confidence bands. 500 replications.
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FIGURE S13.—Conditional skewness of log-earnings residuals and η component, 95% pointwise confidence
bands. Note: See notes to Figure 4. Pointwise 95% confidence bands. 500 replications. Parametric bootstrap is
based on the point estimates. Nonparametric bootstrap is clustered at the household level.
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FIGURE S14.—Conditional skewness of log-earnings residuals and η component, 95% uniform confidence
bands. Note: See notes to Figure 2. Nonparametric bootstrap clustered at the household level. Uniform 95%
confidence bands. 500 replications.

FIGURE S15.—Household heterogeneity in earnings. Note: (a) Estimates of the average derivative of the
conditional quantile function of ηit on ηi�t−1 with respect to ηi�t−1, based on estimates from the nonlinear
earnings model with an additive household-specific effect. (b) Conditional skewness sk(η�τ), see equation
(6), for τ = 11/12, based on the same model.
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FIGURE S16.—Conditional skewness, Norwegian administrative data. Note: Conditional skewness of
log-earnings measured as in (6) for τ = 1/10. Age 25–60, years 2005–2006.
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FIGURE S17.—Nonlinear persistence, Norwegian data. Note: See the notes to Figure 2. Random subsample
of 2873 households, from 2000 to 2005 Norwegian administrative data, non-immigrant residents, age 30 to 60.
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FIGURE S18.—Conditional skewness of log-earnings residuals and η component, Norwegian data. Note: See
the notes to Figure 4. Random subsample of 2873 households, from 2000 to 2005 Norwegian administrative
data, non-immigrant residents, age 30 to 60.

FIGURE S19.—Densities of persistent and transitory earnings components, Norwegian data. Note: See the
notes to Figure 3. Random subsample of 2873 households, from 2000 to 2005 Norwegian administrative data,
non-immigrant residents, age 30 to 60.
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FIGURE S20.—Density of log-consumption in the data and model, with and without unobserved hetero-
geneity. Note: Source PSID and nonlinear consumption model. Kernel density estimates. Dashed is Gaussian
fit.

FIGURE S21.—Consumption responses to transitory earnings shocks, by assets and age. Note: Estimates of
the average consumption responses to variations in εit , evaluated at τassets and τage.
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FIGURE S22.—Consumption responses to earnings shocks, by assets and age, 95% pointwise confidence
bands. Note: See notes to Figures 5 and S21. Pointwise 95% confidence bands. 200 replications. Parametric
bootstrap is based on the point estimates. Nonparametric bootstrap is clustered at the household level.
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FIGURE S23.—Consumption responses to earnings shocks, by assets and age, 95% uniform confidence
bands. Note: See notes to Figures 5 and S21. Nonparametric bootstrap clustered at the household level. Uni-
form 95% confidence bands. 200 replications.

FIGURE S24.—Consumption responses to earnings shocks, by assets and age, model with household-specific
unobserved heterogeneity. Note: See the notes to Figure 5. Consumption and assets model with household-spe-
cific unobserved heterogeneity.
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FIGURE S25.—Consumption responses to assets, model with unobserved heterogeneity. Note: See the notes
to Figure 6. Model with unobserved heterogeneity.
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FIGURE S26.—Impulse responses, earnings, 95% pointwise confidence bands. Note: See notes to Figure 7.
Point estimates and pointwise 95% confidence bands from re-centered nonparametric bootstrap, clustered at
the household level. 300 replications.
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FIGURE S27.—Impulse responses, earnings, 95% uniform confidence bands. Note: See notes to Figure 7.
Point estimates and uniform 95% confidence bands from re-centered nonparametric bootstrap, clustered at
the household level. 300 replications.
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FIGURE S28.—Impulse responses, consumption, 95% pointwise confidence bands. Note: See notes to Fig-
ure 8. Linear assets accumulation rule (7), r = 3%. ait ≥ 0. Point estimates and pointwise 95% confidence
bands from re-centered nonparametric bootstrap, clustered at the household level. 300 replications.
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FIGURE S29.—Impulse responses, consumption, 95% uniform confidence bands. Note: See notes to Fig-
ure 8. Linear assets accumulation rule (7), r = 3%. ait ≥ 0. Point estimates and uniform 95% confidence bands
from re-centered nonparametric bootstrap, clustered at the household level. 300 replications.
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FIGURE S30.—Impulse responses, consumption, model with household unobserved heterogeneity in con-
sumption. Note: See notes to Figure 8. Nonlinear model with household unobserved heterogeneity in con-
sumption. Linear assets accumulation rule (7), r = 3%. ait ≥ 0.
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FIGURE S31.—Impulse responses, consumption, model without household unobserved heterogeneity in
consumption, nonlinear assets rule. Note: See the notes to Figure 8. Estimated nonlinear assets rule.
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FIGURE S32.—Impulse responses, consumption, model with household unobserved heterogeneity in con-
sumption, nonlinear assets rule. Note: See notes to Figure S31. Nonlinear model with household unobserved
heterogeneity in consumption. Estimated nonlinear assets rule.
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FIGURE S33.—Impulse responses by age and initial assets. Note: See notes to Figures 8 and S30. Initial
assets at age 35 (for “young” households) or 51 (for “old” households) are at percentile 0�10 (dashed curves)
and 0�90 (solid curves). Linear assets accumulation rule (7), r = 3%. ait ≥ 0. In the simulation of the model
with unobserved heterogeneity, ξi is set to zero.

FIGURE S34.—Impulse responses by age and initial assets, nonlinear assets rule. Note: See notes to Fig-
ure S31. Initial assets at age 35 (for “young” households) or 51 (for “old” households) are at percentile 0�10
(dashed curves) and 0�90 (solid curves). Estimated nonlinear assets rule. In the simulation of the model with
unobserved heterogeneity, ξi is set to zero.
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FIGURE S35.—Simulation exercise. Notes: In the top four panels, dashed is based on the nonlinear earnings
process (S6)–(S7), solid is based on the canonical earnings process (3). Panel (e): estimate of the average
derivative of the conditional mean of log-consumption with respect to log-earnings, given earnings, assets, and
age, evaluated at values of assets and age that correspond to their τassets and τage percentiles, and averaged over
the earnings values. Quantile regression on polynomials, see Section 6 for a description.
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FIGURE S36.—Simulation exercise, no borrowing. Notes: In the top four panels, dashed is based on the non-
linear earnings process (S6)–(S7), solid is based on the canonical earnings process (3). Panel (e): estimate of
the average derivative of the conditional mean of log-consumption with respect to log-earnings, given earnings,
assets, and age, evaluated at values of assets and age that correspond to their τassets and τage percentiles, and
averaged over the earnings values. Assets are constrained to be nonnegative.
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FIGURE S37.—Simulations based on the estimated nonlinear earnings model. Notes: In the top four panels,
dashed is based on the nonlinear quantile-based earnings process estimated on the PSID, solid is based on a
comparable canonical earnings process. Panel (e): estimate of the average derivative of the conditional mean
of log-consumption with respect to log-earnings, given earnings, assets, and age, evaluated at values of assets
and age that correspond to their τassets and τage percentiles, and averaged over the earnings values.
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