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a b s t r a c t

We develop methods for testing that an econometric model is underidentified and for estimating the
nature of the failed identification. We adopt a generalized-method-of moments perspective in a possibly
non-linear econometric specification. If, after attempting to replicate the structural relation, we find
substantial evidence against the overidentifying restrictions of an augmented model, this is evidence
against underidentification of the original model. To diagnose how identification might fail, we study the
estimation of a one-dimensional curve that gives the parameter configurations that provide the greatest
challenge to identification, and we illustrate this calculation in an empirical example.
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1. Introduction

‘‘It is . . .natural to abandonwithout further computation the set
of restrictions strongly rejected by the (likelihood ratio) test.
Similarly, it is natural to apply a test of identifiability before
proceeding with the computation of the sampling variance
of estimates . . . and to forego any use of the estimates, if the
indication of nonidentifiability is strong’’. Koopmans and Hood
(1953) (see p. 184).

It is common in econometric practice to encounter one of two
different phenomena. Either the data are sufficiently powerful to
reject the model, or the sample evidence is sufficiently weak so
as to suspect that identification is tenuous. The early simulta-
neous equations literature recognized that underidentification is
testable, but to date such tests are uncommon in econometric prac-
tice despite the fact that there are many situations of economic in-
terest in which seemingly point identified models may be only set
identified.
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We find it productive to pose this as an estimation problem
where we seek to identify the location of the identification
problem. We adopt a generalized-method-of-moments (GMM)
perspective and suppose that (under the null hypothesis) we
may identify a curve or a function of a scalar variable that
represents such a curve. Thus the target of estimation is this curve
or the corresponding function. For models that are sufficiently
linear, this curve represents a one-dimensional subspace, but
translated. The resulting set can be easily parameterized and
estimated using a standard GMM approach. In effect we build
an augmented structural model in which the moment conditions
are satisfied by a curve instead of a point. This estimation is
of direct interest because it isolates the dimension along which
identification of the original model is problematic. The familiar
J test from the work of Sargan (1958) or Hansen (1982a) for
overidentification of the augmented model now becomes a test
for ‘‘underidentification’’ of the original model. If we can identify
a curve or function representing that curve without statistical
rejection, then the originalmodel is notwell identified andwe refer
to this phenomenon as underidentification. We refer to such a test
as an I test. In contrast, a statistical rejection provides evidence
that the parameter vector in the original model is indeed point
identified, unless of course the familiar J test continues to reject
its over-identifying restrictions.

The idea of identifying a curve extends to estimation environ-
ments in which we may not be able to represent the curve with a
finite-dimensional parameterization. Thus we also suggest a more
general estimation approach, study the resulting statistical effi-
ciency and discuss implementation. Inferential methods are nec-
essarily altered, and we are led to build on the work of Carrasco
and Florens (2000) in designing a GMM approach to this problem.

We consider in progression three different estimation environ-
ments: models that are linear in parameters (Section 3), models
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with nonlinear restrictions on the parameters (Section 4), and fi-
nally, models with more fundamental nonlinearities (Section 5).
Throughout we develop specific examples to illustrate the na-
ture and the applicability of our methods. In Section 6 we show
how to apply these methods to a consumption-based asset pricing
model fit to microeconomic data. What follows is a more detailed
overview of the paper.

2. Overview

As in Hansen (1982a), suppose that {xt} is an observable
stationary and ergodic stochastic process1 and let P be a parameter
space thatwe take to be a subset ofRk. Introduce a function f (x, ·) :

P → Rp for each x. The function f is jointly Borel measurable and it
is continuously differentiable in its second argument for each value
of x. Finally suppose that E|f (xt , β)| < ∞ for each β ∈ P.

In light of this assumptionwedefine E[f (xt , β)] = f̄ (β) for each
β ∈ P. GMM estimation uses the equation:

f̄ (β) = 0 (1)

to identify a parameter vector β0. When β0 is identified, it is the
unique solution to (1), otherwise there will be multiple solutions.
To relate to standard analyses of identification and develop tests
for underidentification, we suppose that p ≥ k. In discussing the
lack of identification in non-linear models in those circumstances,
it is important to distinguish the different situations thatmay arise.
We say that β∗

≠ β0 is observationally equivalent to β0 if and
only if E[f (xt;β∗)] = 0. The true value β0 is locally identifiable
if there is a neighborhood of β0 such that in this neighborhood
E[f (xt;β)] = 0 only if β = β0 (Fisher, 1966). The order
condition p = dim (f ) ≥ dim (β) = k provides a first check of
identification, but this is only necessary. A complement is provided
by the rank condition: If E


∂ f (x, β)/∂β ′


is continuous at β0, and

rank{E

∂ f (x, β0)/∂β

′

} = k, then β0 is locally identified (Fisher,

1966; Rothenberg, 1971). In contrast to the order condition, this
condition is only sufficient. But if rank{E


∂ f (x, β)/∂β ′


} is also

constant in a neighborhood of β0, then the above rank condition
becomes necessary too. However, as argued in Sargan (1983a,b),
there are non-linear models in which the rank condition fails,
and yet β0 is locally identified (see Wright, 2003, for tests of the
Jacobian rank condition in non-linear models).

In this paper we will take a decidedly global approach. Global
identification requires that β0 be the unique solution on P to
the system of Eqs. (1). To study underidentification, we follow
Sargan (1959) by imposing an explicit structure on the lack of
identification. This leads us to study an alternative estimation
problem. Specifically, we consider a parameterization of the form
β = π(θ), where π is a continuous function with range P and
θ ∈ Θ ⊂ R, which is some conveniently chosen domain. For
example, suppose that

π(θ) =


θ
τ(θ)


, (2)

so that θ is the first component of the parameter vector. We then
explore a set of such functions that is restricted appropriately.2 As
an alternative identification condition, we require f̄ [π(θ)] = 0
for all θ ∈ Θ if, and only if π = π0. If we can successfully
identify a nonconstant function π0 that realizes alternative values

1 As elsewhere in the econometrics literature, analogous results can be obtained
using other data generating processes. For cross-sectional and panel extensions of
Hansen’s (1982a) formulation see the textbooks by Hayashi (2000) and Arellano
(2003), respectively.
2 See Section 5 for further details.
in the parameter space, then we cannot uniquely identify a single
parameter vector β0 from the moment conditions (1). Thus the
parameter vector β0 is underidentified.

Our investigation of underidentification leads naturally to the
question of how to estimate π0 efficiently. One approach would
be to use one of the standard GMM objective functions and
try to construct an estimator of π0 as the set of approximate
minimizers of that objective. In this paper we explore a rather
different approach, one that depicts the identification failure in
the construction of π0. It leads us naturally to ask what the
efficiency gains are to estimating jointly alternative points along a
curve, say π0(θ) for alternative values of θ . Initially we illustrate
these efficiency gains using a standard formulation of the GMM
efficiency bounds.

In what follows we use parameterization (2). For each value of
θ in a finite set Θn = {θ1, θ2, . . . , θn} we estimate the (k − 1)-
dimensional parameter vector τ(θ). We can map this into a
standard GMM problem where we simply replicate the original
moment conditions. Later we will extend this discussion to the
case in which the set of θ ’s that are of interest is an interval, but
this finite set construction will set the stage for a more general
treatment. As posed, this is a standard GMM estimation problem,
albeit one with a special structure. To analyze the gains to joint
efficiency, we presume the following central limit approximation:

Assumption 2.1. 1
√
T

T
t=1 f [xt , π0(θ)] converges to a Gaussian

random vector {g(θ) : θ ∈ Θn} with mean zero for all θ ∈ Θn and
covariance function:

K(θ, ϑ) = E

g(θ)g(ϑ)′


= lim

T→∞

1
T
E


T

t=1

f [xt , π0(θ)]

T
s=1

f [xs, π0(ϑ)]
′


.

In stating this assumption and in what follows we will abuse the
E notation by using it both for the original probability space and
for the probability space used in constructing the Gaussian process
used in the central limit approximation.

Construct

D(θ) = E

∂ f [xt , π0(θ)]

∂β

 
0k−1
Ik−1


,

where 0k−1 is a row vector of zeros and Ik−1 is an identity matrix of
dimension k − 1.

Assumption 2.2. D(θ)′D(θ) is nonsingular for each θ ∈ Θn.

With these ingredients, we apply directly the analysis in
Hansen (1982a) and the earlier analysis in Sargan (1958, 1959),
which involves reducing the moment conditions by introducing a
(k−1)×n by p×n selectionmatrix A that picks among the possible
moment conditions:

Ef [xt , π(θj)] = 0

for j = 1, 2, . . . , n. Themoment restrictions are thus broken into n
blocks and the parameter vector π(θj) only appears in block j. Our
characterization of the GMM efficiency bound exploits this block
structure. A partitioned selection matrix reduces the moments
to be the same as the number of free parameters and has the
estimation problem focus on:A11 A12 · · · A1n
A21 A22 · · · A2n
− − − −

An1 An2 · · · Ann


Ef [xt , π(θ1)]
Ef [xt , π(θ2)]

−

Ef [xt , π(θn)]

 =

0
0
−

0

 ,
where Aij has dimension (k − 1) × p. The choice of selection
matrix A = [Aij] alters the resulting statistical efficiency of a
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GMM estimation. Some collections of selection matrices imply the
same asymptotic efficiency, however. For instance, forming a new
selection matrix by premultiplying a given selection matrix by a
nonsingular matrix in effect uses the same moment conditions for
estimation and hence does not alter the asymptotic efficiency of
the corresponding GMM estimator. As a consequence, if we define
D as a block diagonal matrix of dimension p × n by (k − 1) × n
with D(θj) in the jth diagonal position, selection matrices for our
estimation problem can always be restricted to satisfy (at least
asymptotically):
AD = I (3)
without altering the efficiency bound. By imposing this restriction
we simplify the formula for the asymptotic covariance matrix as
we will see. Consider now the first row block of (3):
A11D(θ1) = I,
A1jD(θj) = 0 j = 2, 3, . . . , n. (4)
It follows from Hansen (1982a) that the asymptotic covariance
matrix for the resulting GMM estimator of τ(θ1) is the covariance
matrix of
n

j=1

A1jg(θj).

The corresponding efficiency bound is solved by ‘‘minimizing’’ this
covariancematrix by choice of A11, A12, . . . ., A1n.While covariance
matrices are only partially ordered, this minimization problem
turns out to have a well defined minimum. The zero restrictions
imposed in (4) control for the fact that τ(θj) for j = 2, . . . , n
are estimated at the same time as τ(θ1) and hence limit the
construction of the selection matrix. While we have focused on
the efficiency of τ(θ1), an analogous argument applies for τ(θj) for
j = 2, . . . , n.

It will be convenient for us to represent this minimization
problem differently. We consider random variables of the form
n

j=1

B′

jg(θj),

where
D(θj)′Bj = 0
for j = 1, 2, . . . , n. The zero restriction limits the basis random
variables B′

jg(θj) that we will use in our construction of the bound.
Form

Fn =


y =

n
j=1

B′

jg(θj) : D(θj)′Bj = 0, j = 1, 2, . . . , n


.

Next transform the random vectors {g(θ) : θ ∈ Θn} into:
h(θ) = [D(θ)′D(θ)]−1D(θ)′g(θ).
Then the efficiency bound for a given n is obtained by solving:

min
f∈Fn

E

γ ′h(θ1)− f

2
for any vector γ . The solution is
Proj


γ ′h(θ1)|Fn


,

where Proj is the least squares projection operator and the
minimized objective is the second moment of the least squares
projection error.3

While the finite parameter GMM bound is well known, what
follows gives a formal representation of that bound that will have
direct extension as we expand the number of moment conditions
used in estimation.

3 In what follows when we use the notation Proj applied to a random vector
we mean the vector of projections obtained by projecting each coordinate on the
relevant closed linear space of random variables that is being projected on.
Proposition 2.1. The GMM efficiency bound for estimating τ(θj) is:

E


h(θj)− Proj[h(θj)|Fn]
 

h(θj)− Proj[h(θj)|Fn]
′

for j = 1, 2, . . . , n.

Proof. Write

h(θ1)− Proj [h(θ1)|Fn] =

Ã11 Ã12 · · · Ã1n

g(θ1)
g(θ2)

−

g(θn)

 ,
where

Ã1jD(θj) = 0

for j = 1, 2, . . . , n. Form

A∗

1 =

−Ã11 + [D(θ1)′D(θ1)]−1D(θ)′ −Ã12 · · · −Ã1n


.

Notice that

A∗

1D =

I 0 · · · 0


.

Let A∗

1 be the first row block of a selection matrix A∗ that satisfies
(3). Consider some other matrix A1 such that

A1D =

I 0 · · · 0


,

which is the first row block of a selectionmatrix A that satisfies (3).
Then the entries of the random vector

[A1 − A∗

1]

g(θ1)
g(θ2)

−

g(θn)


are in Fn. Hence

(A1 − A∗

1)E


g(θ1)
g(θ2)

−

g(θn)

g(θ1)′ g(θ2)′ · · · g(θn)′
 (A∗

1)
′
= 0

since a vector of projection errors is orthogonal to the space that is
being projected onto. Thus

A1E


g(θ1)
g(θ2)

−

g(θn)

g(θ1)′ g(θ2)′ · · · g(θn)′
 (A1)

′

≥ A∗

1E


g(θ1)
g(θ2)

−

g(θn)

g(θ1)′ g(θ2)′ · · · g(θn)′
 (A∗

1)
′

where ≥ is the usual inequality for comparing positive semidefi-
nite matrices. �

Remark 2.2. In this representation the covariance of h(θj) is the
asymptotic covariance matrix for a GMM estimator that uses only
moment conditions based on

[D(θj)′D(θj)]−1D(θj)′Ef [xt , π(θj)] = 0,

but ignores the possible efficiency gains from joint estimation. It
even fails to solve the second-best problem of efficiently estimat-
ing τ(θj) using linear combinations of the moment restrictions:

Ef [xt , π(θj)] = 0

except in very special circumstances.
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Remark 2.3. Our choice of using the selection matrix [D(θj)′

D(θj)]−1D(θj)′ in the construction of h(θ) is only one possibility.
Notice that if we had chosen an alternative selectionmatrix D̃j such
that D̃jD(θj) = I , then

Proj[D̃jg(θj)|Fn] = Proj

[D(θj)′D(θj)]−1D(θj)′g(θj)|Fn


×


D̃j − [D(θj)′D(θj)]−1D(θj)′


g(θj).

Thus

D̃jg(θj)− Proj[D̃jg(θj)|Fn] = h(θj)− Proj[h(θj)|Fn]

resulting in the same least squares projection error. As expected
our choice of starting point is inconsequential to our final
calculation.

Focusing on a finite set Θn, while pedagogically revealing, is
too restrictive for some of our analysis. Given our regression-error
characterization of the efficiency bound, there is a direct extension
to estimating curves (Section 5). Nevertheless, for some important
examples that we consider in the next two sections, in which we
consider models that are linear in the parameters (Section 3) and
models inwhich the nonlinearity is concentrated in the parameters
(Section 4), it suffices to focus on a finite number of θ ’s.
Some related literature. Our work is related to two different strands
of the literature that have gained prominence in recent years.
One is the weak instruments literature (see e.g. Stock et al.,
2002), which maintains the assumption that the rank condition is
satisfied, but only just. To relate to this line of research, suppose
that Θ is an interval and consider an interior point θ∗. Suppose
that π is differentiable at θ∗. Then under appropriate regularity
conditions:
∂ f̄ (β)
∂β


β∗


dπ(θ)
dθ


θ∗


= 0,

where β∗
= π(θ∗). In other words, the matrix

∂ f̄ (β)
∂β


β∗


has reduced rank for any θ∗ in the interior of Θ . In contrast the
weak instruments literature considers the reduced rank as the limit
of a sequence of data generating models indexed by the sample
size.4 In our analysis such a sequence could be interesting as a local
specification under the alternative hypothesis of identification.We
seek to infer the specific manner in which identification may fail
whereas the weak instrument literature focuses on developing
reliable standard errors and tests of hypotheses about a unique true
value of β .

The other strand is the set estimation literature (see e.g.
Chernozhukov et al., 2007 or more recently Yildiz, 2012), which
often allows for E[f (x;β)] = 0 for set values of β and whose
objective is to make inferences about this set.5 In contrast, in this
paper we explore the precise nature of the underidentification.
Given this focus, we are led to add structure to the potential
underidentification that is considered. By adding this structure
to the possible identification failure, we are led to alter the
usual GMM objective in order to estimate efficiently the one-
dimensional function π that parameterizes the potential lack of
identification.

4 Typically in this literature the rank is not just reduced but is zero in the limit.
5 Some of this literature also considers moment inequalities as a source of

underidentification. Our analysis does not cover this situation.
3. Linearity in the parameters

We first study the identification of an econometric model that
is linear in parameters, in which case we write (1) as:

E(Ψt)


1

−β


= 0, (5)

where β is a k-dimensional unknown parameter vector and Ψt is
an p by k + 1 matrix of random variables constructed from data.6
Suppose that there are two solutions to equation (5), say β [1] and
β [2] where the first entry of β [1] is restricted to be one and the first
entry of β[2] to zero.7 Then

E(Ψt)


1

−π0(θ)


= 0,

for all θ ∈ R, where

π0(θ) = θπ0(0)+ (1 − θ)π0(1). (6)

A feature of the linearity in parameters is that we can identify
two distinct values of β that satisfy (5), in this case π0(0) = β

[1]
0 ,

π0(1) = β
[2]
0 . Thus to study underidentification, we focus on iden-

tifying β [1]
0 and β [2]

0 that solve the duplicated moment conditions

E(Ψt)


1

−β[1]


= 0

E(Ψt)


1

−β[2]


= 0

 . (7)

In this problemwe envisionβ [1]
0 andβ [2]

0 as the target of a GMMes-
timation problem subject to the restrictions on the first entries that
we mentioned previously. This leads us to estimating 2 × (k − 1)
free parameters. Given estimates of β [1]

0 and β [2]
0 , we then infer a

one-dimensional curve (actually a line) using formula (6).
In posing the above estimation problem, we imposed a

‘‘normalization’’ in the original equation (5). In what follows we
will adopt a different and slightly more general starting point by
considering:

E(Ψt)α = 0, (8)

whereα is a (k+1)-dimensional unknown parameter vector in the
null space of the populationmatrix E(Ψt). If there is a solutionα0 to
this equation, then any scale multiple of α0 will also be a solution.
Thus from a statistical perspective, we consider the problem of
identifying a direction. To go from a direction to the parameters
of interest requires an additional scale normalization of the form
q′α = 1, where q is a k + 1 vector that is specified a priori. For
instance, we could choose q to be a member of the canonical basis,
which would restrict one of the components of α to be one as in:

α =


1

−β


,

whichweeffectively imposed in (5). Alternatively,we could choose
q = α so that |α| = 1, together with a sign restriction on one of
the nonzero coefficients as in:

α =


+


1 − |β|2

β


,

6 Therefore, we consider not only models which are linear in both variables
and parameters, but also the non-linear in variables but linear in parameters
models discussed in Chapter 5 of Fisher (1966), which combine different non-linear
transformations of the same variables.
7 We adopt these restrictions for convenience. Normalizing a coefficient to unity

is common practice, and normalizing the second one to have zero coefficient rules
out the possibility that the resulting coefficient vectors are proportional. Other
normalizations are possible.
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where |β| ≤ 1. Neither of these approaches can be employed
without loss of generality, however. The particular application
dictates how to select the parameters of interest from this
direction.8

Suppose now that instead of a one-dimensional subspace, we
can actually infer a two-dimensional subspace of α’s that satisfies
(8). This leads us to efficiently estimate thoseα[1]

0 andα[2]
0 forwhich

E(Ψt)α
[1]

= 0
E(Ψt)α

[2]
= 0


. (9)

Our parameterization π0 given in (6) gives us one way to param-
eterize this two-dimensional subspace. It is the space spanned by
the two vectors:


1 −π0(0)

′ and by

1 −π0(1)

′ as required
by (7).

The duplicated moment conditions in (7) or (9) give us a direct
link to the rank condition familiar in the econometrics literature.
Suppose the order condition (p ≥ k) is satisfied, but not necessarily
the rank condition. Thus the maximal possible rank of the matrix
E(Ψt) is min{p, k + 1}. Model (8) is said to be identified when
E(Ψt) has rank k, in which case its null space is precisely one-
dimensional. When p > k and the model is identified, it is said
to be overidentified because the rank of the matrix E(Ψt) nowmust
not be full. Instead of havingmaximal rank k+1, E(Ψt)has reduced
rank k. This implication is known to be testable and statistical tests
of overidentification are often conducted in practice.

In contrast, model (8) is said to be underidentified when the
rank of E(Ψt) is less than k. In this case the null space of E(Ψt)
will have more than one dimension. A single normalization will
no longer select a unique element from the parameter space. By
focusing on (6), our approach puts an explicit structure on the lack
of identification, as illustrated by (9). Thus, we initially make the
following assumption (see Section 3.1.2 for other possibilities):

Hypothesis 3.1. E(Ψt) has rank k − 1.

Under this hypothesis the set of solutions to Eq. (8) is two-
dimensional. To test for this lack of identification, we think
of (9) as a new augmented model. We attempt to determine
(α[1], α[2]) simultaneously and ask whether they satisfy the
combined overidentifying moment restrictions (9). If they do,
then we may conclude that the original econometric relation
is not identified or equivalently is underidentified. Thus by
building an augmented equation system, we may pose the
null hypothesis of underidentification as a hypothesis that the
augmented equation system is overidentified. Rejections of the
overidentifying restrictions for the augmented model provide
evidence that the original model is indeed identified. Posed in
this way, underidentification can be tested simply by applying
appropriately an existing test for overidentification. For instance, a
standard J test for overidentification, such as those of Sargan (1958)
and Hansen (1982a), is potentially applicable to the augmented
model. This test will be our I test.

The following example illustrates our formulation.

Example 3.1. Suppose that p = 1 and k = 1. Write

E(Ψt) =

a1 a2


.

For there to be identification in the sense that we consider, at least
one of the entries of this vector must be different from zero. If
we normalize the first entry of α′

=

1 −β


to be one, then

8 Sensitivity to the choice of normalization can be avoided in GMM by using
the approach of Hillier (1990) and Alonso-Borrego and Arellano (1999) or by using
the continuously-updated estimator of Hansen et al. (1996). As a consequence, our
more general rank formulation can be explored using such methods.
we obtain the more restrictive rank condition that a2 ≠ 0. The
‘‘normalization’’ rules out the case that E(Ψt) is of the form


0 a2


and α′

=

α1 0


. Our notion of identification includes this

possibility.

To understand better implementation, in the remainder of this
section we consider as examples three specific situations: single
equation IV, multiple equations with cross-equation restrictions,
and sequential moment conditions.

3.1. Single equation IV

Example 3.2. Suppose the target of analysis is a single equation
from a simultaneous system:

y′

tα = ut ,

where the scalar disturbance term ut is orthogonal to a p-dimen-
sional vector zt of instrumental variables:

E (ztut) = 0. (10)

Form:

Ψt = zty′

t .

Then orthogonality condition (10) is equivalent to α satisfying the
moment relation (8).

For this example we duplicate the moment conditions as in (9),
and study the simultaneous overidentification of those 2pmoment
conditions. To proceed with the construction of a test, we have
to rule out the possibility that α[1] and α[2] are proportional. One
strategy is to restrict α[2] to be orthogonal to α[1]. Two orthogonal
directions can be parameterized with 2k − 1 parameters, k
parameters for one direction and k − 1 for the orthogonal
direction. However, there is not a unique choice of orthogonal
directions to represent a two-dimensional space. There is an
additional degree of flexibility. A new direction can be formed
by taking linear combinations of the original two directions and
a corresponding orthogonal second direction. Thus the number
of required parameters is reduced to 2k − 2, and the number of
overidentifying restrictions for the I test of underidentification is
2p − 2k + 2.

In practice, we can impose the normalizing restrictions |α[1]
| =

|α[2]
| = 1 by using spherical coordinates, forcing α[1]′α[2]

= 0,
and setting the first entry of α[2] to zero. This works provided
that all vectors in the null space of E(zty′

t) do not have zeros in
the first entry. Alternatively, we could restrict the top two rows
(α[1], α[2]) to equal an identity matrix of order two. This rules out
the possibility of a vector in the null space that is identically zero
in its first two entries, but this may be of little concern for some
applications.9 When k = 1, both approaches boil down to setting
(α[1], α[2]) = I2 so that the 2p moment conditions:

E

zty′

t


= 0

can be represented without resort to parameter estimation. As a
result, the ‘‘identified’’ set will be the whole of R2.

Example 3.1 could emerge as a special case of Example 3.2
with p = 1 and k = 1. Notice that our underidentification
test in this case tests simultaneously the restriction that a1 = 0
and a2 = 0. More generally, when p ≥ 2 our test considers
simultaneously E(zty1,t) = 0 and E(zty2,t) = 0. The resulting
I test is different from the test for the relevance of instruments

9 Once again, it is desirable to construct a test statistic of underidentification
using a version of the test of overidentifying restrictions that is invariant to
normalization.
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in a model with a normalization restriction on one variable to
be estimated by, say, two-stage least squares. Such a test would
examine only E


zty2,t


= 0.

In contrast, when k > 1, some parameters must be inferred
as part of implementing the I test. The estimated parameters can
then be used for efficiently estimating the identified linear set
by exploiting (6). To illustrate this point, consider a normalized
relationship between three endogenous variables with instrument
vector zt :

E

zt

y0,t − β1y1,t − β2y2,t


= 0.

Now zt need not be uncorrelated with all three endogenous
variables for there to be underidentification. Lack of correlation
with two linear combinations of them is enough.10 For example,
we may write the null of underidentification as

H0 : E


zt

y0,t − γ1y2,t


zt

y1,t − γ2y2,t

 = 0.

If H0 holds, for any β∗

1

E

zt

y0,t − β∗

1y1,t −

γ1 − γ2β

∗

1


y2,t


= 0,

so that the observationally equivalent values

β∗

1 , β
∗

2


are con-

tained in the line β∗

2 = γ1 − γ2β
∗

1 .
A time series example is a forward-looking Phillips curve as

in Galí et al. (2001), where the components of y denote current
inflation, future inflation, and a measure of aggregate demand,
whereas the components of z consist of lags of the previous
variables, and of other variables such as the output gap and wage
inflation. There are theoretical and empirical considerations to
suggest that a null like H0 is plausible in this context. For example,
lack of higher-order dynamics in a new Keynesian macro model
has been shown to be a source of underidentification of a hybrid
Phillips curve with lagged inflation (see Mavroeidis, 2005 and
Nason and Smith, 2008). Relatedly, Cochrane (2011) also raises
similar concerns regarding the identification of Taylor rules by
Clarida et al. (2000) and others.

3.1.1. Related literature
Tests of underidentification in a single structural equationwere

first considered by Koopmans and Hood (1953) and Sargan (1958).
When the model is correctly specified and identified, the rank
of E(zty′

t) is k. Under the additional assumptions that the error
term ut is a conditionally homoskedastic martingale difference, an
asymptotic chi-square test statistic of overidentifying restrictions
with p − k degrees of freedom is given by Tλ1, where

λ1 = min
α

α′Y ′Z

Z ′Z
−1 Z ′Yα

α′Y ′Yα
, (11)

and Z ′Y =
T

t=1 ztyt
′, etc. Thus λ1 is the smallest characteristic

root of Y ′Z

Z ′Z
−1 Z ′Y in the metric of Y ′Y . (See Anderson and

Rubin, 1949 and Sargan, 1958.) This a version of the J test for
overidentification, and it does not require that we normalize α.

Koopmans and Hood (1953) and Sargan (1958) indicated that
when the rank of E(zty′

t) is k − 1 instead, if λ2 is the second
smallest characteristic root, T (λ1 + λ2) has an asymptotic chi-
square distribution with 2(p − k) + 2 degrees of freedom. These
authors suggested that this result could be used as a test of
the hypothesis that the equation is underidentified and that any
possible equation has an i.i.d. error term.

10 Phillips (1989) and Choi and Phillips (1992) study the IV estimator of β1 and β2
in the presence of identification failure.
The statistic T (λ1 + λ2) has a straightforward interpretation
in terms of our approach. Indeed, it can be regarded as a
continuously-updated GMM test of overidentifying restrictions of
the augmented model (9), subject to the additional restrictions
on the error terms mentioned previously. To see this, let A =
α[1] α[2] and consider the minimizer of
α[1]′Y ′Z α[2]′Y ′Z


(A′Y ′YA ⊗ Z ′Z)−1


Z ′Yα[1]

Z ′Yα[2]


subject to A′Y ′YA = I2. The constraint restricts the sample
covariance matrix of the disturbance vector to be an identity
matrix. It uses the positive definitematrix Y ′Y to define orthogonal
directions when duplicating equations, which is convenient for
this application. In light of this normalization, the minimization
problem may be written equivalently as

min
A′Y ′YA=I2

α[1]′Y ′Z

Z ′Z
−1 Z ′Yα[1]

+ α[2]′Y ′Z

×

Z ′Z
−1 Z ′Yα[2], (12)

and the minimized value coincides with λ1 +λ2 (Rao, 1973, p. 63).
A comparison of (12) with (11) makes it clear that the I test will
be numerically at least as large as the J test, a result that is a
special case of Corollary B.2 in Appendix B. This comparison also
shows that the estimate of α obtained from (11) coincides with the
estimate of α[1] obtained from (12), so that in this special case the
optimal point estimate belongs to the optimal linear set estimate.

More recently, Cragg and Donald (1993) considered single
equation tests of underidentification based on the reduced form.
For the single equation model, the rank of the matrix E (Ψt) is the
same as that of

L = E (Ψt)
′

E(ztzt ′)

−1
= E


ytz ′

t

 
E(ztzt ′)

−1
.

This is the matrix of coefficients of the reduced form system of
population regressions of the entries of yt onto zt . Suppose the
second component of yt is the first component of zt . Partition L as:

L =


Π1 Π2
I 0


.

The nullity of L and hence E (Ψt) is the same as the nullity of Π2.
Cragg and Donald (1993) construct a minimum chi-square test
statistic that enforces the rank restriction in Π2.11 Their statistic
can also be related to our approach. As we show in Appendix A,
under the assumption that ut is a conditionally homoskedastic
martingale difference, the Cragg–Donald statistic minimizes
α[1]′Y ′Z α[2]′Y ′Z


(A′Y ′MYA ⊗ Z ′Z)−1


Z ′Yα[1]

Z ′Yα[2]


subject to A′Y ′MYA = I2, whereM = I − Z


Z ′Z
−1 Z ′. Moreover, a

Cragg–Donald statistic that is robust to heteroskedasticity and/or
serial correlation can be reinterpreted as a continuously updated
GMM criterion of the augmented structural model using MYA as
errors in the weight matrix. Since the difference between YA and
MYA at the truth is of small order, using one form of errors or the
other is asymptotically irrelevant.

While the Cragg and Donald (1993) approach is straightforward
to implement in the single-equation case, it is more difficult to
implement in some models with cross-equation restrictions. This
difficulty can emerge because wemust simultaneously impose the

11 Cragg and Donald (1993) also considered an alternative null of no identifiability
in an equation with the coefficient of one of the endogenous variables normalized
to unity. This is a rank restriction in the submatrix of Π2 that excludes the row
corresponding to the normalized entry.
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restrictions on the reduced form together with the rank deficiency.
In Example 3.2, this is easy to do, and it is also feasible in the
applications to linear observable factor pricing models of asset
returns carried out by Cragg and Donald (1997) and Burnside
(2007), but not in more general models as we will illustrate in
Sections 3.2 and 3.3.

3.1.2. Underidentification of a higher dimension
Although the null Hypothesis 3.1 is the natural leading case in

testing for underidentification, it is straightforward to extend the
previous discussion to situations in which the underidentified set
is of a higher dimension. Suppose that the rank of E(Ψt) is k − j
for some j. Thenwe canwrite all the admissible equations as linear
combinations of the (j + 1)p orthogonality conditions

E(Ψt)

α[1], α[2], . . . , α[j+1]

= 0. (13)

If we impose (j + 1)2 normalizing restrictions on (α[1],
α[2], . . . , α[j+1]) to avoid indeterminacy,12the effective number of
parameters is (j + 1)(k + 1) − (j + 1)2 = (j + 1)(k − j) and the
number of moment conditions is (j + 1)p under the assumption
that there are no redundancies. Therefore, by testing the (j +

1)(p − k + j) overidentifying restrictions in (13) we test the null
that α is underidentified of dimension j against the alternative
of underidentification of dimension less than j or identification.
Henceforth, we shall refer to those tests as Ij tests.

3.2. Multiple equations with cross-equation linear restrictions

We next consider examples with multiple equations with
common parameters.13

Example 3.3. Consider the following two-equation model with
cross-equation restrictions:

α′


y1,t
y3,t


= u1,t ,

α′


y2,t
y3,t


= u2,t ,

where y1,t , y2,t are scalars. Let zt denote a p∗-dimensional vector
of common instrumental variables appropriate for both equations,
so that

E

ztu1,t


= 0,

E

ztu2,t


= 0.

Form:

Ψt =


zty1,t zty3,t
zty2,t zty3,t


,

so that p = 2p∗. We transform this equation system to obtain an
equivalent one by forming:

Ψ ∗

t =


zt(y1,t − y2,t) 0

zty1,t zty3,t


(14)

implying that

E

zt(y1,t − y2,t)


= 0. (15)

12 For instance, wemaymake the top j+1 rows of A[j+1]
= (α[1], α[2], . . . , α[j+1])

equal to the identitymatrix of order j+1.More generally, we can impose the (j+1)2
normalizing restrictions A[j+1]′A[j+1]

= I(j+1) and aiℓ = 0 for ℓ > i, where aiℓ
denotes the (i, ℓ)-th element of A[j+1] .
13 Interestingly, Kim and Ogaki (2009) suggest to use models with cross-equation
restrictions to try to break away from the potential identifiability problems that
affect single-equation IV estimates.
In this example, duplicating (15) would induce a degeneracy
because Eq. (15) does not depend on parameters. Instead these
p∗ moment conditions should be included just once. The I
test is implemented by again parameterizing a two-dimensional
subspace with 2k − 2 free parameters. There are 3p∗ < 2p
composite moment conditions to be used in estimating these free
parameters. Thus the degrees of freedomof the I test are 3p∗

−2k+
2.

This I test includes (15) among the moment conditions to
be tested even though these conditions do not depend on the
unknown parameters. If these moment conditions were excluded,
then it would matter if the second row block of Ψ ∗

t in (14) is
replaced by


zty2,t zty3,t ′


. By including (15) among the moment

conditions to be tested this change is inconsequential.
An extended version of this example arises in log-linear models

of asset returns such as those studied by Hansen and Singleton
(1983) and others. Such models have a scalar y3,t given by
consumption growth expressed in logarithms. The variables y1,t
and y2,t are the logarithms of gross returns. In addition there are
separate constant terms in each equation that capture subjective
discounting and lognormal adjustments. By differencing the
equations we obtain a counterpart to (15) except that a constant
term needs to be included. Duplication continues to induce a
degeneracy because this constant term is trivially identified.

Example 3.4. Consider a normalized four-input translog cost
share equation system. After imposing homogeneity of degree 1
in prices and dropping one equation to take care of the adding-up
condition in cost shares we have

yj,t = βj,1p1,t + βj,2p2,t + βj,3p3,t + vj,t (j = 1, 2, 3) ,

where yj,t denotes the cost share of input j, and pj,t is the log price of
input j relative to the omitted input.14 The underlying cost function
implies the following three cross-equation symmetry constraints

βj,k = βk,j j ≠ k.

Moreover, prices are endogenous (possibly due to data aggrega-
tion) and a p-dimensional vector of instruments zt is available, so
that:

E(ztvj,t) = 0 (j = 1, 2, 3) . (16)

In the absence of the symmetry restrictions, the order condition
is satisfied if p ≥ 3. It would appear that the parameters may be
just identified with p = 2 when the symmetry restrictions are
taken into account, for in that case the order condition is satisfied.
However, it turns out that such a system has reduced rank 5 by
construction.

To test for underidentification, we duplicate the original mo-
ment conditions, introduce suitable normalizations, and drop re-
dundant moments, obtaining

E[zt(yj,t − γj,2p2,t − γj,3p3,t)] = 0, (j = 1, 2, 3) (17)

E[zt(p1,t − γ0,2p2,t − γ0,3p3,t)] = 0. (18)

Since there are 4p orthogonality conditions and 8 parameters, with
p = 2 the augmented set ofmoments does not introduce any overi-
dentifying restrictions. For arbitrary p, (17)–(18) imply that (16) is
satisfied for any β∗

j,1, and for β∗

j,2, β
∗

j,3 (j = 1, 2, 3) such that

β∗

j,2 = γj,2 − β∗

j,1γ0,2 β∗

j,3 = γj,3 − β∗

j,1γ0,3. (19)

14 See Berndt (1991, p. 472). For simplicity we abstract from intercepts and log
output terms since they have no effect on our discussion.
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Thus, if we do not impose symmetry, the identified set will be of
dimension three (β∗

1,1, β
∗

2,1, β
∗

3,1) and will be characterized by the
eight γ parameters in (17)–(18). However, one restriction must be
imposed on those parameters for the augmented model to charac-
terize observationally equivalent values of the original β param-
eters satisfying the symmetry constraints. To see this, note that,
subject to the cross-restrictions, (17)–(18) imply that (16) are sat-
isfied as before for any β∗

1,1 (and for β∗

1,2 and β∗

1,3 as in (19)), but
only for β∗

2,1 = β∗

1,2 so that

β∗

2,1 = γ1,2 − β∗

1,1γ0,2,

and for β∗

2,2 and β∗

2,3 such that

β∗

2,2 = γ2,2 − (γ1,2 − β∗

1,1γ0,2)γ0,2,

β∗

2,3 = γ2,3 − (γ1,2 − β∗

1,1γ0,2)γ0,3.

Equally, they are satisfied only for β∗

3,1 = β∗

1,3 so that

β∗

3,1 = γ1,3 − β∗

1,1γ0,3,

and for β∗

3,2 and β∗

3,3 such that

β∗

3,2 = γ3,2 − (γ1,3 − β∗

1,1γ0,3)γ0,2

β∗

3,3 = γ3,3 − (γ1,3 − β∗

1,1γ0,3)γ0,3.

Moreover, the restriction β∗

3,2 = β∗

2,3 implies that the admissi-
ble values of the coefficients in the augmented model must satisfy
for any β∗

1,1:

γ3,2 − (γ1,3 − β∗

1,1γ0,3)γ0,2 = γ2,3 − (γ1,2 − β∗

1,1γ0,2)γ0,3,

or
γ3,2 − γ2,3 = γ1,3γ0,2 − γ1,2γ0,3. (20)
Thus, after enforcing symmetry the identified set is of dimension
one (β∗

1,1) and depends on seven parameters only. The I test for
this problem is a test of overidentifying restrictions based on the
moments (17)–(18) subject to (20). Enforcing (20) reduces the set
of observationally equivalent parameters under the null, but this is
the rightway to proceed since the existence of otherβ ’s that satisfy
the instrumental-variable conditions but not the symmetry condi-
tions should not be taken as evidence of underidentification of the
model.15

3.3. Sequential moment conditions

Consider next an examplewith an explicit time series structure.
The expectations are taken by averaging across individuals (over i).

Example 3.5. Suppose that

yi,t+2 =

vi,t+2 vi,t+1 · · · vi,t−ℓ

′
for a scalar process {vi,t : t = 1, 2, . . .}. Thus k = ℓ+ 2. Form:

α′yi,t+2 = ui,t+2,

where

E

zi,tui,t+2


= 0

for t = 1, . . . and α ≠ 0. Thus

E

zi,tyi,t+2

′

α = 0. (21)

The dimension of the vector zi,t varies with t . This dependence
is relevant in a panel data setting in which the number of time
periods is small relative to the number of individuals.16 Assume
that there is no redundancy among the entries of zi,t . That is,
E

zi,tz ′

i,t


is nonsingular.Moreover, assume that the entries of zi,t−1

are among the entries of zi,t .

15 Note that when p = 2, the model’s parameters are not identified, but it is still
possible to test the restriction (20) as a specification test of the model.
16 In a pure time series setting, there is only one i, say i = 1 but T is large.
For this model to be underidentified, wemust be able to find an
α∗

≠ α, both distinct fromzero, such thatα∗ also satisfies equation
system (21). Since α and α∗ are distinct and linear combinations of
α and α∗ must satisfy (21), it follows that

E

zi,ty∗′

i,t+1


γ = 0 (22)

for t = 1, 2, . . . , where

y∗

i,t+1 =

vi,t+1 vi,t · · · vi,t−ℓ

′
and γ is not degenerate and has k entries.

Conversely, suppose that moment conditions (22) are in fact
satisfied. Notice that

E

zi,ty∗′

i,t+2


γ = 0

because

E

zi,t+1y∗′

i,t+2


γ = 0,

where this latter equation is just (22) shifted one time period
forward. As a consequence, both

α =

γ ′ 0

′
,

α∗
=

0 γ ′

′
necessarily satisfy (21). Thus the I test for underidentification
naturally leads us to test an alternative set of moment conditions
with one less free parameter given by (22). Identification of the
parameter vector α from (21) up to scale requires that we reject
moment (22) up to scale.

In a panel data setting, the I test is built from the moment
conditions (22) for t = 1, 2, . . . , T and large N . This construction
of the I does not simply duplicate moment conditions, as this
would lead to a degeneracy or repetition of moment conditions.
Instead, the time series structure naturally leads to an alternative
equation system to be studied. Alsowe could construct a collection
of reduced form equations by projecting yi,t+2 onto zi,t for each i
and explore the restrictions imposed on coefficients. The reduced-
form coefficients would necessarily be time dependent, and they
would include some implicit redundancies. For this example,
it is particularly convenient to work directly with the original
structural equation system.

A concrete example of this estimation comes from Arellano
and Bond (1991). They consider the estimation of a scalar
autoregression with a fixed effect. In this example there is an
underlying process {vi,t : t = 0, 1, . . .}. Form the scalar 1vi,t =

vi,t −vi,t−1 and construct zi,t to include vi,0, vi,1, . . . , vi,t . By taking
first differences the fixed effect is eliminated from the estimation
equation. When there is a unit root, this differencing reduces the
order of the autoregression, but in general the order is not reduced.
The I test checks whether in fact the order can be reduced.

We illustrate this using an AR(2) model for panel data with an
individual specific intercept ηi:

α1(vi,t+2 − ηi) = −α2(vi,t+1 − ηi)− α3(vi,t − ηi)+ ui,t+2

(t = 3, . . . , T ), (23)

and

E

ui,t |vi,1, . . . , vi,t−1; ηi


= 0.

Taking the first differences of Eq. (23) eliminates the fixed effect.
Following Arellano and Bond (1991), consider GMM estimation of
α1 and α2 based on a random sample {vi,1, . . . , vi,T : i = 1, . . . ,N}

and the unconditional moment restriction:

E[zi,t(α11vi,t+2 + α21vi,t+1 + α31vi,t)] = 0
(t = 1, . . . , T − 2).

Thus, we have a system of T − 3 equations with a set of admissible
‘‘instruments’’ that increases with T , but a common parameter
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vector α. With T = 3 there is a single equation in first differences
with two instruments so that α is at best just identified up to scale.
Wemay pin down the scale by letting the residual variance be zero
or we could normalize the first coefficient to be unity, in which
case the remaining coefficients are the negatives of the familiar
autoregressive coefficients.

Returning to our original specification (23), suppose that α1 +

α2 + α3 = 0. Then

α1(vi,t+2 − ηi) = −α2(vi,t+1 − ηi)− α3(vi,t − ηi)+ ui,t+2

(t = 3, . . . , T ).

Under this parameter restriction the fixed effect is inconsequential
and can be dropped. Imposing this zero restriction allows us to
rewrite the equation as:

α11vi,t+2 = −(α2 + α1)1vi,t+1 + vi,t+2.

This first-order AR specification in first-differences is implicitly the
specification that is used in building the I test. If this specification
satisfies the orthogonality restrictions, then the parameters of the
original model cannot be identified using the approach of Arellano
and Bond (1991). The hypothesis that underlies the I test is thus
equivalent to an AR(2) specification with a unit root.

Up until now we have considered only models that are
linear in the variables. We extend this discussion to include
models with nonlinearities. In this discussion, it is important to
distinguish two cases. In the first case there is a separation between
variables and parameters, and hence the nonlinearity is confined
to the parameters. In the second case, the nonlinearities between
variables and parameters interact in a more essential way.

4. Nonlinearity in the parameters

We first extend our previous analysis by replacing the
parameter vector α by a nonlinear, continuously differentiable
function φ : P → Rk+1 where P is the closure of an open set in
Rℓ. We study the nonlinear equation:

Assumption 4.1.

E (Ψt) φ(β) = 0 (24)

for some β ∈ P.

The identification question is only of interest when φ is a one-
to-one (i.e. injective) function. If there are two distinct parameter
values β and β∗ for which φ(β) = φ(β∗) then we know a priori
that we cannot tell β apart from β∗ on the basis of Assumption 4.1.
We make the stronger restriction.

Assumption 4.2. For any two values of the parameter vector β ≠

β∗ in P, φ(β) ≠ cφ(β∗) for some real number c.

We know that we can only identify φ(β) up to a proportionality
factor. In Assumption 4.2 we ask the nonlinear parameterization
to eliminate scale multiples from consideration.

We find it fruitful to think of the function φ as imposing
restrictions on a parameter vector α through the mapping φ(β) =

α. By thinking of α as the parameter to be estimated, we can
use aspects of the approach described previously. Since φ is one-
to-one, we can uncover a unique β for each α. This leads us to
construct the parameter space:

Q .
= {α : α = φ(β) for some β ∈ P}.

Suppose now that two values β [1] and β [2] satisfy Assump-
tion 4.1 and are distinct. Thus both φ(β[1]) and φ(β [2]) are in the
null space of the matrix E(Ψt). By Assumption 4.2, the vectors
φ(β [1]) and φ(β[2]) are not proportional. Any two linear combina-
tions of φ(β [1]) and φ(β [2])must also be in the null space of E(Ψi).
To study underidentification using our previous approach, we ex-
pand the parameter space as follows:

Q∗ .
= {α : α = c1α1 + c2α2, α1 ∈ Q, α2 ∈ Q, c1, c2 ∈ R}. (25)

Notice that if
E(Ψt)α = 0
for two values of α in Q, then there is a set of solutions to this
equation in Q∗. This problem is not a special case of our earlier
analysis because Q∗ may not be a linear space.

To illustrate how nonlinearity in parameters can alter the
analysis, we use an example that is closely related to the non-linear
IV model with serially correlated errors considered by Sargan
(1959). Nevertheless, it differs in an important way because in our
case the valid instrumental variables are predetermined but not
necessarily strictly exogenous.17

Example 4.1. Consider a time series example:

xt · β1 = ut + γ ′

1wt ,

ut = β2ut−1 + γ ′

2wt , (26)

where {wt} is a multivariate martingale difference sequence.
Suppose also that zt−1 is a linear function of wt−1, wt−2, . . . . The
process {ut} is unobservable to the econometrician, but

xt · β1 − β2(xt−1 · β1) = (γ1 + γ2)
′wt − β2γ

′

1wt−1.

Let

Ψt =

zt−2xt ′ −zt−2xt−1

′

,

and consider identification of β based on:

E(Ψt)φ(β) = 0,

where

φ(β) =


β1
β2β1


. (27)

To achieve identification requires that we impose an additional
normalization, say |β1| = 1. We may wish to restrict |β2| < 1.
Sincewe have not restricted γ ′

2wt to be uncorrelatedwith ut−1, the
unobserved (to the econometrician) process {ut} can be stationary
and still satisfy Eq. (26). Thus when |β2| > 1,

ut = −

∞
j=1

(β2)
−j γ ′

2wt+j

is a stationary process that satisfies (26). Notice, however, in this
case ut + γ ′

1wt is orthogonal to zt−1 so there is an additional
moment restriction at our disposal. As is well known the case of
|β2| = 1 requires special treatment.

Consider two parameter choices (β1, β2) and (β∗

1 , β
∗

2 ). Without
loss of generality write

β∗

1 = cβ1 + dη1 (28)
where c = β1 · β∗

1 , |η1| = 1 and η1 ⊥ β1, and impose that
c2 + d2

= 1 to guarantee that |β∗

1 | = 1 too.
In line with the linear case assume that rank[E(Ψt)] = k− 1 so

that it has a two-dimensional null space. This means that if there
are other observationally equivalent structures, they must satisfy

E(Ψt)


cβ1 + dη1

cβ∗

2β1 + dβ∗

2η1


= 0. (29)

Given the partly linear and partly non-linear structure of the
model, underidentification emerges in three ways that we now
consider.

17 In his Presidential address to the Econometric Society Sargan (1983a) studied a
static model with the samemathematical structure, while Sargan (1983b) analyzed
a dynamic multivariate version.
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4.1. Only β1 identified:

There is one specialway inwhich identification canbreak down.
Suppose that

E

zt−2xt−1

′

β1 = 0,

and hence

E

zt−1xt ′


β1 = 0 (30)

for some β1. This phenomenon can occur for one of two reasons.
First perhaps the choice zt−2 is unfortunate. Alternatively, xt · β1
may depend only on current and possibly future values of the
martingale difference sequence {wt}. As we have seen, this may
happen when |β2| > 1 or in the degenerate case when ut is
identically zero (γ1 = 0).18 For this same β1, it is also required
that

E

zt−2x′

t


β1 = 0.

Typically, there will be common entries in zt−1 and zt−2. Let z∗

t−1
be a random vector formed after eliminating these redundancies
in order that E


z∗

t−1z
∗

t−1
′

is nonsingular. Then the I test for β2 is

based on:

E

z∗

t−1xt
′

β1 = 0.

In other words, if the composite disturbance term ut + γ ′

1wt is or-
thogonal to z∗

t−1, then β2 is not identified via the moment condi-
tions. This I test is implemented by estimating the econometric
relationship without quasi-differencing, and then testing the
resulting overidentifying restrictions. Of course, if the null hypoth-
esis underlying the I test is accepted, there are other moment
conditions that could be used to identify β2 given β1.

Notice in this case there is a continuum of values of the
composite parameter vector β that satisfy the moment conditions
under the null hypothesis of the I test, but only a single value of β1,
which our procedure will estimate efficiently. Thus the function π
associated with this case is:

π(θ) =


β1
θ


.

This test is closely related but not identical to the underidenti-
fication test proposed by Sargan (1959) for the non-linear in pa-
rameters model that he studied. The augmented set of moment
conditions that he considered were (30) and

E(Ψt)


β∗

1
β∗

2β
∗

1


= 0,

where he implicitly chose β∗

2 so that the sample covariance matrix
of xt ′β1 and (xt ′ − β∗

2 xt−1
′)β∗

1 were 0. Apart from our emphasis on
symmetric normalization and robustness to serial correlation and
heteroskedasticity, the main difference with his approach is that
we impose the restriction β1 = β∗

1 , which, in parallel with a gain in
estimation efficiency, leads to a reduction in the number of degrees
of freedom and the resulting gain in power, and also eliminates the
need to choose two arbitrary values for β2.

As we mentioned previously, we could allow for the value
of β2 to have an absolute value greater than one. In this case
identification of β2 will fail unless we replace zt−2 by zt−1.

4.2. Only β2 is identified:

As another alternative suppose there is a vector β∗

1 ≠ β1 such
that

18 In the case in which |β2| > 1 we may identify β2 from other moment
conditions.
α∗
=


β∗

1
β2β

∗

1


satisfies the moment conditions:

E (Ψt) α
∗

= 0.

Since any linear combination of α and α∗ must satisfy moment
conditions, we can choose c = 0 in (28) so that
η1
β2η1


should also satisfy the moment conditions (29). This gives rise
to a second I test. We parameterize two orthonormal directions
η1 and β1 along with a single parameter β2. When β1 has only
two components, we are free to set β1 and η1 equal to the two
coordinate vectors and freely estimate only the parameter β2. In
that case the moment conditions of the I test can be expressed as

E[zt−2(xi,t − β2xi,t−1)] = 0, i = 1, 2.

More generally, under the null hypothesis associated with
this I test there is a two-dimensional plane of (non-normalized)
values of the original parameter vector β1 that satisfy the moment
conditions, but only one value of β2. After normalization, the
manifold of observationally equivalent structures will be given by
(28), and hence we may represent the observationally equivalent
β ’s via:

π(θ) =


θβ1 +


1 − θ2η1
β2


for −1 ≤ θ ≤ 1 where we introduce additional restrictions that
permit us to identify β1 and η1 used to represent π . Note that if
E[zt−2(xi,t − β2xi,t−1)] = 0 for some i, then all the β1 coefficients
will be identified except the one corresponding to xi,t .

Importantly, this test is different from a linear test of
rank[E(Ψt)] = k − 1 derived along the lines of Section 3.1, since
such a test would not impose that the observationally equivalent
structures must satisfy (27).

Once again, as a by-product of our procedure we will obtain
efficient GMM estimators of β2, and the parameters β1 and η1 that
characterize the identified set through (28).

4.3. Another possibility

In the two previous cases, we constructed functions π with
realized values that satisfied the moment conditions. Another
possibility is that the rank[E(Ψt)] = k − 1 but that there are only
two distinct parameter values in P, say β [1] and β [2] that satisfy:

E(Ψt)φ(β) = 0.

In this case there is still a two-dimensional subspace of Q∗

constructed in (25). With an additional normalization, obtained,
say, by restricting the magnitude of the vector β1 to have a norm
equal to one, the curve is reduced to one dimension.19

5. Fundamental nonlinearity

In this section we explore the underidentification problem
when there is a more fundamental nonlinearity of the parameters
in themoment conditions. Recall that in the linearmodel discussed

19 In the first-order underidentified case studied by Sargan (1983a), there is only
oneβ0 that satisfies themoment conditions (24) even though the rank of thematrix
{E[Ψt ]∂φ(β0)/∂β

′
} is less than ℓ. This case can be regarded as the limit of the

isolated two-points case in which β [1] and β [2] get closer and closer to each other
in such a way that the dimension of the nullspace of E(Ψt ) remains two.
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in Section 3, underidentification implies that we can estimate
a line, which we chose to implicitly parameterize by means of
two parameter vectors. Similarly, in the non-linear in parameters
model discussed in Section 4, we also implicitly parameterize
a curve as a function of a finite number of parameters. The
natural extension for a fully nonlinear model is to estimate a
one-dimensional curve.

What follows are two distinct and largely self contained
subsections. The first one extends the efficiency problem posed
in Section 2. The second subsection explores the consistent
estimation of one-dimensional curves and suggests a resulting test
for under-identification.

5.1. Efficiency reconsidered

In this subsection we establish a pointwise (in θ ) efficiency
bound for GMM using an approach similar to Hansen (1985) that
extends the analysis of Section 2, where we constructed the GMM
efficiency bound for a finite setΘn.

Let Θ be a compact interval. We impose the following exten-
sions to Assumptions 2.1 and 2.2:

Assumption 5.1. 1
√
T

T
t=1 f [xt , π0(θ)] converges in distribution

to a Gaussian process {g(θ) : θ ∈ Θ} with mean zero for all θ ∈ Θ

and covariance function:

K(θ, ϑ) = lim
T→∞

1
T
E


T

t=1

T
s=1

f [xt , π0(θ)]f [xs, π0(ϑ)]
′


where the covariance function K is continuous in its two
arguments.

A sufficient condition for this assumption is that
 1

√
T

T
t=1


f (xt , β)

− f̄ (β)


: β ∈ P

converges in distribution to a Gaussian random

element.

Assumption 5.2. D(θ) is continuous on Θ and D(θ)′D(θ) is non-
singular for all θ ∈ Θ .

As before, we construct:

h(θ) = [D(θ)′D(θ)]−1D(θ)′g(θ),

for all θ ∈ Θ . Let {θj : j = 1, 2, . . . .} be a dense sequence in
Θ . Construct F as the mean square closure of


∞

n=1 Fn, where as
before

Fn =


y =

n
j=1

B′

jg(θj) : D(θj)′Bj = 0, j = 1, 2, . . . , n


.

The sequence approach gives us one means of approximating the
efficiency bound.

Proposition 5.1. The GMM efficiency bound for estimating h(θj) is

E


h(θj)− Proj[h(θj)|F ]
 

h(θj)− Proj[h(θj)|F ]
′
.

Proof. From least squares theory

lim
n→∞

Proj

h(θj)|Fn


→ Proj


h(θj)|F


,

where the convergence is in mean-square. It follows that

lim
n→∞

E


h(θj)− Proj[h(θj)|Fn]
 

h(θj)− Proj[h(θj)|Fn]
′

= E


h(θj)− Proj[h(θj)|F ]
 

h(θj)− Proj[h(θj)|F ]
′
. �

The precise choice of the sequencing is important in practice,
but it does not alter F .
Lemma 5.2. For any θ ∈ Θ and vector B such that D(θ)′B = 0,
B′g(θ) is in F .

Proof. This result follows immediately for θ a member of the se-
quence {θj : j = 1, 2, . . . .}. More generally, consider a subse-
quence


θj(k) : k = 1, 2, . . .


that converges to θ , and compute

E
g[θj(k)] − g(θ)

2 = trace

K

θj(k), θj(k)


− K


θj(k), θ


− K


θ, θj(k)


+ K (θ, θ)


.

The right-hand side converges to zero since the covariance function
K is continuous in both arguments, and hence so does the left-hand
side. Let

Bk = B − D

θj(k)

 
D

θj(k)

′ D θj(k)−1
D

θj(k)

′ B.
Notice that D


θj(k)

′ Bk = 0 and that {Bk : k = 1, 2, . . .} con-
verges to B since


D

θj(k)


: k = 1, 2, . . .


converges to D(θ) and

D(θ)′B = 0. It follows that

lim
k→∞

E

|B′

kg

θj(k)


− B′g(θ)|2


= 0

since
E
B′

kg

θj(k)


− B′g(θ)

21/2
≤ |Bk − B|


E
g θj(k)21/2

+ |B|

E
g θj(k)− g(θ)

21/2 ,
{g

θj


: j = 1, 2, . . . .} converges in mean-square to g(θ) and
{Bk : k = 1, 2, . . .} converges to B. �

As a direct extension of Proposition 5.1 and Lemma 5.2,
our calculations apply jointly to any finite number of θ ’s. The
construction of F remains the same.

Theorem 5.3. The GMM efficiency bound for any finite collection of
θ ’s, θ1, θ2, . . . , θm is given by E(YY ′) where

Y =

 h(θ1)− Proj [h(θ1)|F ]
h(θ2)− Proj [h(θ2)|F ]

− − −

h(θm)− Proj [h(θm)|F ]

 .
While our GMMefficiency bound applies to any finite collection

of points along a curve, it is suggestive of a more general result.
As an immediate corollary to the previous theorem, consider the
efficiency bound for estimating

m
j=1

γ ′

j τ(θj). (31)

This bound is given by the variance in the forecast error:

m
j=1

γ ′

j h(θj)− Proj


m
j=1

γ ′

j h(θj)|F


.

Consider now the efficiency bound for estimating
Θ

γ (θ) · τ(θ)dθ.

Reimann sum approximations to this integral can be represented
in the form given in (31). Provided that we can construct an
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approximating sequence

E

 m
j=1

γ ′

j τ(θj)−


Θ

γ (θ) · τ(θ)dθ


2


that converges to zero, we conjecture that the efficiency bound is
the variance of
Θ

γ (θ)′g(θ)dθ − Proj


Θ

γ (θ) · g(θ)dθ
F  .

This result is a nontrivial extension of our ‘‘pointwise’’ calculations,
but a formal proof of it is beyond the scope of this paper.

5.2. Estimation of curves

We now adopt a more global perspective by studying the
statistical consistency of GMMestimators of the functionπ : Θ →

P. Conveniently, this estimation problem looks like a standard
problem except that we seek to estimate a function instead of a
finite-dimensional parameter vector.

Assumption 5.3. Let P be a compact subset of Rk.

As in Section 2, introduce a function f (x, ·) : P → Rp for each
x. The function f is jointly Borel measurable and at the very least
continuous in its second argument for each value of x. Thus f (xt , ·)
is a p-dimensional random function on P or a random element.

Assumption 5.4. E|f (xt , β)| < ∞ for each β ∈ P.

This assumption justifies the definition of f̄ (β) = E[f (xt , β)]
for each β ∈ P.
As in Hansen (1982a), we also assume:

Assumption 5.5. f (xt , ·) is first-moment continuous for each
β ∈ P.

Under this assumption f̄ is continuous on the parameter space P.
This continuity condition along with a point-wise (in β) Law of
Large Numbers implied by ergodicity gives a Uniform Law of Large
Numbers (see Hansen, 1982a).

We extend the usual GMM estimation framework by consider-
ing parameterizations of the form π(θ), where π is a continuous
function with range P and θ ∈ Θ .

Assumption 5.6. Π is a compact set of admissible functions
defined using the supnorm.

From the Arzelà–Ascoli Theorem it suffices that there be a
uniform bound on the functions in Π and that the functions be
equicontinuous. The uniform bound comes from the compactness
of P (Assumption 5.3).

Consider next first-moment continuity. Notice that

f [x, π(θ)] − f [x, π̃(θ)]| ≤ sup
β∈P,β̃∈P,|β−β̃|≤ϵ

|f (x, β)− f (x, β̃)|

provided that ∥π − π̃∥ ≤ ϵ. This simple inequality implies that
the first-moment continuity restriction given in Assumption 5.5
extends to the parameter spaceΠ .

Let C denote the space of all continuous functions from Θ into
Rp equipped with the sup-norm. Let g be a continuous function
mapping P into Rp. Then for any π ∈ Π , the composition g ◦ π is
in C. Thus wemay view g ◦π as a continuous function mappingΠ
into C. In particular, the functions f [x, π(·)] for each x and f̄ [π(·)]
are continuous inπ on the parameter spaceΠ . SinceΠ is compact,
these functions are in fact uniformly continuous.
Proposition 5.4. Suppose that Assumptions 5.3–5.6 are satisfied.
Then

sup
π∈Π

sup
θ∈Θ

 1T
T

t=1

f [xt , π(θ)] − f̄ [π(θ)]


converges to zero almost surely.

Proof. See Hansen (1982b). �

Given that we now seek to identify a function π0 instead of a
vector β0, under the null hypothesis of underidentification ofβ our
new ‘‘identification condition’’ requires that:

Assumption 5.7. f̄ [π(θ)] = 0 for all θ ∈ Θ if and only if π = π0.

This assumption rules out the possibility that there exists π̃ such
that

{π̃(θ)|θ ∈ Θ} ⊂ {π0(θ)|θ ∈ Θ} (32)

for some π̃ ≠ π0, in which case there would exist two functions
in this closure for which the image of one function is a proper
subset of the other. Note that (32) is ruled out a priori if we use
parameterization (2) given by:

π(θ) =


θ
τ(θ)


because the first coordinate of π is allowed to vary.

To obtain a consistent estimator of π0, we introduce a positive
definite quadratic form W which plays the role of the ‘‘weighting
matrix’’ in GMM estimation. We let L2 denote the space of Borel
measurable functions φ that mapΘ into Rp, where the coordinate
functions of φ are restricted to be square integrable using a
conveniently chosenmeasure onΘ .Weuse a Lebesguemeasure on
Θ and (


Θ

|φ(θ)|2 dθ)1/2 as norm, but in some applications other
measuresmay turn out to bemore convenient. The quadratic form,
W , maps L2

× L2 into R. Quadratic forms satisfy:

(i) W(φ, ψ) = W(ψ, φ) for φ,ψ ∈ L2;
(ii) W(rφ,ψ) = rW(φ, ψ) for φ,ψ ∈ L2, r ∈ R;
(iii) W(φ1 + φ2, ψ) = W(φ1, ψ)+ W(φ2, ψ) for φ1, φ2, ψ ∈ L2.

A positive semidefinite form satisfies W(φ, φ) ≥ 0. We
strengthen this restriction by imposing positive definiteness and
boundedness:

Assumption 5.8. For any φ ≠ 0 in L2

W(φ, φ) > 0,

and for some positive number b̄

W(φ, φ) ≤ b̄


Θ

|φ(θ)|2dθ

for all φ ∈ L2.

A positive definite form defines an alternative norm on L2 con-
structed as [W(φ, φ)]1/2 and the form itself defines an alternative
inner product. The upper bound in this assumption guarantees that
W is L2 continuous. To see this observe that

|W(ψ,ψ)− W(φ, φ)| ≤ W(ψ − φ,ψ − φ)+ 2|W(φ, ψ − φ)|.

Positive semidefinite forms satisfy the Cauchy–Schwarz Inequality
and hence

|W(φ, ψ − φ)| ≤ [W(φ, φ)]1/2 [W(ψ − φ,ψ − φ)]1/2 .

The L2 continuity of W now follows from

W(ψ − φ,ψ − φ) ≤ b̄


Θ

|ψ(θ)− φ(θ)|2dθ.
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Consider an estimator πT that solves:

Problem 5.5. Let πT be a solution to:

min
π∈Π

W


1
T

T
t=1

f [xt , π(·)],
1
T

T
t=1

f [xt , π(·)]


.

The following result establishes the consistency of πT :

Theorem 5.6. Suppose that Assumptions 5.3–5.8 are satisfied. Then

sup
θ∈Θ

|πT (θ)− π0(θ)|

converges to zero almost surely as T gets large.

Proof. Let F be a continuous function mapping P into Rp. Recall
that we may view F [π(·)] as a continuous function mapping
Π into C. In addition we may view W(F [π(·)], F [π(·)]) as
a continuous function mapping Π into the nonnegative real
numbers. From Proposition 5.4


1
T

T
t=1 f (xt , π) : T = 1, 2, . . .


converges uniformly in π to the continuous function f̄ (π).
Thus W


1
T

T
t=1 f [xt , π(·)],

1
T

T
t=1 f [xt , π(·)]


converges to W

f̄ [π(·)], f̄ [π(·)]

uniformly in π almost surely. It follows that the

set of minimizers of W


1
T

T
t=1 f [xt , π(·)],

1
T

T
t=1 f [xt , π(·)]


converges in the Hausdorff metric over compact subsets of Π to
the unique minimizer of W


f̄ [π(·)], f̄ [π(·)]


, which is π0. �

This consistency argument presumes that we have full flexi-
bility in constructing the function π . In practice we have to ap-
proximate this function, for instance by selecting grid points and
building a smooth function that passes through these points via
splines. Formally our consistency argument allows for this con-
struction to be arbitrarily refined. Once we explore ways to ap-
proximate the efficiency bound, important implementation issues
come into play that require more care be paid to this approxima-
tion. As this is an important practical issue, we will suggest an ap-
proach without fully analyzing the implications for inference.

What follows are examples of forms that interest us.

Example 5.1. Consider

W(φ, ψ) =


Θ

φ(θ)′W (θ)ψ(θ)dθ

where W (θ) is continuous and positive definite for each θ ∈ Θ
and W (θ) ≤ b̄I . In this case the GMM minimization Problem 5.5
is separable in θ and the minimization can be done θ by θ . One
possibility is to let

W (θ) = K(θ, θ)−1

which is known to achieve the familiar GMM efficiency bound, but
this bound ignores the cross θ restrictions.

Example 5.2. Let {ϕj : j = 1, 2, . . .} denote an orthonormal
sequence of functions in L2 with a span given by the entire space.
Form

W(φ, ψ) =

∞
j=1

ζj


Θ

ϕj(θ) · φ(θ)dθ

Θ

ϕj(θ) · ψ(θ)dθ,

and b ≤ ζj ≤ b̄ for j = 1, 2, . . . . Then

φ =

∞
j=1

ϕj


Θ

φ(θ) · ϕj(θ)dθ

where the convergence of the infinite sum is in the L2 norm given
by (


Θ

|φ(θ)|2 dθ)1/2, and hence the Parceval formula implies that

Θ

φ(θ) · φ(θ)dθ =

∞
j=1


Θ

φ(θ) · ϕj(θ)dθ
2
.

As a consequence, W satisfies Assumption 5.8.
This second construction allows for efficiency gains via joint

estimation. One possibility is to follow Carrasco and Florens (2000)
by using the form:

K(φ, ψ) =


Θ


Θ

φ(θ)′K(θ, ϑ)ψ(ϑ)dθdϑ.

Construct the functions ωj and numbers λj as eigenfunctions and
eigenvalues of the form K

K(ωj, φ) = λj


Θ

ωj · φ

for allφ ∈ L2. For a different estimation problem, Carrasco and Flo-
rens (2000) suggest constructing a form that ‘‘inverts’’ the eigen-
values as a counterpart to inverting a weighting matrix. This leads
to the GMM objective:

∞
j=1

ζj


Θ

ωj(θ) ·
1
T

T
t=1

f [xt , π(θ)]dθ

2

(33)

where ζj =
1
λj
. As they note this particular choice is problematic

because the ζj’s are unbounded since the λj’s converge to zero. This
phenomenon leads them to alternative choices based on regular-
ization such as:

ζj =
λj

λ2j + ς

or

ζj =
1

λj + ς
,

where ς > 0 is a regularization parameter. Notice that the ζj’s
are now bounded. If we hold fixed ς as a function of sample size
we will distort the efficiency, but we conjecture that by making
ς small we will approximate the efficiency bound we discussed
previously.20 Alternatively, we could follow Carrasco and Florens
(2000) and consider a framework in which the regularization pa-
rameter diminishes as the sample size gets larger in such amanner
as to achieve the GMM efficiency bound.21

It is interesting to relate the inferential problems in the previous
sections with the one in this section. The main difference is that
the structure of (8) and (24) implies that the resulting form K will
only have a finite number of positive eigenvalues. Once we take
this fact into account, though, the curves thatwewill estimatewith
the procedure that we have developed in this section will coincide
with the curves that we implicitly estimated using the procedures
developed in Sections 3 and 4.

To see why, consider for instance the linear in parameters
model (8), and suppose that instead of (6) we seek to estimate a
non-linear parametric curve with the following structure

π(θ) = θ · α[1]
+ (1 − θ) · α[2]

+


θ
υ(θ)


. (34)

Further, assume that π(θ) can be uniquely identified from the
continuum of moment conditions (3). We know that for each
possible υ the linear span of the image will be finite-dimensional.
As we show in Appendix B, the method proposed in this section
will select υ(θ) = 0 ∀θ in order to keep the dimension of the
linear span as small as possible, in this case two.

20 This conjecture is not entirely obvious because we are now imposing
compactness in the parameter spacewhereas previouslywe ignored this restriction.
21 We cannot simply appeal to the results in Carrasco and Florens (2000)
because they consider estimation of a finite-dimensional parameter vector with a
continuum of moment conditions, which is a different estimation problem.
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5.3. Testing

Suppose that π0(θ) is a known function of θ , say π0(θ) = θ .
Under full identification there is a unique but unknown parameter
vector, given by, say, β0 = π0(θ0), but we wish to test for
underidentification by pre-specifyingπ0 but not θ0. By assumption,
estimation of π0 is unnecessary. This is a special case of our
analysis, but it is also a special case of the analysis of Carrasco
and Florens (2000). While estimation has been pushed aside, the
‘‘overidentification’’ test of Carrasco and Florens (2000) is directly
applicable to this problem as a test of underidentification.

More generally, an overidentification test could be constructed
analogously to that of Carrasco and Florens (2000) by scaling ap-
propriately the minimized regularized sample counterpart to (33).
The resulting test could produce a normal distribution as the
limit of a sequence of appropriately centred and scaled (approx-
imate) chi-square distributions with an arbitrarily large number of
degrees of freedom. An attractive alternative approximation that
incorporates the role of regularization leads instead to an ap-
proximate quadratic form in normal variables. Our experience
suggests that this alternative Imhof (1961)-style approximation
described in Appendix C is an improvement over the limiting nor-
mal distribution.

6. An empirical illustration with asset returns

In this section we will illustrate our methods using two
versions of consumption-based capital asset pricing models. The
representative agent (RA) version of these models with isoelastic
preferences was originally estimated by GMM by Hansen and
Singleton (1982) using aggregate consumption data.22 From
aggregate data we know that J tests are typically large except
in cases studied by Hansen and Singleton (1996) that focus on
aggregate equity returns (see also Hansen et al., 1996; Stock
and Wright, 2000 and Kleibergen, 2005).23 When stocks and
bonds alone are used to construct two moment conditions, the
model is at best exactly identified, but the coefficient of risk
aversion is typically very large, which is evidence of the so-
called equity premium puzzle coined by Mehra and Prescott (1985).
To illustrate our procedures, we consider such a specification
except that we use microeconomic data to construct an aggregate
stochastic discount factor (SDF). Specifically, we follow a recent
paper by Kocherlakota and Pistaferri (2009), which contrasts the
implications of the RA model with one in which consumption and
portfolio choices conform to a Pareto optimal allocation under
private information (PIPO). When Kocherlakota and Pistaferri
(2009) use the PIPO model, they find a substantially lower value
for the coefficient of relative risk aversion.

For estimation purposes, they considered the following mo-
ment conditions:

E [f (xt , γ , ρ)] = E [Rtk(xt , γ )− ρι2] = 0, (35)

where ι2 is a two-dimensional vector of ones, Rt is a two-
dimensional vector of gross returns on stocks and bonds denoted
as:

Rt =


Rm,t
Rf ,t


and k(xt , γ ) is a model dependent kernel given by

22 This application is closely related to Example 3.3.
23 Hansen and Singleton (1996) use a recursive model of preferences with a
unitary coefficient of risk aversion to motivate the identification of the elasticity
of intertemporal substitution with the return on the wealth portfolio.
k(xt , γ ) =




N−1

N
i=1

ci,t

−γ 
N−1

N
i=1

ci,t−3

−γ

RA
N−1

N
i=1

(ci,t−3)
γ


N−1

N
i=1

(ci,t)γ


PIPO.

In the formula for k(xt , γ ), ci,t is consumption of household
i (1, . . . ,Nt) over ‘‘month’’ t (1, . . . , T ). The parameters of interest
are (γ , ρ), with ρ−1 corresponding to the subjective discount
factor and γ to the coefficient of relative risk aversion. The
implied SDFs used to represent asset prices are ρ−1k(xt , γ ) for the
alternative specifications of k(xt , γ ). These SDFs both discount the
future and adjust for risk.

To study underidentification, we consider the functions ρm(γ )
= E[Rm,tk(xt , γ )] and ρf (γ ) = E[Rf ,tk(xt , γ )]. If ρm(γ ) ≠ ρf (γ )
for all admissible values of γ except γ0, then γ0 and ρ0 are
identified. Alternatively, if ρm(γ ) = ρf (γ ) = ρ(γ ) for γ ’s in an
interval, then themodel is underidentified, andwe seek to identify
the values of ρ that correspond to each value of γ . To justify this
latter identification, we consider an overidentification test applied
to the problem of estimating ρ as a function of γ for an interval
of γ ’s.

It is instructive to contrast this approach with a method of
constructing a confidence interval for γ using a GMM criterion
function. Suppose the model is point identified and consider a
GMM estimator of ρ for alternative values of γ in an interval. For
each such value of γ , there are twomoment conditions that can be
used to estimate the corresponding ρ. Suppose now we consider
the γ ’s for a continuously-weighted GMM objective function that
are below a pre-specified threshold, where the GMM objectives
are evaluated at the minimizing choices of γ .24 The threshold is
set using the appropriate quantile of a chi-square one distribution.
Such a procedure leads not only to a confidence interval for
γ but also to a curve that depicts the minimizing values of ρ
corresponding to each value of γ in the confidence interval. This
curve depicts a potentially interesting tradeoff in the empirically
relevant parameter values.

In contrast, suppose the model is in fact underidentified. For
the reasons given in this paper, it is more efficient to estimate
this curve by stacking all of the relevant moment conditions, or
more precisely by studying the resulting continuum of moment
conditions simultaneously. Under the perspective that the model
is underidentified, we have a more efficient way to estimate
the curve depicting the tradeoff in parameters resulting from
the empirical evidence. Under this perspective we could use the
I test threshold instead of the J test threshold to help in the
determination of the length of the interval.

6.1. Implementation

One simple way of implementing our approach is by means of
the following discrete grid procedure.

1. Choose n values of γ , denoted γ1, . . . , γn spaced within the
interval of interest;

2. Replicate n times the moment conditions (35) evaluating them
at γj and ρ(γj);

3. Estimate the parametersρ(γ1), . . . , ρ(γn) using efficient GMM.

Since we restrict ourselves to a grid of points, the method only
approximates the efficiency bound derived in Section 5 and only

24 The resulting γ ’s need not be a single interval, but suppose for sake of
illustration we consider only the interval surrounding the GMM point estimate.
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provides estimates of the curve evaluated at a finite number of
points. For n fixed, however, the corresponding overidentification
test will be valid, testing now the null hypothesis of underiden-
tification. When the values of γ are close to each other, the opti-
mal weighting matrix may be close to singular in finite samples.
We find it best to apply some regularization procedure, such as
‘‘ridge’’ or Tikhonov pseudo inverses.25 The overidentification test
associatedwith a regularized procedurewill also be asymptotically
χ2
n if the regularization parameter goes to zero at a suitable rate,

but its finite sample distribution may be better approximated by a
quadratic form in normal variables, as described in Appendix C.

An alternative way of approximating the efficiency bound
discussed in Section 5 is as follows.
1. Choose H + 1 values of γ , denoted γ1, . . . , γH+1 spaced within

the interval of interest;
2. Parameterize ρ(.) a continuous, twice differentiable function of
γ using what is referred to as a natural cubic spline with knots
at γ1, . . . , γH+1. The spline introduces H + 1 parameters to be
estimated. (See Appendix E for details.)

3. Use the Carrasco and Florens (2000) procedure to estimate
the free parameters of the spline using (35) to construct a
continuum of moment conditions indexed by γ .

Since the spline only approximates the curve, the number of knot
points needs to increase with the sample size to avoid asymptotic
bias in the curve estimation. As before, a quadratic form in normal
variables might offer an attractive alternative to using a standard
normal for the limiting distribution of the resulting test statistic.

In practice, there are several choices that one needs to
make in order to implement the Carrasco and Florens (2000)
procedure. In particular, one must choose the regularization
scheme and an associated regularization parameter, an estimator
of the covariance operator (e.g. centered or uncentered), and the
estimator at which the covariance operator will be evaluated. See
Appendix D for more details.

The discrete grid approach gives consistent estimators of a
finite number of points along the curve while the spline approach
gives an estimator of the curve. We defer formal analysis of both
methods as n and H get large as a function of the sample size for
future research.

In the next subsection we compare these two methods to
one in which we estimate ρ as a function of γ for each γ
using a pointwise optimal GMM estimator constructed from the
two moment conditions in (35). By changing the value of γ we
trace a curve. This estimator ignores efficiency gains that are
available through joint estimation for alternative values of γ , but
nevertheless it provides a convenient benchmark.

6.2. Empirical results

We follow Kocherlakota and Pistaferri (2009) in using T = 288
months of the rotating US Consumer Expenditure (CEX) panel over
the period 1980–2004. We consider in turn results for the two
models.

25 LetMT denote a consistent estimator of the long run covariancematrix of the 2n
replicated moment conditions, and denote by W1W ′ its spectral decomposition.
Tikhonov regularization involves replacing M−1

T = W∆−1W ′ by W∆1/2
[ςT I2n +

∆2
]
−1∆1/2W ′ , while ‘‘ridge’’ regularization usesW [υT I2n +∆]

−1W ′ instead, where
ςT and υT are some small positive regularization parameters that should tend to
0 with the sample size. While Tikhonov replaces δ−1

i by δi/(ςT + δ2i ), ridge uses
1/(υT + δi), both of which remain bounded as δi → 0. As a result, the damping
factors are δ2i /(ςT + δ2i ) and δi/(υT + δi), respectively, which are monotonic
functions of δi that are 0 for δi = 0 and go to 1 when δi → ∞ or the regularization
parameter goes to 0. One advantage of the ridge procedure, though, is that it
preserves the ordering of the non-regularized weights. In contrast, the maximum
Tikhonov weight occurs at δ =

√
ςT . For δ′s larger than

√
ςT the Tikhonov weights

are decreasing in δ, while they are increasing in δ when δ <
√
ςT , which may lead

to noticeable differences in parameter estimates in finite samples, especially if MT
is not too ill conditioned.
Table 1
Parameter estimates and standard errors. Discrete grid estimators and standard
errors (s.e.) are based on an optimal weightingmatrix that uses ridge regularization
with parameter ς = 0.15.

γ Pointwise efficient Discrete grid
ρ−1 s.e. ρ−1 s.e.

50 0.435 0.044 0.442 0.032
51.25 0.419 0.044 0.424 0.033
52.5 0.404 0.044 0.406 0.032
53.75 0.389 0.043 0.388 0.028
55 0.375 0.043 0.370 0.020

6.2.1. Representative agent model
Fig. 1 depicts the estimation results for the RAmodel. Panel 1(a)

gives the minimized GMM objective function when we estimate
ρ(γ ) separately for each value of γ ; and Panel 1(b) gives the
estimates ofρ(γ )using the threemethods described in Section 6.1.
All three provide similar estimates.

The minimized value of the GMM objective function in Panel
1(a) occurs at γ (=53.26) and ρ−1 (=0.395), as obtained by
Kocherlakota and Pistaferri (2009) from the original moment
conditions (35). Not surprisingly, the estimate of γ is very large
because otherwise the RA SDF would not sufficiently co-vary with
excess returns on stocks. In order to adjust for the large values of
γ , the implied subjective discount factors are very low.

The relevant issue for our purposes, though, is underidentifica-
tion. Can the populationmoment conditions be satisfied for a range
of γ ’s?We consider an arguably narrow range using a discrete grid
of 5 values around theminimizing value of γ from the plot in Panel
1(a). Specifically, we use grid points 50, 51.25, 52.5, 53.75, 55.
Given that the covariancematrix of themoment conditions is close
to being singular over that range mostly because of the large val-
ues of γ , we use ridge regularization. Panel 1(b) plots the corre-
sponding estimated values of the subjective discount factor ρ−1.
The underidentification test is equal to 0.054, whose p-value using
the Imhof approximation will be equal to 85.9%, so there is very
little evidence against the null of underidentification. This statis-
tic should be viewed with considerable caution when the concen-
trated GMM criterion depicted in Panel 1(a) is used to select the
range of γ ’s. Conditioning on such a selection will alter the distri-
bution of the I test. Alternatively, the I test could be used explicitly
to infer a range, as wementioned in Section 6.1. Formal analysis of
these important issues is beyond the scope of this paper.

Table 1 presents point estimates of the subjective discount fac-
tor ρ−1 for the values of γ used in our discrete grid implementa-
tion, together with standard errors obtained from joint estimation
and from separate estimation for each value of γ . The efficiency
gains discussed in Proposition 2.1 are evident from a comparison
of the standard errors.

We also implement the cubic spline approach described
in Section 6.1. Given the smoothness of the curve obtained
by estimating ρ−1 for each value of γ separately, we only
consider three knots, namely 50, 52.5 and 55, and therefore two
subintervals. Panel 1(b) presents the spline obtained with a two-
step estimatorwith Tikhonov regularization of the secondmoment
(uncentered) operator that uses the GMM estimator of ρ at the γ
values at each knot point separately as first-stage estimator.26 We
obtain rather similar resultswith GMMestimators for a continuum
of moment conditions that use ridge regularization applied to the
uncentered covariance operator, as well as ridge and Tikhonov
regularization applied to the centered covariance operator. See
Appendix D for further details.

26 For this approach the implied I test statistic is so close to zero that the resulting
p-value is effectively one. Further work is required to dispel doubts about the finite
sample reliability of these statistics.
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(a) Pointwise optimal GMM criterion function after minimizing with
respect to ρ.

(b) Alternative estimators of the implied subjective discount factor for
different values of γ .

Fig. 1. Results for the RA model.
(a) Pointwise optimal GMM criterion function for the PIPO model
after minimizing with respect to ρ.

(b) Alternative estimators of the implied subjective discount factor for
different values of γ .

Fig. 2. Results for the PIPO model.
6.2.2. Private information Pareto optimal model
Fig. 2 depicts the estimation results for the PIPO model. Panel

2(a) gives the minimized GMM objective function when we
estimate ρ(γ ) separately for each value of γ ; and Panel 2(b)
gives the estimates of ρ(γ ) using the three methods described in
Section 6.1. Again we find that the estimates are very similar for all
three methods.

As argued by Kocherlakota and Pistaferri (2009), the PIPO SDF
has the potential to fit the data with more reasonable values
for γ by assigning an important role to consumption inequality
and private information. Consistent with their evidence, the GMM
objective function depicted in Panel 2(a) achieves a minimum at
the more reasonable value of 5.33. The subjective discount factor,
however, remains very low with an implied value of .232. To
assess underidentification, once again we consider an equidistant
discrete grid of 5 values of γ , but this time over the range 5 to 6.
In this case, the underidentification test is equal to 0.536, whose
Imhof-based p-value is equal to 61.9%, so once again there is little
evidence against the null of underidentification.

Panel 2(b) also presents a three-knot spline estimated with
the same approach that we used for the RA model. The criterion
function-based underidentification test is 0.184, whose Imhof
p-value is 0.96. Once again, further investigation is required to
assess the reliability of these inferences.

7. Conclusions

In instrumental variables or GMMestimation of an econometric
model it is useful to have a statistical test designed to ascertain
whether the model is underidentified. While it was recognized
in the early econometric literature on simultaneous equations
systems that underidentification is testable, to date such tests
are uncommon in econometric practice. Nevertheless, many
econometric models of interest often imply a large number
of moment restrictions relative to the number of unknown
parameters and are therefore seemingly overidentified. However,
this situation is often coupled with informal evidence that
identification may be at fault. In such cases an identification
test in conjunction with some specificity about the nature of the
identification failure will help to assess to what extent the sample
is informative about the parameters of interest.

In this paper we propose a method for constructing tests of
underidentification based on the structural form of the equation
system. We regard underidentification as a set of overidentifying
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restrictions imposed on an augmented structuralmodel. Therefore,
our proposal is to test for underidentification by testing for
overidentification in the augmented model using either standard
overidentifying testingmethods available in the literature, or some
generalizations developed in this paper. To reveal the nature of
the underidentification, we suggest estimating the direction or the
curve that shows the parameter-tradeoffs that have comparable
empirical implications.

Our idea for how to build a test of underidentification is
straightforward: estimate a curve instead of a point and test the
resulting overidentification. If it is possible to construct such a
curve without statistical rejection, then the original model is likely
to be underidentified. But if the attempt fails statistically, then
the null hypothesis is rejected and we may conclude the model is
identified.

We show that our approach can be used not only for single
equation linear models, but also for systems with cross-equation
restrictions, possibly with different valid instruments for different
equations. We also extend our methods to models which are
non-linear in the parameters, as well as to fundamentally non-
linear models in which there is a one-dimensional manifold of
observationally equivalent structures.

In summary, the approach we develop in the paper for
linear and nonlinear models has the following characteristics in
common:

1. we use the structural specification and exploit the fact that if β0
is not identified, there will be a curve of β ′s that will satisfy the
original moment conditions;

2. we parameterize this curve, and write all the implied moment
conditions as an extended system with either a finite or a
continuum of moment conditions;

3. we obtain an estimator of the curve that is the counterpart to
an efficient GMM estimator;

4. we compute the overidentification test of the extended system;

We do not provide an omnibus underidentification test. Instead
our aim is to provide a test for underidentification and a measure
of the nature of this underidentification in situations in which
the characteristics of the identified set of interest are either
theoretically or empirically motivated. We illustrated how to
implement thesemethodswith a consumption-based asset pricing
model fit to microeconomic data.

Although we posed the target of the estimation to be a function
π0, we think of the object of interest to be the resulting curve.
This approach to curve estimation requires that we know how
to construct a valid parameterization of the curve a priori. It
would be interesting to develop implementation methods that are
insensitive to howwe parameterize this curve. More generally, we
could pose the estimation problem directly as one in which we
infer a curve of maximal length. In addition, the most important
aspects of our analysis should apply to manifolds of dimension
higher than one.

In their study of observable factor models, Nagel and Singleton
(2011) show that taking account of the conditioning information in
an efficient way substantially alters the assessment of competing
linear asset pricingmodels. Thus another important topic for future
research is to incorporate conditional moment restrictions and to
explore more generally the extent to which underidentification
remains an important concern in practice.

Appendix A. The Cragg and Donald test of underidentification

Cragg and Donald (1993) considered single equation tests of
underidentification based on the reduced form. Let us partition
yt into (p + 1)- and r1-dimensional vectors of endogenous and
predetermined variables, respectively, yt = (y′

1t , z
′

1t)
′, so that
k = p + r1 and zt = (z ′

1t , z
′

2t)
′, where z2t is the vector of r2

instruments excluded from the equation.Moreover, letΠ andΠ =

Y ′

1Z(Z
′Z)−1 be the (p + 1) × r matrices of population and sample

reduced form linear-projection coefficients, respectively.With this
notation and the partition Π = (Π1,Π2) conforming to that of
zt , α is identified up to scale if and only if the rank ofΠ2 is p, but it
is underidentified if the rank is p − 1 or less.

To test for underidentification (Cragg and Donald, 1993) con-
sidered the minimizer of the minimum distance criterion

T [vec(Π −Π)]′V−1vec(Π −Π) (A.1)

subject to the restriction that the rank of Π2 is p − 1. Under the
null of lack of identification and standard regularity conditions, this
provides a minimum chi-square statistic with 2(r − k)+2 degrees
of freedom, as long as V is a consistent estimate of the asymptotic
variance of vec(Π).

If the rank of Π2 is p − 1, there are two linearly independent
vectors, denoted by Γ , such that Π ′

2Γ = 0. For some ordering
of the rows of Π2, we can normalize Γ as Γ ′

= (I2,Γ ′

2).
PartitioningΠ2 accordingly asΠ ′

2 = (Π ′

21,Π
′

22), we then have that
Π ′

21 = −Π ′

22Γ2. To enforce the rank restriction, Cragg and Donald
consideredΠ as a function ofΠ1,Π22 and Γ2.

To relate (A.1) to our framework, write the augmented model

y′

tα = ut ,

y′

tα
∗

= vt

as a complete system by adding to it p−1 reduced form equations,
and denote it by

By1t + Czt = uĎt ,

where B =

B′

1, B
′

2

′
, C =


C ′

1, C
′

2

′
, B2 = (0p−1,2

...Ip−1),
and (B1, C11) = A′, where C1 = (C11, C12). To visualize the
mapping between the structural parameters and the Cragg–Donald
parameterization of the rank restriction, let us introduce the
partitions C2 = (C21, C22) and B1 = (B11, B12). We then have that
Π22 = −C22 and Π21 = B−1

11 B12C22, so that Γ2 = −B−1
11 B12. Π1 is

unrestricted with −B−1
11 (C11 − B12C21) as the first component and

−C21 as the second.
Then noting thatΠ −Π (A, C2) =


Y ′

1 −Π (A, C2) Z ′

Z(Z ′Z)−1

=

Y ′

1 + B−1CZ ′

Z(Z ′Z)−1

= B−1UĎ′Z(Z ′Z)−1,

so that

vec(Π −Π) = (B ⊗ Z ′Z)−1
T

i=1

(uĎt ⊗ zt),

(A.1) can be expressed as

T
i=1

(uĎt ⊗ zt)′[(B ⊗ Z ′Z)V (B′
⊗ Z ′Z)]−1

T
i=1

(uĎt ⊗ zt), (A.2)

which is in the form of a continuously updated GMM criterion that
depends on (α, α∗) and the coefficients C2 in the additional p − 1
reduced form equations. Since B does not depend on the latter,
those parameters can be easily concentrated out of the criterion.
A convenient feature of this criterion is that it is invariant to
normalization through the updating of Bwhile V is kept fixed.

Specifically, using a standard result on the irrelevance of un-
restricted moments (Arellano, 2003) (see pp. 196–197), criterion
(A.2) concentrated with respect to C2 can be shown to equal
α′Y ′Z, α∗′Y ′Z

 
(B1 ⊗ Z ′Z)V (B′

1 ⊗ Z ′Z)
−1


Z ′Yα
Z ′Yα∗


.

An optimal weight matrix under classical errors is V = Y ′

1

× MY1 ⊗

Z ′Z
−1, where M = I − Z


Z ′Z
−1 Z ′, in which case the
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concentrated criterion boils down to
α′Y ′Z, α∗′Y ′Z


(A′Y ′MYA ⊗ Z ′Z)−1


Z ′Yα
Z ′Yα∗


.

Itsminimizer subject to A′Y ′MYA = I coincideswith the sumof the
two smallest characteristic roots of Y ′Z


Z ′Z
−1 Z ′Y in themetric of

Y ′MY , which is one of the (non-robust) test statistics discussed by
Cragg and Donald (1993).

Next, an optimal weight matrix under heteroskedastic errors is

V =

I ⊗ Z ′Z

−1
t

(εtε′

t ⊗ ztz ′

t)

I ⊗ Z ′Z

−1
,

whereεt is a reduced-form residual (the i-th column of Y ′

1M). In
this case the concentrated criterion becomes
α′Y ′Z, α∗′Y ′Z

 
t

A′yty′

tA ⊗ ztz ′

t

−1 
Z ′Yα
Z ′Yα∗


,

whereyt denotes the i-th column of Y ′M , so that the values of
components ofyt that correspond to predetermined explanatory
variables are identically zero.

To conclude, both robust and non-robust Cragg–Donald criteria
can be regarded as continuously-updated GMM criteria of the
augmented structural model using y′

tA as errors. Since the
difference between A′yt and A′yt at the truth is of small order, using
one or the other is asymptotically irrelevant. Similar remarks can
be made for optimal weight matrices under autocorrelated errors.

Appendix B. Estimating finite-dimensional specifications of π

We begin by considering a general GMM estimation result,
which will prove useful for our purposes. Suppose the moment
conditions used in GMM estimation can be partitioned as

f (xt , β) =


f [1] xt , β[1]

f [2] xt , β[1], β[2] .
Let

f̄T (β) =
1
T

T
t=1

f (xt , β) =


1
T

T
t=1

f [1] xt , β[1]
1
T

T
t=1

f [2] xt , β[1], β[2]
 .

Let VT (β) be the asymptotic covariance estimator used in a
continuously-weighted GMM estimation, whose partition we
denote by:

VT (β) =


V [11]
T


β [1] V [12]

T (β)

V [21]
T (β) V [22]

T (β)


.

We compare GMM objectives for estimating β [1]
0 alone using the

first set of moment conditions versus estimating the entire vector
β0 using the full set of moment conditions.

Lemma B.1.

min
β∈P

f̄T (β)′[VT (β)]
−1 f̄T (β) ≥ min

β∈P
f̄ [1]
T


β [1]′

×


V [11]
T


β [1]−1

f̄ [1]
T


β [1] .

Proof. Form

f ∗(xt , β, γ ) =


f [1](xt , β[1])

f [2] xt , β[1], β[2]
− γ


and construct similarly f̄ ∗

T (β, γ ). The proof follows in three steps.
1.

min
β∈P

f̄T (β)′[VT (β)]
−1 f̄T (β)

≥ min
β∈P,γ

f̄ ∗

T (β, γ )
′
[VT (β)]

−1 f̄ ∗

T (β, γ ).

The right-hand side minimization problem will not have a
unique solution but this does not matter.

2.

min
γ

f̄ ∗

T (β, γ )
′
[VT (β)]

−1 f̄ ∗

T (β, γ )

= f̄ [1]
T (β [1])′


V [11]
T


β [1]−1

f̄ [1]
T (β [1]). (B.3)

This follows by using the first-order conditions for γ to show
that

f̄ [2]
T (β)− γ =


0 I


[VT (β)]

−1

0
I

−1

×

0 I


[VT (β)]

−1

I
0


f̄ [1]
T


β [1] .

Substitute this outcome into the objective function on the left-
hand side of (B.3) and apply the partitioned inverse formula to
establish equality with the right-hand side of (B.3).

3. Finally,

min
β∈P,γ

f̄ ∗

T (β, γ )
′
[VT (β)]

−1 f̄ ∗

T (β, γ )

= min
β∈P

min
γ

f̄ ∗

T (β, γ )
′
[VT (β)]

−1 f̄ ∗

T (β, γ )

= min
β∈P

f̄ [1]
T (β [1])′


V [11]
T


β [1]−1

f̄ [1]
T (β [1]).

The conclusion follows from these three steps. �

We apply this result to an estimation problem where f2
corresponds to the moment conditions added when we replicate
the original moment conditions, and β [2] is introduced to
parameterize the additional econometric relation when the model
is underidentified. The previous lemma is not directly applicable
to this problem because when we replicate moment conditions
we add restrictions on the initial parameter vector β [1]. However,
restricting β [1] shrinks the parameter space P in the minimization
problem given in the left hand side of Lemma B.1 and hence can
only increase theminimized objective function. Thus a corollary of
this lemma is

Corollary B.2. Consider the p moment conditions

E[f̃ (xt , β̃)] = 0

used to estimate the k × 1 parameter vector β̃0, and denote by Ij
the value of the continuously-updated GMM version of the test of the
null hypothesis that β is underidentified of dimension j introduced in
Section 3.1.2. Then, Ij ≥ Ij−1 for any j ≥ 1.

As a result, if we use continuously-updated GMM and allow
for explorations across alternative degrees of underidentification,
then the objective will lead us to the smallest allowable degree
of underidentification. In particular, if we allow for the estimation
of nonlinear curves such as (34) in a model that is fundamentally
linear, then the continuously-updated GMM objective will lead us
to represent the underidentification by means of a line or at least
the segment of a line.
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Appendix C. Imhof-based approximation to the distribution of
GMM tests

Let

f̄T (β) =
1
T

T
t=1

f (xt , β),

and define

M = lim
T→∞

Var
√

T f̄T (βo)

.

Since the purpose of this appendix is to explain the application
of Imhof (1961) results in our context, initially we will abstract
from estimation issues by assuming that β0 is known.

As shown by Hansen (1982a), under certain regularity condi-
tions the quadratic form

T f̄T (β0)M−1 f̄T (β0)

will converge in distribution to a χ2 random variable with p
degrees of freedom as T → ∞.

If the matrix M is ill-conditioned, the quality of the previous
approximation can be rather poor. To address this problem, we
could use the Tikhonov version of the generalized inverse, and
replace the above criterion function by

T f̄ ′

T (β0)M1/2(ςT Ip + M2)−1M1/2 f̄T (β0)

=
√
T f̄T (β0)

′
W∆1/2W ′(ςT Ip + W∆2W ′)−1

×W∆1/2W ′
√
T f̄T (β0)

=

√
T f̄T (β0)

′
W∆−1/2

 
(ςT Ip +∆2)−1∆2

×


∆−1/2W ′

√
T f̄T (β0)


=

p
j=1

δ2j

δ2j + ςT

√
Tεj,T

2
,

where W1W ′ provides the spectral decomposition of M, εj,T is
the jth entry of the random vector εT = ∆−1/2W ′ f̄T (β0) and ςT
is a regularization parameter. Since

√
TεT → N(0, Ip), we will

recover the chi-square limiting distribution under the null if we let
ςT go to 0 at a suitable rate. But given that for a fixed ςT the above
statistic will converge to a diagonal quadratic form in standard
normal random variables as T → ∞, we can use Koerts and
Abrahamse (1969) implementation of the Imhof (1961) procedure
for evaluating the probability that a quadratic form of normals
is less than a given value (see also Farebrother, 1990). Although
the smallest eigenvalue of M, δmin say, will generally be strictly
positive, from a numerical point of view it makes sense to truncate
the previous expression so that we only use those terms for which

δ2j

δ2j +ςT




δ2max
δ2max+ςT


exceeds some small threshold. Finally, since under standard
regularity conditions the asymptotic distribution of the above
tests is unaffected if we replace M with a consistent estimator,
in practice we can treat the sample counterparts of δj as if they
coincided with their population values. A rather similar analysis
applies in the case of ridge regularization.

In practice, β0 will be replaced by its ‘‘optimal’’ GMM estimator,
which in the case of Tikhonov regularization will approximately
satisfy the first order conditions

D′W∆1/2(ςT Ip +∆2)−1∆1/2W ′ f̄T (β̂) = G′E ′ f̄T (β̂) = 0
in large samples, where D is the expected Jacobian matrix of the
moment conditions, E = W∆1/2(ςT Ip + ∆2)−1/2 and G = E ′D.
Standard arguments then imply that
√
T (β̂ − β0) = −(G′G)−1G′

√
T f̄T (β0)+ op(1).

Linearizing f̄T (β̂) around β0 allows us to write
√
TE ′ f̄T (β̂) = [Ip − G(G′G)−1G′

]
√
TE ′ f̄T (β0)+ op(1),

where [Ip − G(G′G)−1G′
] is an idempotent matrix of rank p − k. As

a result, the overidentification restriction test will be equal to

T f̄ ′

T (β̂)M
1/2(ςT Ip + M2)−1M1/2 f̄T (β̂)

=
√
T f̄ ′

T (β̂)EE
′
√
T f̄T (β̂)

=
√
T f̄ ′

T (β0)E[Ip − G(G′G)−1G′
]
√
TE ′ f̄T (β0)+ op(1)

=
√
T f̄ ′

T (β0)∆
−1/2W ′


∆(ςT Ip +∆2)−1/2

[Ip − G(G′G)−1

×G′
](ςT Ip +∆2)−1/2∆


×

√
T∆−1/2W ′ f̄T (β0)+ op(1),

whose finite sample distribution can also be approximated by
a more complex quadratic form in standard normal random
variables. As expected, this distribution will converge to the usual
χ2 with p − k degrees of freedom when ςT goes to 0 at a suitable
rate.

The same analysis can be applied to GMM contexts with a
continuum of moment conditions. For simplicity, we again discuss
the case in which π0(θ) is known, in which case our approach and
the Carrasco and Florens (2000) approach coincide.

Define v and C as a vector and square matrix, respectively, of
dimension T , with elements

cst =
1
T

⟨f [xs, π0(θ)] , f [xt , π0(θ)]⟩

=
1
T


Θ

f ′ [xs, π0(θ)] f [xt , π0(θ)] dθ

vs = ⟨gT (π0(θ)) , f (xs, π0(θ))⟩

=
1
T

T
t=1


Θ

f ′ [xt , π0(θ)] f [xs, π0(θ)] dθ = C ′

·sιT ,

where C·s is the sth column of C and ιT is a vector of T 1’s.
Consider the spectral decompositionC = UΛU ′. Then, it is possible
to show that the continuum of moment conditions test studied
by Carrasco and Florens (2000) is numerically identical to the
following expression

v′

ςT IT + C2−1

v = ι′TC

ςT IT + C2−1

CιT

= ι′TU


λ21

ςT + λ21
· · · 0

...
. . .

...

0 · · ·
λ2T

ςT + λ2T

UιT .

Carrasco and Florens (2000) show that under certain conditions on
the regularization constant ςT :

v′

ςT IT + C2

−1
v − pT (ςT )

√
qT (ςT )

→ N (0, 1) ,

where

pT (ςT ) =

T
j=1

λ2j

λ2j + ςT

qT (ςT ) = 2
T

j=1

λ4j
λ2j + ςT

2 .
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As Carrasco and Florens (2000) argue in Remark 11 of their
paper, their test can also be asymptotically regarded as a centered
and standardized version of a diagonal quadratic form in N
standard normal variables. Thus we can again attempt to improve
the finite sample approximation by using Imhof (1961) results
treating the eigenvalues of the empirical matrix C as if they were
the true eigenvalues of its population counterpart.

Another advantage of this Imhof approximation is that it will
not break down when the number of strictly positive eigenfunc-
tions is finite regardless of the sample size. Such a situation arises
in the linear and non-linear in parameters models discussed in
Sections 3 and 4, respectively.

Appendix D. GMM estimators with a continuum of moments

D.1. Covariance operators

D.1.1. Uncentered covariance operator
First of all, it is worth noting that (Carrasco and Florens,

2000) only consider models with a single moment condition
indexed by a parameter vector. Therefore, in order to use their
expressions with two ormoremoment conditions onewould need
to use two indices: a discrete index that tracks the moments, and
another continuous one that refers to the true index parameter
γ (see Carrasco et al., 2007). In contrast, here we use a vector of
moments indexedwith respect to a scalar parameter,which should
lead to identical results under the assumption that allmoments are
weighted equally in computing inner products. On this basis, we
can define the sample second moment (matrix) integral operator
K̄ u
T (ϱ) associated with the kernel

κ̄u
T (γ

′, γ ′′
; ϱ) =

1
T

T
t=1

f (xt , γ ′
; ϱ)f ′(xt , γ ′′

; ϱ)

to be such that

K̄ u
T (ϱ)ϕ(γ

′) =

 γH+1

γ1

κ̄u
T (γ

′, γ ′′
; ϱ)ϕ(γ ′′)dΨ (γ ′′)

=
1
T

T
t=1

f (xt , γ ′
; ϱ)

×

 γH+1

γ1

f ′(xt , γ ′′
; ϱ)ϕ(γ ′′)dΨ (γ ′′),

whereϕ(γ ) is a 2×1 function ofγ ,Ψ (γ ) is typically the cdf of some
random variable defined over (γ1, γH+1), which for simplicity we
take to be uniform hereinafter, and ϱ is a vector of knots in the
cubic splines as explained in Appendix E.

In order to make this definition operational with the moment
conditions (35), define Cu(ϱ̇, ϱ̈) as the T × T matrix that appears
in the objective function of the GMM estimators described in
Appendix D.2, whose (t, s) element is given by

cuts(ϱ̇, ϱ̈) =
1
T

 γH+1

γ1

f ′(xt , γ ; ϱ̇)f (xs, γ ; ϱ̈)dγ

= chts − [zt(ϱ̇)+ zs(ϱ̈)] + d(ϱ̇, ϱ̈),

where

chts =
1
T

 γH+1

γ1

(Rm,tRs,t + Rf ,tRf ,s)k(xt , γ )k(xs, γ )dγ ,

zt(ϱ̈) =
1
T

 γH+1

γ1

ρ(γ ; ϱ̈)(Rm,t + Rf ,t)k(xt , γ )dγ

and

d(ϱ̇, ϱ̈) =
2
T

 γH+1

γ1

ρ(γ ; ϱ̇)ρ(γ ; ϱ̈)dγ .
Therefore, in matrix notation we can write
Cu(ϱ̇, ϱ̈) = Ch

− [z(ϱ̇)ι′T + ιT z ′(ϱ̈)] + d(ϱ̇, ϱ̈)ιT ι′T ,
with z(ϱ̇) = [z1(ϱ̇), . . . , zT (ϱ̇)]′.

The moment conditions (35) are highly non-linear in γ .
However, one result that we will use repeatedly is that although
the cubic spline ρ(γ ; ϱ) is a non-linear function of γ for a given
ϱ, it is possible to write it as a linear function of ϱ for a given γ
(see Appendix E). Consequently, f (xt , γ ; ϱ)will be affine in ϱ for a
specific value of γ , and the same is true of f̄T (γ ; ϱ) a fortiori. More
importantly, we can also prove that integrals of f (xt , γ ; ϱ) are also
linear in ϱ. As a result, we can write z(ϱ) = Υ ϱ and d(ϱ̇, ϱ̈) =

ϱ̇′Ωϱ̈, where the computation of the required coefficient matrices
can also be found in Appendix E.

Let ωu
j (γ ; ϱ) denote the T orthogonal eigenfunctions of the

operator K̄ u
T (ϱ) associated to its T non-zero eigenvalues λj(ϱ),

which can be obtained from the conditions
K̄ u
T (ϱ)ω

u
j (γ

′
; ϱ) = λuj (ϱ)ω

u
j (γ

′
; ϱ).

For our purposes it is more convenient to work with the
normalized eigenfunctions

ωu+
j (γ ; ϱ) =

1
T

T
t=1

φu+
jt (ϱ)f (xt , γ ; ϱ),

which are such that

ωu+

j (γ ; ϱ), ωu+
j (γ ; ϱ)


= 1. Following

Carrasco et al. (2007), we can show that if we denote the spectral
decomposition of the matrix Cu(ϱ, ϱ) by
Cu(ϱ, ϱ) = Uu(ϱ)Λu(ϱ)Uu′(ϱ),

then we will have that

φu+
j (ϱ) =

√
T

λuj (ϱ)
uu
j (ϱ),

where
Uu(ϱ) = [uu

1(ϱ), . . . , u
u
j (ϱ), . . . , u

u
T (ϱ)].

D.1.2. Centered covariance operator
We can alternatively define the kernel of the integral operator

K̄ c
T (ϱ) as

κ̄c
T (γ

′, γ ′′
; ϱ) =

1
T

T
t=1

[f (xt , γ ′
; ϱ)− f̄T (γ ′

; ϱ)]

× [f (xt , γ ′′
; ϱ)− f̄T (γ ′′

; ϱ)]′.

(see Carrasco and Kotchoni, 2010, for an application of this
operator in characteristic function-based estimation). Let C c(ϱ̇, ϱ̈)
be a T × T matrix whose (t, s) element is

ccts(ϱ̇, ϱ̈) =
1
T

 γH+1

γ1

[f (xt , γ ; ϱ)− f̄T (γ ; ϱ̇)]′

× [f (xt , γ ; ϱ̈)− f̄T (γ ; ϱ̈)]dγ .
It immediately follows from this definition that
C c(ϱ̇, ϱ̈) = (IT − T−1ιT ι

′

T )C
u(ϱ̇, ϱ̈)(IT − T−1ιT ι

′

T )

= (IT − T−1ιT ι
′

T )C
h(IT − T−1ιT ι

′

T ) = C c,

which does not depend on ϱ̇ or ϱ̈. Another worthwhile feature of
C c is that it has rank T − 1 at most, with ιT being the eigenvector
associated to the zero eigenvalue.

Let the spectral decomposition of C c be
C c

= U cΛcU ′c .

Then, the weights of the orthonormalised eigenfunctions will be
given by

φc+
j =

√
T
λcj

uc
j .
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D.2. Alternative estimators

D.2.1. Uncentered two-step estimators
Let ϱ̄T denote some preliminary consistent estimator of ϱ. In

this context, the analog to the two-step efficient GMM criterion
function that uses Tikhonov regularization will be

Q 2S(ϱ; ϱ̄T , u, T ) =

T
j=1

λuj (ϱ̄T )

[λuj (ϱ̄T )]
2 + ςT

×

ωu+

j (γ ; ϱ̄T ), f̄T (γ ; ϱ)
2
.

Following Carrasco et al. (2007), we canwrite this expression in
matrix notation as

ι′TC
u′(ϱ̄T , ϱ)[ςT IT + (Cu(ϱ̄T , ϱ̄T ))

2
]
−1Cu(ϱ̄T , ϱ)ιT .

But since in our case Cu(ϱ̄T , ϱ) is affine in ϱ, we can write

Cu(ϱ̄T , ϱ)ιT = (ChιT − TΥ ϱ̄T )+ ιT (ι
′

TΥ ϱ + T ϱ̄TΩϱ)
= π(ϱ̄T )+Π(ϱ̄T )ϱ,

so that the criterion function is a quadratic form in ϱ. As a result,
we can obtain its optimum in closed form as

ϱ̂2S
T = {Π ′(ϱ̄T )Uu(ϱ̄T )[ςT IT +Λu2(ϱ̄T )]

−1Uu′(ϱ̄T )Π(ϱ̄T )
−1

×Π ′(ϱ̄T )Uu(ϱ̄T )[ςT IT +Λu2(ϱ̄T )]
−1Uu′(ϱ̄T )π(ϱ̄T ).

Iterated estimators can be easily obtained by computing this
expression recursively.

An alternative regularization scheme would use the criterion
function

Q 2S(ϱ; ϱ̄T , u, r) =

T
j=1

1
λuj (ϱ̄T )+ ςT


ωu+

j (γ ; ϱ̄T ), f̄T (γ ; ϱ)
2
.

Given that
ωu+

j (γ ; ϱ̄T ), f̄T (γ ; ϱ)

=

1
T 2

e′

jΦ
+u′(ϱ̄T )Cu(ϱ̄T , ϱ)ιT

=
1
T 2

e′

jB
+u′(ϱ̄T )[π(ϱ̄T )+Π(ϱ̄T )ϱ],

where e′

j is the jth vector of the canonical basis,

ωu+

j (γ ; ϱ̄T ), ḡT
(γ ; ϱ)

2
will be quadratic in ϱ, which means that

argminϱ Q 2S(ϱ; ϱ̄T , u, r) should also have a closed form.Neverthe-
less, since Φ+u(ϱ̄T ) =

√
TUu(ϱ̄T )[Λ

u(ϱ̄T )]
−1/2, the computation

of Q 2S(ϱ; ϱ̄T , u, r)will be problematic unless we also truncate the
eigenfunctions.

D.2.2. Uncentered continuously updated estimators
A continuously updated version of the Tikhonov regularized

criterion function will be

Q CU(ϱ; u, T ) =

T
j=1

λj(ϱ)

λ2j (ϱ)+ ςT


ωj(γ ; ϱ), f̄T (γ ; ϱ)

2
,

which in matrix notation becomes:

ι′TC
u′(ϱ, ϱ)[ςT IT + (Cu(ϱ, ϱ))2]−1Cu(ϱ, ϱ)ιT .

Unfortunately, in this case there does not seem to be a simple
closed expression for the optimal estimator.

For analogous reasons, the continuously updated version of
the ridge regularization will not lead to closed-form expressions
either, even though its computation should not be problematic
since we could always do it as

Q CU(ϱ; u, r) =

T
j=1

λj(ϱ)

λj(ϱ)+ ςT


T

t=1

ujt(ϱ)

2

.

D.2.3. Centered estimators
Given that neither eigenvalues nor eigenfunctions require a

preliminary estimator, in this case the efficient GMM criterion
function that uses Tikhonov regularization will be given by
Q (ϱ; c, T )

=

T−1
j=1

λcj

λc2j + ςT


ωc+

j (γ ), f̄T (γ ; ϱ)
2

=

T−1
j=1

1
λc2j + ςT

 γH+1

γ1

√
T
T

T
t=1

uc
jt [Rtk(xt , γ )

× − Rtk(xt , γ )]′

f̄T (γ ; ϱ)dγ

2

,

where Rtk(xt , γ ) denotes the sample average of Rtk(xt , γ ). Note
that we have only included T − 1 terms because the centred
covariance operator has a zero eigenvalue. Straightforward algebra
then implies that γH+1

γ1

[Rtk(xt , γ )− Rtk(xt , γ )]′ f̄T (γ ; ϱ)dγ

=
1
T
e′

tC
hιT −

1
T 2
ι′TC

hιT − e′

tz(ϱ)+
1
T
z ′(ϱ)ιT ,

where et is the tth vector of the canonical basis. Hence,
√
T
T

T
t=1

uc
jt

×


1
T

T
s=1

 γH+1

γ1

[Rtk(xt , γ )− Rtk(xt , γ )]′f (xs, γ ; ϱ)dγ



=

√
T
T

uc′
j


1
T


IT −

1
T
ιT ι

′

T


ChιT −


IT −

1
T
ιT ι

′

T


z(ϱ)


.

But we have seen before that ιT is the eigenvector of C c

associated to its 0 eigenvalue, which means that uc′
j ιT = 0 for

j = 1, . . . , T − 1. As a result, the criterion function will be√
T

T 2
Ū c′ChιT −

√
T
T

Ū c′Υ ϱ

′

[ς IT−1 + (Λ̄c)2]−1

×

√
T

T 2
Ū c′ChιT −

√
T
T

Ū c′Υ ϱ


,

where the upper bar on Ū c and Λ̄c indicates that we have elim-
inated the elements associated to the 0 eigenvalue. As expected,
this expression is quadratic in ϱ, so once again it is possible to find
a closed-form analytical expression for the estimator.

For analogous reasons, we are also able to find closed-form
expressions if we use ridge regularization instead, as long as we
complement it with truncation of the eigenfunctions.

Appendix E. Computational aspects of natural cubic splines

If ρ(γ ; ϱ) is a (natural) cubic spline function defined over
the interval [γ1, γH+1] that depends on H + 1 parameters ϱ =

(ϱ1, . . . , ϱH+1)
′, which are the knot values associated to the H + 1

distinct knots γ1, . . . , γH+1, then

ρ(γ ; ϱ) =


ρ1(γ ; ϱ) γ ∈ [γ1, γ2]
ρ2(γ ; ϱ) γ ∈ [γ2, γ3]

...
...

ρH(γ ; ϱ) γ ∈ [γH , γH+1]

with ρi(γ ; ϱ) (i = 1, . . . ,H) being the unique cubic polynomials
in γ that satisfy the following conditions:
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

2(γ3 − γ1) γ3 − γ2 0 . . . 0
γ3 − γ2 2(γ4 − γ2) γ4 − γ3 0

0 γ4 − γ3 2(γ5 − γ3) γ5 − γ4 0
...

. . .
. . .

. . .
. . .

...

. . .
. . .

. . .
. . .

. . . γH−1 − γH−2 2(γH − γH−2) γH − γH−1
0 · · · 0 γH − γH−1 2(γH+1 − γH−1)



×



v2(ϱ)
v3(ϱ)
v4(ϱ)
...

vH−2(ϱ)
vH−1(ϱ)
vH(ϱ)



= 6

 (ϱ3 − ϱ3)/(γ3 − γ2)− (ϱ2 − ϱ1)/(γ2 − γ1)
...

(ϱH+1 − ϱH)/(γH+1 − γH)− (ϱH − ϱH−1)/(γH − γH−1)


Box I.
1. ρi(γi+1; ϱ) = ϱi+1 (interpolating property).
2. ρi−1(γi; ϱ) = ρi(γi; ϱ) (i = 2, . . . ,H) (continuity).
3. ∂ρi−1(γi; ϱ)/∂γ = ∂ρi(γi; ϱ)/∂γ (i = 2, . . . ,H) (continuity of

the first derivative).
4. ∂2ρi−1(γi; ϱ)/(∂γ )

2
= ∂2ρi(γi; ϱ)/(∂γ )

2 (i = 2, . . . ,H)
(continuity of the second derivative).

5. ∂2ρ1(γ1; ϱ)/(∂γ )2 = 0 and ∂2ρH+1(γH+1; ϱ)/(∂γ )
2

= 0
(‘‘natural’’ cubic spline).

The specific form of these cubic polynomials is

ρi(γ ; ϱ) =
vi+1(ϱ)(γ − γi)

3
+ vi(ϱ)(γi+1 − γ )3

6(γi+1 − γi)

+


ϱi+1

γi+1 − γi
−
γi+1 − γi

6
vi+1(ϱ)


(γ − γi)

+


ϱi

γi+1 − γi
−
γi+1 − γi

6
vi(ϱ)


(γi+1 − γ ),

where the coefficients vi(ϱ) can be found by solving the linear
system of H − 1 equations:

(γi − γi−1)vi−1(ϱ)+ 2(γi+1 − γi−1)vi(ϱ)+ (γi+1 − γi)vi+1(ϱ)

= 6

ϱi+1 − ϱi

γi+1 − γi
−
ϱi − ϱi−1

γi − γi−1


for i = 2, . . . ,H in the H − 1 unknowns v2(ϱ), . . . , vH(ϱ), with
v1(ϱ) = 0 and vH+1(ϱ) = 0.

In matrix notation, we can write this system as given in Box I,
which can be solved very efficiently because of its symmetric
tridiagonal nature.

Importantly, in matrix notation, we can write this system as
given in Box II so the independent term is linear in ϱ. This, coupled
with the fact that the coefficient matrix is a function of the knots
but not of the knot values, means that

v(ϱ) = A(γ )ϱ,

where v(ϱ) = [v1(ϱ), v2(ϱ), . . . , vH+1(ϱ)] and γ = (γ1, γ2, . . . ,
γH+1). As a result, ρi(γ ; ϱ) will be linear in ϱ too, and the same
applies to ρ(γ ; ϱ), as long as we interpret this to mean that the
coefficients of the linear combination will depend on γ and the
interval to which it belongs.
Let us now consider the integrals required in the different inner
product calculations for the case of the RA consumption CAPM
model. Specifically, we need to compute

T · chts = (Rm,tRs,t + Rf ,tRf ,s)

 γH+1

γ1

k(xt , γ )k(xs, γ )dγ

= (Rm,tRs,t + Rf ,tRf ,s)

×

 γH+1

γ1




N
i=1

cit

N
i=1

cit−3




N
i=1

cis

N
i=1

cis−3




−γ

dγ

= (Rm,tRs,t + Rf ,tRf ,s)

×

ln


N
i=1

cit

N
i=1

cit−3

+ ln


N
i=1

cis

N
i=1

cis−3




−1

×





T
i=1

cit

N
i=1

cit−3




N
i=1

cis

N
i=1

cis−3




−γ1

−




N
i=1

cit

N
i=1

cit−3




N
i=1

cis

N
i=1

cis−3




−γH+1
 ,

where we have used expression (F.4) in Appendix F.
In addition, we need to compute

T · zt(ϱ) = (Rm,t + Rf ,t)

×

H
i=1


 γi+1

γi

ρi(γ ; ϱ)


N
i=1

cit

N
i=1

cit−3


−γ

dγ

 .
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
(ϱ3 − ϱ2)/(γ3 − γ2)− (ϱ2 − ϱ1)/(γ2 − γ1)

.

.

.

(ϱH+1 − ϱH )/(γH+1 − γH )− (ϱH − ϱH−1)/(γH − γH−1)



=



(γ2 − γ1)
−1

−(γ3 − γ2)
−1

− (γ2 − γ1)
−1 (γ3 − γ2)

−1 0 . . . 0
0 (γ3 − γ2)

−1
−(γ4 − γ3)

−1
− (γ3 − γ2)

−1 (γ4 − γ3)
−1 0

.

.

.
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 · · · (γH − γH−1)
−1

−(γH+1 − γH )
−1

− (γH − γH−1)
−1 (γH+1 − γH )

−1



×



ϱ1
ϱ2
ϱ3

.

.

.

ϱH−1

ϱH
ϱH+1


Box II.
But

 γi+1

γi

ρi(γ ; ϱ)


N
i=1

cit

N
i=1

cit−3


−γ

dγ

=

 γi+1

γi




N
i=1

cit

N
i=1

cit−3


−γ

×


vi+1(ϱ)(γ − γi)

3
+ vi(ϱ)(γi+1 − γ )3

6(γi+1 − γi)

+


ϱi+1

γi+1 − γi
−
γi+1 − γi

6
vi+1(ϱ)


(γ − γi)

+


ϱi

γi+1 − γi
−
γi+1 − γi

6
vi(ϱ)


(γi+1 − γ )

 dγ ,

which can also be easily obtained by using the expressions in
Appendix F. Importantly, given that the resulting expression is
linear in ϱ for each i, zt(ϱ)will be linear in ϱ too. In this sense, it is
convenient to replace the vi(ϱ)’s by A(γ )ϱ, so that we can obtain
the matrix Υ . Although we have to resort to numerical quadrature
to compute the integrals of the PIPOmodel, the linearity of zt(ϱ) in
ϱ is preserved.

Finally, we need to compute

T · d(ϱ̇, ϱ̈) = 2
 γH+1

γ1

ρ(γ ; ϱ̇)ρ(γ ; ϱ̈)dγ

= 2
H
i=1

 γi+1

γi

ρi(γ ; ϱ̇)ρi(γ ; ϱ̈)dγ

.

Once again, we can use the expressions in Appendix F to
compute γi+1

γi

ρi(γ ; ϱ̇)ρi(γ ; ϱ̈)dγ

,

which will be a bilinear function of ϱ̇ and ϱ̈. Like in case of zt(ϱ),
if we write ρi(γ ; ϱ) as an explicit function of ϱ by replacing the
vi(ϱ)’s by A(γ )ϱ, we can also obtain the matrixΩ .
Appendix F. Some useful definite integrals

Let

p(x) = a(x − ℓ)3 + b(u − x)3 + c(x − ℓ)+ d(u − x),
q(x) = e(x − ℓ)3 + f (u − x)3 + g(x − ℓ)+ h(u − x).

Then

p(x)q(x) = ae(x − ℓ)6 + (af + be)(u − x)3(x − ℓ)3

+ bf (u − x)6 + (ag + ce)(x − ℓ)4

+ (ah + de)(u − x)(x − ℓ)3

+ (bg + cf )(x − ℓ)(u − x)3

+ (bh + df )(u − x)4 + cg(x − ℓ)2

+ (ch + dg)(u − x)(x − ℓ)+ dh(u − x)2.

Given that u

ℓ

(ae(x − ℓ)6 + (af + be)(u − x)3(x − ℓ)3 + bf (u − x)6)dx

= −
1

140
(ℓ− u)7 (20ae + be + af + 20bf ) , u

ℓ

((ag + ce)(x − ℓ)4 + (ah + de)(u − x)(x − ℓ)3

+ (bg + cf )(x − ℓ)(u − x)3 + (bh + df )(u − x)4)dx

= −
1
20
(ℓ− u)5

× (4ce + de + 4ag + ah + bg + cf + 4bh + 4df ) ,

and u

ℓ

(cg(x − ℓ)2 + (ch + dg)(u − x)(x − ℓ)+ dh(u − x)2)dx

= −
1
6
(ℓ− u)3 (2cg + ch + dg + 2dh) ,

we can finally write u

ℓ

p(x)q(x)dx = −
1

140
(ℓ− u)7 (20ae + be + af + 20bf )

−
1
20
(ℓ− u)5 (4ce + de + 4ag

+ ah + bg + cf + 4bh + 4df )

−
1
6
(ℓ− u)3 (2cg + ch + dg + 2dh) .
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Similarly,
k−x(x − ℓ)3dx

= −
1

kx ln4 k
((x − ℓ)3

× ln3 k + 3(x − ℓ)2 ln2 k + 6(x − ℓ) ln k + 6),

so u

ℓ

k−x(x − ℓ)3dx = −
1

ku ln4 k
((u − ℓ)3 ln3 k + 3(u − ℓ)2

× ln2 k + 6(u − ℓ) ln k + 6)

+
6

kℓ ln4 k
.

Likewise,
k−x(u − x)3dx

=
1

kx ln4 k
(−(u − x)3

× ln3 k + 3(u − x)2 ln2 k − 6(u − x) ln k + 6)

so u

ℓ

k−x(u − x)3dx

=
6

ku ln4 k
+

1
kℓ ln4 k

(−(u − ℓ)3

× ln3 k + 3(u − ℓ)2 ln2 k − 6(u − ℓ) ln k + 6).

Analogously,
k−x(x − ℓ)dx = −

1
kx ln2 k

((x − ℓ) ln k + 1) ,
k−x(u − x)dx =

1
kx ln2 k

((x − u) ln k + 1) ,

so u

ℓ

k−x(x − ℓ)dx = −
1

ku ln2 k
((u − ℓ) ln k + 1)+

1
kℓ ln2 k

, u

ℓ

k−x(u − x)dx =
1

ku ln2 k
−

1
kℓ ln2 k

((ℓ− u) ln k + 1) .

Finally, it is straightforward to show that u

ℓ

k−xdx =
1

ln k
(k−ℓ

− k−u) (F.4)

because
k−xdx = −

k−x

ln k
.

Unfortunately, u

ℓ

k−xdx =
1

ln k


1
kℓ

−
1
ku


becomes numerically unstable when k is close to 1, even though in
the limit this definite integral is simply (u − ℓ). In our empirical
application to the RA model, this will happen in those quarters in
which consumption growth is positive or negative but very close
to 0. To avoid this problem, define d such that

1 − d = k,

and consider the Taylor expansion of (1 − d)−x, which is given by:

1 + xd +
1
2
x (x + 1) d2 +

1
3!

x(x + 1)(x + 2)d3 + O

d4

.

On this basis, we can numerically approximate the required
integral by integrating the Taylor expansion, which yields u

ℓ

k−xdx = (u − ℓ)+
1
2
(u2

− ℓ2)d

+


1
3
(u3

− ℓ3)+
1
2
(u2

− ℓ2)


1
2
d2

+


1
4
(u4

− ℓ4)+ (u3
− ℓ3)+ (u2

− ℓ2)


×

1
3!

d3 + O

d4

.

We can use the same trick to compute u

ℓ

k−x(x − ℓ)3dx.

Specifically, the relevant terms in the expansion of this integral
will be: u

ℓ

(x − ℓ)3dx =
1
4
(ℓ− u)4 , u

ℓ

x(x − ℓ)3dx =
1
20
(ℓ− u)4 (ℓ+ 4u) , u

ℓ

x (x + 1) (x − ℓ)3dx

=
1
60
(ℓ− u)4


ℓ2 + 4ℓu + 3ℓ+ 10u2

+ 12u

, u

ℓ

x (x + 1) (x + 2)(x − ℓ)3dx

=
1

140
(ℓ− u)4


ℓ3 + 4ℓ2u + 7ℓ2 + 10ℓu2

+ 28ℓu + 14ℓ+ 20u3
+ 70u2

+ 56u

.

Similarly, u

ℓ

(u − x)3dx =
1
4
(ℓ− u)4 , u

ℓ

x(u − x)3dx =
1
20
(ℓ− u)4 (4ℓ+ u) , u

ℓ

x (x + 1) (u − x)3dx

=
1
60
(ℓ− u)4


10ℓ2 + 4ℓu + 12ℓ+ u2

+ 3u

, u

ℓ

x (x + 1) (x + 2)(u − x)3dx

=
1

140
(ℓ− u)4 (20ℓ3 + 10ℓ2u + 70ℓ2 + 4ℓu2

+ 28ℓu + 56ℓ+ u3
+ 7u2

+ 14u).

We also need to compute integrals such as u

ℓ

k−x(x − ℓ)dx.

To do so, we can use u

ℓ

(x − ℓ)dx =
1
2
(ℓ− u)2 , u

ℓ

x(x − ℓ)dx =
1
6
(ℓ− u)2 (ℓ+ 2u), u

ℓ

x (x + 1) (x − ℓ)dx



280 M. Arellano et al. / Journal of Econometrics 170 (2012) 256–280
=
1
12
(ℓ− u)2


ℓ2 + 2ℓu + 2ℓ+ 3u2

+ 4u

, u

ℓ

x (x + 1) (x + 2)(x − ℓ)dx

=
1
60
(ℓ− u)2 (3ℓ3 + 6ℓ2u + 15ℓ2 + 9ℓu2

+ 30ℓu

+ 20ℓ+ 12u3
+ 45u2

+ 40u).

Finally, to compute u

ℓ

k−x(u − x)dx

we can use u

ℓ

(u − x)dx =
1
2
(ℓ− u)2 , u

ℓ

x(u − x)dx =
1
6
(ℓ− u)2 (2ℓ+ u), u

ℓ

x (x + 1) (u − x)dx

=
1
12
(ℓ− u)2


3ℓ2 + 2ℓu + 4ℓ+ u2

+ 2u

, u

ℓ

x (x + 1) (x + 2)(u − x)dx

=
1
60
(ℓ− u)2 (12ℓ3 + 9ℓ2u + 45ℓ2 + 6ℓu2

+ 30ℓu + 40ℓ+ 3u3
+ 15u2

+ 20u).

References

Alonso-Borrego, C., Arellano, M., 1999. Symmetrically normalized instrumental-
variable estimation using panel data. Journal of Business and Economic
Statistics 17, 36–49.

Anderson, T.W., Rubin, H., 1949. Estimation of the parameters of a single equation
in a complete system of stochastic equations. Annals of Mathematical Statistics
20, 46–63.

Arellano, M., 2003. Panel Data Econometrics. Oxford University Press, Oxford,
England.

Arellano,M., Bond, S.R., 1991. Some tests of specification for panel data:Monte Carlo
evidence and an application to employment equations. Review of Economic
Studies 58, 277–297.

Arellano, M., Hansen, L.P., Sentana, E., 1999. Underidentification? Mimeo. CEMFI.
Berndt, E.R., 1991. The Practice of Econometrics: Classic and Contemporary.

Addison-Wesley.
Burnside, A.C., 2007. Empirical asset pricing and statistical power in the presence of

weak risk factors. NBER Working Paper 13357.
Carrasco, M., Chernov, M., Florens, J.P., Ghysels, E., 2007. Efficient estimation of

general dynamic models with a continuum of moment conditions. Journal of
Econometrics 140, 529–573.

Carrasco, M., Florens, J.P., 2000. Generalization of GMM to a continuum of moment
conditions. Econometric Theory 17, 794–834.

Carrasco, M., Kotchoni, R., 2010. Efficient estimation using the characteristic
function. Mimeo. University of Montreal.

Chernozhukov, V., Hong, H., Tamer, E., 2007. Estimation and inference on identified
parameter sets. Econometrica 75, 1243–1284.

Choi, I., Phillips, P.C.B., 1992. Asymptotic and finite sample distribution theory for
IV estimators and tests in partially identified structural equations. Journal of
Econometrics 51, 113–150.

Clarida, R.R., Galí, J., Gertler, M., 2000. Monetary policy rules and macroeconomic
stability: evidence and some theory. Quarterly Journal of Economics 115,
147–180.

Cochrane, J.H., 2011. Determinacy and identification with taylor rules. Journal of
Political Economy 119 (3), 565–615. http://dx.doi.org/10.1086/660817.

Cragg, J.G., Donald, S.G., 1993. Testing identifiability and specification in instrumen-
tal variable models. Econometric Theory 9, 222–240.
Cragg, J.G., Donald, S.G., 1997. Inferring the rank of amatrix. Journal of Econometrics
76, 223–250.

Farebrother, R.W., 1990. The distribution of a quadratic form in normal variables
(Algorithm AS 256.3). Applied Statistics 39, 294–309.

Fisher, F.M., 1966. The Identification Problem in Econometrics. McGraw-Hill Book
Company.

Galí, J., Gertler, M., López-Salido, J.D., 2001. European inflation dynamics. European
Economic Review 45, 1237–1270.

Hansen, L.P., 1982a. Large sample properties of generalized method of moments
estimators. Econometrica 50, 1029–1054.

Hansen, L.P., 1982b. Large sample properties of generalizedmethod ofmoments es-
timators. Unpublished Proofs. University of Chicago. http://www.sciencedirect.
com/science/article/pii/S0304407612001200?v=s5.

Hansen, L.P., 1985. A method for calculating bounds on the asymptotic covariance
matrices of generalized method of moments estimators. Journal of Economet-
rics 30, 203–238.

Hansen, L.P., Heaton, J., Yaron, A., 1996. Finite sample properties of some alternative
GMM estimators. Journal of Business and Economic Statistics 14, 262–280.

Hansen, L.P., Singleton, K.J., 1982. Generalized instrumental variables estimation of
nonlinear rational expectations models. Econometrica 50.

Hansen, L.P., Singleton, K.J., 1983. Stochastic consumption, risk aversion and the
temporal behavior of asset returns. Journal of Political Economy 91.

Hansen, Lars Peter, Singleton, Kenneth J., 1996. Efficient estimation of linear asset-
pricing models with moving average errors. Journal of Business & Economic
Statistics 14, 53–68.

Hayashi, F., 2000. Econometrics. Princeton University Press, Princeton, NJ.
Hillier, G.H., 1990. On the normalization of structural equations: properties of

direction estimators. Econometrica 58, 1181–1194.
Imhof, J.P., 1961. Computing the distribution of quadratic forms in normal variables.

Biometrika 48, 419–426.
Kim, H., Ogaki, M., 2009. Purchasing power parity and the Taylor rule. Working

Paper No. 09-03. Ohio State University, Department of Economics.
Kleibergen, F., 2005. Testing parameters in GMM without assuming that they are

identified. Econometrica 73, 1103–1123.
Kocherlakota, N., Pistaferri, L., 2009. Asset pricing implications of Pareto optimality

with private information. Journal of Political Economy 117, 555–590.
Koerts, J., Abrahamse, A.P.J., 1969. On the Theory and Application of the General

Linear Model. Rotterdam University Press, Rotterdam.
Koopmans, T.C., Hood, W.C., 1953. The estimation of simultaneous linear economic

relationships. In: Hood, W.C., Koopmans, T.C. (Eds.), Studies in Econometric
Method. In: Cowles Commission Monograph Number, vol. 14. Wiley, (Chapter
6).

Mavroeidis, S., 2005. Identification issues in forward-looking models estimated by
GMM, with an application to the Phillips curve. Journal of Money, Credit and
Banking 37, 421–448.

Mehra, R., Prescott, E.C., 1985. The equity premium: a puzzle. Journal of Monetary
Economics 15, 145–161.

Nagel, S., Singleton, K.J., 2011. Estimation and evaluation of conditional asset pricing
models. Journal of Finance 66 (3), 873–909.

Nason, J.M., Smith, G.W., 2008. Identifying the newKeynesian Phillips curve. Journal
of Applied Econometrics 23, 525–551.

Phillips, P.C.B., 1989. Partially identified econometric models. Econometric Theory
5, 181–240.

Rao, C.R., 1973. Linear Statistical Inference and its Applications, second ed. Wiley.
Rothenberg, T.J., 1971. Identification in parametric models. Econometrica 39,

577–591.
Sargan, J.D., 1958. The estimation of economic relationships using instrumental

variables. Econometrica 26, 393–415.
Sargan, J.D., 1959. The estimation of relationships with autocorrelated residuals by

the use of instrumental variables. Journal of the Royal Statistical Society: Series
B 21, 91–105.

Sargan, J.D., 1983a. Identification and lack of identification. Econometrica 51,
1605–1633.

Sargan, J.D., 1983b. Identification inmodelswith autoregressive errors. In: Karlin, S.,
Amemiya, T., Goodman, L.A. (Eds.), Studies in Econometrics, Time Series, and
Multivariate Statistics. Academic Press, New York.

Stock, J.H., Wright, J.H., 2000. GMM with weak identification. Econometrica 68,
1055–1096.

Stock, J.H., Wright, J.H., Yogo, M., 2002. A survey of weak instruments and weak
identification in generalized method of moments. Journal of Business and
Economic Statistics 20, 518–529.

Wright, J.H., 2003. Detecting lack of identification in GMM. Econometric Theory 19,
322–330.

Yildiz, N., 2012. Consistency of plug-in estimators of upper contour and
level sets. Econometric Theory 28, 309–327. http://dx.doi.org/10.1017/
S0266466611000144.

http://dx.doi.org/doi:10.1086/660817
http://www.sciencedirect.com/science/article/pii/S0304407612001200?v=s5
http://www.sciencedirect.com/science/article/pii/S0304407612001200?v=s5
http://www.sciencedirect.com/science/article/pii/S0304407612001200?v=s5
http://www.sciencedirect.com/science/article/pii/S0304407612001200?v=s5
http://www.sciencedirect.com/science/article/pii/S0304407612001200?v=s5
http://www.sciencedirect.com/science/article/pii/S0304407612001200?v=s5
http://www.sciencedirect.com/science/article/pii/S0304407612001200?v=s5
http://www.sciencedirect.com/science/article/pii/S0304407612001200?v=s5
http://www.sciencedirect.com/science/article/pii/S0304407612001200?v=s5
http://dx.doi.org/10.1017/S0266466611000144
http://dx.doi.org/10.1017/S0266466611000144
http://dx.doi.org/10.1017/S0266466611000144
http://dx.doi.org/10.1017/S0266466611000144
http://dx.doi.org/10.1017/S0266466611000144
http://dx.doi.org/10.1017/S0266466611000144
http://dx.doi.org/10.1017/S0266466611000144

	Underidentification?
	Introduction
	Overview
	Linearity in the parameters
	Single equation IV
	Related literature
	Underidentification of a higher dimension

	Multiple equations with cross-equation linear restrictions
	Sequential moment conditions

	Nonlinearity in the parameters
	Only  β1  identified:
	Only  β2  is identified:
	Another possibility

	Fundamental nonlinearity
	Efficiency reconsidered
	Estimation of curves
	Testing

	An empirical illustration with asset returns
	Implementation
	Empirical results
	Representative agent model
	Private information Pareto optimal model


	Conclusions
	The Cragg and Donald test of underidentification
	Estimating finite-dimensional specifications of  π
	Imhof-based approximation to the distribution of GMM tests
	GMM estimators with a continuum of moments
	Covariance operators
	Uncentered covariance operator
	Centered covariance operator

	Alternative estimators
	Uncentered two-step estimators
	Uncentered continuously updated estimators
	Centered estimators


	Computational aspects of natural cubic splines
	Some useful definite integrals
	References


