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A Computational details

A.1 Theoretical covariance operator

A.1.1 Eigenvalues and eigenfunctions

As we mentioned in Section 2, the eigenvalues and eigenfunctions of the covariance operator

K are the solutions to the functional equations

(Kφj)(s) =

∫
[ψ0(t− s)− ψ0(t)ψ0(−s)]φj(t)π(t)dt = λjφj(s).

Given that it is not possible to find the analytical solution to this equation for arbitrary

distributions, we solve for φj(s) at a very fine but discrete grid of m points over a finite range

of values of the characteristic function argument t as follows. For the sake of brevity, here we

describe the case in which t is scalar. Let F (.) and Q(.) denote the cdf and quantile functions,

respectively, associated with the continuous density function π(t), which we assume integrates

to 1 over (tl, tu). Then, if we define ν = F (t), the usual change of variable formula immediately

implies that the integral between tl and tu of any function g(t) weighted by π(t)dt coincides

with the integral between 0 and 1 of g[Q(ν)]dν. We exploit this equivalence to numerically

approximate all the required integrals using the rectangle method over m equidistant points

between 0 and 1 regardless of π(.).

Let K be an m×m matrix whose elements are

ψ[Q(νi)−Q(νj)]− ψ[Q(νi)]ψ[−Q(νj)], i, j = 1, . . . ,m,

so that K effectively gives us the asymptotic covariance matrix of the sample average of an m×1

vector of influence functions eiQ(νj)xl − ψ[Q(νj)], j = 1, . . . ,m.

Given that the eigenvalues of K increase with m, we work with m−1K, whose eigenvalues
stabilize. In this context, we take the decreasingly ordered eigenvalues of this scaled matrix as

an approximation to the decreasingly ordered eigenvalues of the theoretical covariance opera-

tor K. Similarly, we also take the normalized eigenvectors of m−1K multiplied by
√
m as an

approximation to the eigenfunctions of the covariance operator scaled so that they have unit

norm.

A.1.2 Test statistic

We compute the (scaled by
√
n) average values of the “population principal components”

of the vector of influence functions eiQ(νj)xl − ψ[Q(νj)], j = 1, . . . ,m by premultiplying the

scaled sample average of this vector by the eigenfunctions previously computed and dividing the

resulting expression by m.

Finally, we compute the TB test statistic as a linear combination of the square norm of the

scaled average values of those principal components weighted by λj
λ2j+α

. In effect, this TB is

numerically identical to the overidentifying restriction statistic of a discrete GMM procedure
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based on the m × 1 vector of influence functions eiQ(νj)xl − ψ[Q(νj)], in which we replace the

inverse of the asymptotic covariance matrix m−1K by its Tikhonov regularized inverse, as in

(11).

A.2 Analytical expressions for cil

A.2.1 Univariate normal

Given that the CF of the standard normal is ψ(t) = e−
1
2
t2 , hi(t)hl(t) has the following four

terms

eit(xi−xl) − e−
1
2
t2+ixit − e−

1
2
t2−ixlt + e−t

2
.

Using a N (0, ω2) density as weighting function π, we obtain

cil = c1(xi, xl)− c2(xi)− c2(−xl) + c3

where

c1(xi, xl) =

∫
eit(xi−xl)π(t)dt = e−

1
2
ω2(xi−xl)2 ,

c2(x) =

∫
e−

1
2
t2+ixtπ(t)dt =

e
− ω2x2

2(1+ω2)

√
1 + ω2

,

and

c3 =

∫
e−t

2
π(t)dt =

1√
1 + 2ω2

.

A.2.2 Standardized uniform

Given that the CF of the standardized uniform is

ψ(t) =
i

2
√

3t
(e−i

√
3t − ei

√
3t),

hi(t)hl(t) has the following four terms

eit(xi−xl) − ieixit

2
√

3t
(e−i

√
3t − ei

√
3t)− ie−ixlt

2
√

3t
(e−i

√
3t − ei

√
3t)− e−2i

√
3t(e2i

√
3t − 1)2

12t2
.

Using a N (0, ω2) density as weighting function π, we obtain

cil = c1(xi, xl)− c2(xi)− c2(−xl) + c3

where

c1(xi, xl) =

∫
eit(xi−xl)π(t)dt = e−

1
2
ω2(xi−xl)2 ,
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c2(x) =

∫
ieixt

2
√

3t
(e−i

√
3t − ei

√
3t)π(t)dt

=
1

2ω

√
π

6

{
erf

[
ω(
√

3− x)√
2

]
+ erf

[
ω(
√

3 + x)√
2

]}
,

where erf is the error function i.e. erf(z) = 2√
π

∫ z
0 e
−t2dt, and

c3 = −
∫
e−2i

√
3t(e2i

√
3t − 1)2

12t2
π(t)dt =

e−6ω2 − 1 +
√

6πω erf(
√

6ω)

6ω2
.

A.2.3 Bivariate standard normal

Given that the CF of the bivariate normal with zero mean and identity covariance matrix

is ψ(t1, t2) = e−
1
2

(t21+t22), hi(t1, t2)hl(t1, t2) has the following four terms

ei[t1(x1i−x1l)+t2(x2i−x2l)] − e−
1
2

(t21+t22)+i(t1x1i+t2xi2) − e−
1
2

(t21+t22)−i(t1x1i+t2xi2) + e−t
2
1−t22 .

Using two independent N (0, ω2) densities as weighting functions π for both t1 and t2, we obtain

cil = c1(xi, xl)− c2(xi)− c2(−xl) + c3

where

c1(xi, xl) =

∫ ∫
ei[t1(x1i−x1l)+t2(x2i−x2l)]π(t1)π(t2)dt1dt2 = e−

1
2
ω2[(x1i−x1l)2+(x2i−x2l)2],

c2(x) =

∫ ∫
e−

1
2

(t21+t22)+i(t1x1+t2x2)π(t1)π(t2)dt1dt2 =
e
−ω

2(x21+x
2
2)

2(1+ω2)

(1 + ω2)
,

and

c3 =

∫ ∫
e−t

2
1−t22π1(t1)π2(t2)dt1dt2 =

1

1 + 2ω2
.

A.2.4 Standardized chi-square with 2 degrees of freedom

Given that the CF of the standardized χ2(2) is ψ(t) = ie−it/(i + t), hi(t)hl(t) has the

following four terms

eit(xi−xl) − ieit(1+xi)

i+ t
− ieit(1+xi)

i− t − ie−it(1+xl)

i+ t
− 1

(i− t)(i+ t)
.

Using a U(−ω, ω) density as weighting function π, we obtain

cil = c1(xi, xl)− c2(xi)− c2(−xl) + c3

where

c1(xi, xl) =

∫
eit(xi−xl)π(t)dt =

sin[ω(xi − xl)]
ω(xi − xl)

,
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c2(x) =

∫
ieit(1+x)

i+ t
π(t)dt

=
e−(1+x)

2ω
{π − iCi[(ω − i)(1 + x)] + iCi[(ω + i)(1 + x)]}

+
e−(1+x)

2ω
{Si[(ω + i)(1 + x)]− Si[(i− ω)(1 + x)]} ,

where Si is the sine integral function Si(z) =
∫ z

0
sin(t)
t dt, Ci is the cosine integral function

Ci(z) = −
∫∞
z

cos(t)
t dt, and

c3 = −
∫

π(t)dt

(i− t)(i+ t)
=
arc tan(ω)

ω
.

A.2.5 Univariate Cauchy

Given that the CF of the univariate Cauchy with location and scale parameters µ and γ,

respectively, is ψ(t) = eµit+γ|t|, hi(t)hl(t) has the following four terms

eit(xi−xl) − e−µit−γ|t|+ixit − eµit−γ|t|−ixlt + e−2γ|t|.

Using a N (0, ω2) density as weighting function π, we obtain

cil = c1(xi, xl)− c2(xi)− c2(−xl) + c3

where

c1(xi, xl) =

∫
eit(xi−xl)π(t)dt = e−

1
2
ω2(xi−xl)2 ,

c2(x) =

∫
e−µit−γ|t|+ixitπ(t)dt

=
1

2

{
e
ω2

2
[γ−i(xi−µ)]2 erf c

[
γ − i(xi − µ)√

2

]
+ e

ω2

2
[γ+i(xi−µ)]2 erf c

[
γ + i(xi − µ)√

2

]}
,

and

c3 =

∫
e−t

2
π(t)dt = e2γ2ω2 erf c(

√
2γω).

A.3 Classical goodness of fit tests

We briefly review below some classical goodness of fit tests (see for instance, Lehmann and

Romano (2005)), which serve as benchmarks in our Monte Carlo exercise. For convenience, we

present them for scalar X.

For testing H0 : F = F0 versus H1 : F 6= F0, the classical Kolmogorov-Smirnov (KS) test is

based on a sup norm of the difference between the empirical distribution function F̂n and the

distribution function:

KS = sup
x∈R

√
n
∣∣∣F̂n (x)− F0 (x)

∣∣∣ .
On the other hand, the Cramer-von-Mises (CvM) test is based on the L2 norm of the differ-
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ence:

CvM = n

∫ ∞
−∞

[F̂n (x)− F0 (x)]2dF0 (x) .

Finally, the Anderson-Darling (AD) test differs from the Cramer-von-Mises by the weight:

AD = n

∫ ∞
−∞

[F̂n (x)− F0 (x)]2

F0 (x) [1− F0 (x)]
dF0 (x) .

So far, F0 was completely specified. For testing normality with unknown mean and variance,

the KS test is usually computed as

KS = sup
x∈R

√
n

∣∣∣∣F̂n (x)− Φ

(
x− X̄
σ̂

)∣∣∣∣
where Φ is the distribution function of the standard normal and X̄ and σ̂2 are the maximum

likelihood estimators of the mean and variance. This version of the KS test is often referred

to as the Lilliefors test. The other tests can be similarly modified. A multivariate extension is

proposed in Andrews (1997).

Consider now the case Xj ∈ Rq. To test H0 : ψ = ψ0 (.; θ0) versus H1 : ψ 6= ψ0 (.; θ0),

Bierens and Wang (2012) consider a L2 test based on the empirical characteristic function and

a uniform weight:

BW =

∫
Υ

∣∣∣∣∣∣ 1√
n

n∑
j=1

[eiτ
′Xj − ψ0(.; θ̂)]

∣∣∣∣∣∣
2

dτ

2qΠq
l=1τ l

where Υ = ×ql=1 [−τ l, τ l] , τ l > 0 and θ̂ is a consistent estimator of θ.

These four tests are consistent against any fixed alternative to the null hypothesis and have

power against 1/
√
n alternatives too. However, for testing general distributions with unknown

parameter, their asymptotic distributions are not nuisance parameter free.

A.4 On simulating distributions

We simulate all the distributions under the null, as well as the symmetric Student t, gamma

and beta distributions, using the available Matlab routines. Namely, we use rand.m for the

uniform, randn.m (mvnrnd.m) for the univariate (bivariate) normal, chi2rnd.m for the χ2(2),

trnd.m (mvtrnd.m) times
√

(ν − 2)/2 where ν denotes the degrees of freedom for the univariate

(bivariate) symmetric Student t, gamrnd.m for the gamma and betarnd.m for the beta distrib-

ution. As for the remaining ones, the procedure is as follows.

A.4.1 Asymmetric Student t

The asymmetric t distribution is a special case of the Generalized Hyperbolic family with

γ = 0 and −∞ < ν < −2 (see Mencía and Sentana (2012)). As explained by these authors,

if the number of degrees of freedom exceeds 4, we can easily simulate a standardized (zero

mean, unit variance) version of a univariate asymmetric Student t distribution by exploiting its
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representation as a location-scale mixture of normals,

Xi = c(β, ν, γ)β

[
1− 2η

ηξt
− 1

]
+

√
1− 2η

ηξi

√
c(β, ν, γ)Zi, (A1)

c(β, ν, γ) =
1− 4η

2η

√
1 + 8β′βη/(1− 4η)− 1

2β′β

where η = −1/(2ν), ξi is distributed iid gamma with mean η
−1 and variance 2η−1, and Zi|ξi is

iid N (0, 1).

If we further assume that η < 1/8, then the skewness and kurtosis coeffi cients of the asym-

metric t distribution will be

E(X3
i ) = 16c3(β,ν, γ)

η2

(1− 4η)(1− 6η)
β3 + 6c2(β, ν, γ)

η

1− 4η
β

and

E(X4
i ) = 12c4(β, ν, γ)

η2(10η + 1)

(1− 4η)(1− 6η)(1− 8η)
β4

+12c3(β, ν, γ)
η(2η + 1)

(1− 4η)(1− 6η)
β2 + 3

1− 2η

1− 4η
c2(β, ν, γ).

Not surprisingly, we can obtain maximum asymmetry for a given kurtosis by letting |β| → ∞.
In contrast, a standardized version of the usual symmetric Student t with 1/η degrees of

freedom is achieved when β = 0 for η < 1/2. Since limβ→0 c(β, ν, γ) = 1, in that case the

coeffi cient of kurtosis becomes

E(X4
i ) = 3

1− 2η

1− 4η

for any η < 1/4, while the coeffi cient of asymmetry is obviously 0.

In the bivariate case the same location scale interpretation in (A1) applies but with Zit|ξi
being iid N (0, I). However, since the elements of the resulting random vector are correlated

when β 6= 0, we use the standardization procedure in Mencía and Sentana (2012).

We chose 12 degrees of freedom and β = −.75 to avoid having too much power for both

the univariate and bivariate cases. According to the above calculations, in the univariate case

E(X4
i ) = 3.75 for the symmetric Student t, while for its asymmetric version, E(X3

i ) = −.54 and

E(X4
i ) = 4.62.

A.4.2 Discrete location-scale mixtures of normals

Univariate discrete location-scale mixtures of normals (DLSMN) Let si denote an

iid Bernoulli variate with P (si = 1) = λ. If zi|si is iid N(0, 1), then

Xi =
1√

1 + λ(1− λ)δ2

[
δ(si − λ) +

si + (1− si)
√
κ√

λ+ (1− λ)κ
Zi

]
,
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where δ ∈ R and κ > 0, is a two component mixture of normals whose first two unconditional

moments are 0 and 1, respectively. The intuition is as follows. First, note that δ(st − λ) is a

shifted and scaled Bernoulli random variable with 0 mean and variance λ(1− λ)δ2. But since

st + (1− st)
√
κ√

λ+ (1− λ)κ
Zt

is a discrete scale mixture of normals with 0 unconditional mean and unit unconditional variance

that is orthogonal to δ(st−λ), the sum of the two random variables will have variance 1 +λ(1−
λ)δ2, which explains the scaling factor.

An equivalent way to define and simulate the same standardized random variable is as follows

Xi =

{
N [µ∗1(η), σ∗21 (η)] with probability λ
N [µ∗2(η), σ∗22 (η)] with probability 1− λ (A2)

where η = (δ,κ, λ)′ and

µ∗1(η) =
δ(1− λ)√

1 + λ(1− λ)δ2
,

µ∗2(η) = − δλ√
1 + λ(1− λ)δ2

= − λ

1− λµ
∗
1(η),

σ∗21 (η) =
1

[1 + λ(1− λ)δ2][λ+ (1− λ)κ]
,

σ∗22 (η) =
κ

[1 + λ(1− λ)δ2][λ+ (1− λ)κ]
= κσ∗21 (η).

Therefore, we can immediately interpret κ as the ratio of the two variances. Similarly, since

δ =
µ∗1(η)− µ∗1(η)√

λσ∗21 (η) + (1− λ)σ∗21 (η)
,

we can also interpret δ as the parameter that regulates the distance between the means of the

two underlying components.

We can trivially extended this procedure to define and simulate standardized mixtures with

three or more components. Specifically, if we replace the normal random variable in the first

branch of (A2) by a k-component normal mixture with mean and variance given by µ∗1(η) and

σ∗21 (η), respectively, then the resulting random variable will be a (k + 1)-component Gaussian

mixture with zero mean and unit variance.

In the case of two-component Gaussian mixtures, the parameters λ, δ and κ determine the
higher order moments of Xi through the relationship

E(Xj
i ) = λE(xji |si = 1) + (1− λ)E(xji |si = 0),
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where E(Xj
i |si = 1) can be obtained from the usual normal expressions

E(Xi|st = 1) = µ∗1(η)
E(X2

i |st = 1) = µ∗21 (η) + σ∗21 (η)
E(X3

i |st = 1) = µ∗31 (η) + 3µ∗1(η)σ∗21 (η)
E(X4

i |st = 1) = µ∗41 (η) + 6µ∗21 (η)σ∗21 (η) + 3σ∗41 (η)
E(X5

i |st = 1) = µ∗51 (η) + 10µ∗31 (η)σ∗21 (η) + 15µ∗1(η)σ∗41 (η)
E(X6

i |st = 1) = µ∗61 (η) + 15µ∗41 (η)σ∗21 (η) + 45µ∗21 (η)σ∗41 (η) + 15σ∗61 (η)

etc. But since E(Xi) = 0 and E(X2
i ) = 1 by construction, straightforward algebra shows that

the skewness and kurtosis coeffi cients will be given by

E(X3
i ) =

3δλ(1− λ)(1− κ)

[λ+ (1− λ)κ][1 + λ(1− λ)δ2]3/2
+
δ3(1− λ)λ(1− 2λ)

[1 + λ(1− λ)δ2]3/2
= a(δ, κ, λ) (A3)

and

E(X4
i ) =

3[λ+ (1− λ)κ2]

[λ+ (1− λ)κ]2[1 + λ(1− λ)δ2]2
+

6δ2λ(1− λ)[(1− λ) + κλ]

[λ+ (1− λ)κ][1 + λ(1− λ)δ2]2

+
δ4λ(1− λ)[1− 3λ(1− λ)]

[1 + λ(1− λ)δ2]2
= b(δ, κ, λ). (A4)

Two issues are worth pointing out. First, a(δ, κ, λ) is an odd function of δ, which means that

δ and −δ yield the same skewness in absolute value. In this sense, if we set δ = 0 then we will

obtain a discrete scale mixture of normals, which is always symmetric but leptokurtic.5 Second,

b(δ, κ, λ) is an even function of δ, which implies that δ and −δ give rise to the same kurtosis.
For that reason, in what follows we mostly consider the case of δ ≥ 0.

For the symmetric alternatives, we calibrate the parameters by matching the kurtosis coef-

ficient to that one of the Student t with 12 degrees of freedom (E(X4
i ) = 3.75). Since there

are two parameters, we arbitrarily set the probability λ to 1/10 for the so-called “outlier case”

(Panel C of Table 1) and to 3/4 for the so-called “inlier case”(Panel B of Table 1), delivering

values of κ equal to 1/3 and (15− 8
√

3)/11, respectively.

As for the asymmetric mixture of three normals, we impose the same skewness and kurtosis

as the normal, and fix the fifth and sixth moments to −1 and 18 (as a reference, they are 0 and

15, respectively, in the Gaussian case), which together with arbitrary weights of .3, .3, and .4,

allow us to fully characterize the corresponding alternative.

Multivariate scale mixture of two normals Xi =
√
ς iUi, with Ui being uniform on the

unit sphere surface in RN , is distributed as a two-point discrete mixture of normals (DSMN) if
and only if

ς i ≡ X ′iXi =
si + (1− si)κ
λ+ (1− λ)κ

ςoi

5Another way of obtaining discrete normal mixture distributions that are symmetric is by making λ = 1
2
and

κ = 1.
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where si is an iid Bernoulli variate with P (si = 1) = λ, κ is the variance ratio of the two

components, which for identification purposes we restrict to be in the range (0, 1] and ςoi is an

independent χ2(N). The DSMN approaches the multivariate normal when κ → 1, α → 1 or

α → 0. Near the limit, though, the distributions can be radically different. For instance, given

that κ ∈ (0, 1] when α→ 0+ there are very few observations with very large variance (“outliers

case”), while when α→ 1− the opposite happens, very few observations with very small variance

(“inliers case”). As all scale mixtures of normals, the distribution of xi is leptokurtic.

We calibrate the bivariate outlier distribution (Panel C of Table 3) by following the same

steps as in the univariate case.

A.4.3 Standardized second order Hermite expansion of the standard normal

The standardized version of the density in Lemma 7 that we use as alternative to the

univariate normal can be written as

f(x; a, b) =
e−

1
2

(a+cx)2c[1 + a2 + acx]√
2π

+
e−

1
2

(a+cx)2bc[(a+ cx)2 − 1]

2
√
π

where 0 < b <
√

2 and a2 < 2b(
√

2 − b) to guarantee the positivity of the density, and with
c =

√
1− a2 + b

√
2 to ensure V (x) = 1. Moreover, we can obtain an analytical expression for

the corresponding cdf in terms of the error function erf,

F (x; a, b) =
1

2

[
1 + erf

(
a+ cx√

2

)]
− e−

1
2

(a+cx)2 [a(b+
√

2) + bcx]

2
√
π

,

which is the basis for simulating from this distribution. Specifically, we generate a uniform

random number u between 0 and 1 and then numerically find the root x to the equation

F (x; a, b) = u.

A.4.4 Scaled F

If we assume that Xi is iid as a standardized symmetric multivariate t with ν degrees of

freedom, then

Xi =

√
(ν − 2)ζi

ξi
Ui

where Ui is uniformly distributed on the unit sphere surface in RN , ζi is a χ2(N), ξi is a χ
2(ν),

and ui, ζi, and ξi are mutually independent. Therefore, we can easily generate a scaled F

random variable with mean N from the square Euclidean norm of an N -variate Student t with

finite degrees of freedom.

A.4.5 Cauchy

If we assume that Xi is iid as a Cauchy with location and scale parameters µ and σ,

respectively, then Xi is a non-standardized Student t with location µ, scale σ and one degree of
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freedom. In particular when µ = 0 and σ = 1, it is faster to sample it as Xi = Z1i/Z21 where

Zji is iid —across i and j—standard normal.

A.4.6 Laplace

If we assume that Xi is iid as a Laplace with location and scale parameters µ and σ,

respectively, then

Xi = µ− bsign(Ui −
1

2
) log(2− 2|Ui|)

where Ui is iid uniformly distributed on [0, 1].
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B Additional figures

Figure B1: Examples of characteristic functions

Figure B1a: Standard normal Figure B1b: Standardized uniform
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Figure B1c: Standardized χ2(2) Figure B1d: Standardized Cauchy
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Figure B2: Eigenvalues and eigenfunctions of the covariance operator K

Figure B2a: 1st eigenfunction Figure B2b: 1st eigenfunction
of K for the standard normal of K for the (standardized) uniform
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Figure B2c: 2nd eigenfunction Figure B2d: 2nd eigenfunction
of K for the standard normal of K for the (standardized) uniform
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Figure B2e: Eigenvalues of K (in logs) Figure B2f: Eigenvalues of K (in logs)
for the standard normal for the (standardized) uniform
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Notes: Eigenvalues and eigenfunctions are computed following the procedure described in Appendix A.1
with a grid of 1,000 points. ω is the scale parameter of the N (0, ω2) density defining inner products.
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Figure B3: Densities of alternatives to the univariate normal

Figure B3a: Symmetric Student t Figure B3b: Asymmetric Student t
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Figure B3c: Scale mixture of two Figure B3d: Third-moment symmetric
normals (outliers case) and mesokurtic Gaussian mixture
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Figure B3e: Scale mixture of two Figure B3f: Second-order Hermite
normals (inliers case) expansion of the normal
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Notes: Figure B3a: Student t with 12 degrees of freedom. Figure B3b: Asymmetric t with 12 degrees of
freedom and skewness parameter β = −.75. Figure B3c: Discrete scale mixture with same kurtosis as the
symmetric t, 3.75, and λ = 0.1 (outlier). Figure B3d: Discrete location-scale mixture of three normals
with same skewness and kurtosis as the normal and E(x5) = −1, E(x6) = 18. Figure B3e: Discrete scale
mixture with kurtosis 3.75 and λ = 0.75 (inlier). Figure B3f: Second order expansion with a = 0.4 and
b = 0.5. See Appendix A.3 for parameter definitions.
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Figure B4: Densities of alternatives to the uniform distribution

Figure B4a: Symmetric beta (with parameters α = b = 1.1)
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Figure B4b: Asymmetric beta (with parameters a = 1.1, b = 1)
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Figure B4c: Gaussian PITs of observations
drawn from an asymmetric Student t
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Notes: Figure B4c: asymmetric Student t distribution with 12 degrees of freedom and skewness parameter
β = −.75. Density of Figure B4c is computed as the ratio of the pdfs of the asymmetric Student t and
the normal.

14



Figure B5: Alternative distributions to the bivariate normal

Figure B5a: Symmetric Student t Figure B5b: Contours of a symmetric
density Student t
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Figure B5c: Scale mixture of two Figure B5d: Contours of a scale mixture
normals (outliers case) density of two normals (outliers case)
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Figure B5e: Asymmetric Student t Figure B5f: Contours of an Asymmetric
density Student t
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Notes: Figures B5a—b: Student t with 12 degrees of freedom. Figures B5c—d: Scale mixture with same
Mardia’s excess kurtosis coeffi cient as the symmetric t, 0.5, and λ = 0.1. Figures B5e—f: Asymmetric
t with 12 degrees of freedom and skewness parameter β = −.75`. See Appendix B.3 for parameter
definitions.
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Figure B6: Densities of alternatives to the χ2(2)

Figure B6a: Scaled F with 2 and 12 degrees of freedom
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Figure B6b: Gamma with parameters α = 2/3 and β = 3
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Figure B6c: Square norm of bivariate
draws from asymmetric Student t
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Notes: Figure B6c: asymmetric Student t distribution with 12 degrees of freedom and skewness parameter
vector β = −.75`. Density of Figure B6c was computed by nonparametric estimation of a simulated
sample of size 5,000,000.
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Figure B7: Densities of alternatives to the Cauchy

Figure B7a: Student t with 2 degrees of freedom

­3 ­2 ­1 0 1 2 3
x

0

0.1

0.2

0.3

0.4

0.5

Figure B7b: Asymmetric Student t
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Figure B7c: Laplace with location 0 and scale 1/
√
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Notes: Figure B7a: Student t with 2 degrees of freedom. Figure B7b: Asymmetric Student t with 6
degrees of freedom and skewness parameter β = −.25. Figure B7c: Laplace with location 0 and scale
1/
√

2.
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